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Abstract: The mean scatterer spacing (MSS) has been identified as an important parameter for
characterizing human tissues presenting a semi-regular lattice texture. Most of the work in this area
involves the uses of an estimated power spectrum density (PSD) of an autoregressive (AR) model to
deduce the MSS from backscattered ultrasonic signals. In this paper, we propose a new method of
MSS estimation using the third and fourth-order cumulants, named here TFOCs, of the AR parametric
model. The results obtained by this new method is compared with those obtained using PSD.
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1. INTRODUCTION

Ultrasonic imaging has been recognized as an invalu-

able tool in medical diagnosis. Ultrasonic tissue character-

ization techniques offer the promise of noninvasive

discrimination between normal and diseased tissues. Ultra-

sound B-Scan imaging comprises in the observation of

signals (echoes) returned from scatterers located inside

the tissue under investigation and gives rise to so-called

speckle [1,2]. The clinical imaging interpretation is still

limited and based on the radiologist’s evaluation.

The aim of actual ultrasonic research is to overcome

these limits using signal processing methods. Hence

various attempts have been made for tissue characterization

using A-Scan. Many works have already been reported,

providing quantitative information useful in tissue charac-

terization by exploiting the backscattered radio frequency

(RF) signal [3–5]. Useful parameters can be extracted

from the processed ultrasonic backscattered signal, such as

the ultrasonic transducer’s impulse response, integrated

backscatter, attenuation, reflection coefficients, celerity,

mean scatterer spacing (MSS) and density of scatterers

[6–12].

The MSS parameter, which is our interest, might carry

information about the tissue state, and can be useful for

classifying some biological tissues. Several authors sup-

posed that ultrasonic scattering from human tissues, such as

liver, has two principal components. The first one, which is

highly coherent, is due to a semiregular structure, formed

probably by lobules or portal triads, named scatterers. The

second one, which is highly incoherent, corresponds to a

random (irregular) structure that consists of diffuse

scatterers [13].

Hence, the MSS of the semiregular scatterers can be

determined from the information carried by the magnitude

and phase spectrum of backscattered ultrasonic signals. If

we blindly use the backscattered signal, the estimated mean

scatter spacing from healthy tissues would be found to be

1–1.5mm, and for abnormal tissues, it would be slightly

greater [14]. However, various methods, based on the

power spectrum density (PSD) or autocorrelation of the

magnitude of the spectrum [15,16], start with the assump-

tions of Gaussianity and a minimum phase [17–20]. In

other words, all these methods depend on the second-order

spectrum or second-order statistics. In order to overcome

these limits, the third and fourth-order cumulants (TFOC)

[21] of an autoregressive (AR) model are used here for

the estimation of MSS, and this parameter is compared

with that determined using the PSD of an AR model (PSD-
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AR) [18]. Furthermore, we assume, in this work, that the

speckle distribution follows a Rayleigh law. The high-order

statistics have already been used for tissue response

modeling based on Ultrasonic B-scan images by

Abeyrantne et al. [19].

In this present work, a liver tissue simulation model is

first proposed and defined in the first section. The second

section is dedicated to the theoretical presentation of PSD

and TFOC methods. Then, the MSS is determined using

simulation. Finally, comparisons between results obtained

using both above-mentioned methods (PSD and TFOC) are

given, showing their advantages and disadvantages.

2. THE SIMULATION MODEL

The impulse response of tissue structure is modelled

as [13]

gðtÞ ¼ grðtÞ þ girðtÞ; ð1Þ

where

grðtÞ ¼
XL
i¼1

ai�ðt � �1;iÞ;

and

girðtÞ ¼
XM
i¼1

bi�ðt � �2;iÞ:

The first and second terms, of the right part of Eq. (1)

represent, respectively, the regular structure (pseudoperi-

odic, resolvable) grðtÞ that characterizes the tissue and the

irregular structure (unresolvable, diffuse) girðtÞ due to

individual liver cells and other unresolvable, random tissue

microstructures (speckles). The coefficients ai and bi are

the relative strengths of semiregular and irregular scatterers

(which include all physical phenomena such as attenuation,

diffusion section, etc.), �ð�Þ is the Dirac function, L is

the number of semiregular scatterers, M is the number

of irregular scatterers, and �1;i and �2;i are the time delays

from, respectively, the semiregular and irregular scatterers

to the receiver. The relative strengths ai and bi will be

considered as two independent random variables uniformly

distributed in interval [0, 1].

The amount of time separating two adjacent semi-

regular scatterers is a random variable with a Gamma

distribution according to Landini and Verrazzani [4], while

Simon et al. [7] proposed a Poisson distribution for the

time separating two adjacent semiregular scatterers. The

Poisson distribution is used to model events occurring in

a fixed period of time. In our case, the presence of a

semiregular scatterer at a specific distance (or time) is

considered as an event. If we wish to estimate the number

of scatterers from the time interval (or space interval),

the semiregular scatterer spacing can be modelled by a

temporal Poisson distribution:

pðx ¼ k; �1Þ ¼ expð��1Þ
�k
1

k!
; k ¼ 0; 1; 2; . . . ; ð2Þ

where �1 is the parameter of this distribution, and x is the

number of scatterers in the time interval. To convert this

number to a time distribution, we divide this number by �1
(to normalize it) and multiply it by �, which is the MSS in

the time domain. Hence, the time interval ��1 ¼ �1;iþ1 �
�1;i between two adjacent semiregular scatterers is dis-

tributed according to x�=�1 with mean � and variance

�2 ¼ �2
x�

2
1 . For the irregular scatterers model, Wagner

et al. [1] have shown that when the number of those

scatterers per resolution cell of the transducer is sufficiently

large, diffuse scattering having Rayleigh statistic occurs.

These results have been confirmed [1], using a water-based

gelatin phantom. The phantom contains plastic scatterers

with 100 mm, and the concentration of gelatin particles was

38 within a �6 dB resolution cell of a 2.25MHz, 13mm

transducer.

The ultrasound speckle (which is analogous to speckle

in coherent electromagnetic waves) results from the

coherent accumulation of random scatterings from the

resolution cell as it is scanned through the tissue. The

accumulation can be viewed geometrically as a random

walk of component phasors. When the number of scatters

within one resolution cell is large, and the phases of the

scattered waves are distributed uniformly between 0 and

2�, the magnitude of the phasor that results from the

addition of the randomly walking components has a

Rayleigh pdf. This is due to the fact that the real and

imaginary parts of the phasors have Gaussian density

functions. In our simulations, we used a Rayleigh distri-

bution to generate the backscattered signal

pðx; �2Þ ¼
x

�2
2

exp �2
x2

�2
2

� �
; x ¼ 0; 1; 2; . . . ; ð3Þ

where x is the time distribution of irregular scatterers, and

�2 is the parameter of Rayleigh distribution (related to the

width of the Rayleigh PDF). This parameter is related to

the mean time of irregular scatterers �xx ¼ �ir by �ir ¼ffiffiffi
�
2

p
�2. The time interval between two adjacent irregular

scatterers ��2 ¼ �2;iþ1 � �2;i is
ffiffiffi
2
�

p
x. In the spatial domain,

the MSS �d is �c=2 [8], where c is the speed of sound in

tissue. In this study, the tissue is considered as

a linear time-invariant system, hence the backscattered

signal yðtÞ, which results from the interaction of the

incident ultrasonic pulse with the scattering structure, is

expressed as

yðtÞ ¼ gðtÞ � hðtÞ þ nðtÞ; ð4Þ

where gðtÞ is the impulse response of tissue, � denotes

the convolution operator, nðtÞ is the Gaussian noise

with zero mean associated with the ultrasound system
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and hðtÞ is the transducer impulse response, often

assumed to have a Gaussian-shaped frequency spectrum,

such as

hðtÞ ¼ expð��tÞ cosð2� f0tÞuðtÞ: ð5Þ

In Eq. (1), the second term is considered to be noise,

therefore, using Eqs. (1) and (4), the signal-to-noise ratio

(SNRs) is defined as the ratio between the variances of the

first term and the second term in the equation

SNRs ¼ 10 log10

X
n

yrðnÞ2

X
n

yirðnÞ2
; ð6Þ

where yrðnÞ ¼ grðnÞ � hðnÞ is the backscattered signal from

the regular structure, and yirðnÞ ¼ girðnÞ � hðnÞ is from the

irregular structure. Where, grðnÞ, girðnÞ and hðnÞ represent
the discrete time signal of, respectively, grðtÞ, girðtÞ and

hðtÞ.
It was shown in [13,16] that the PSD of a perfectly

regular tissue backscattered signal exhibits peaks at

harmonic frequencies f ¼ i f1, i ¼ 1; 2; . . . : of a funda-

mental frequency f1. This property justifies the use of an

autoregressive model rather than the moving average (AR)

or combined AR and MA (ARMA) models. Considering

just the first term of Eq. (1), the PSD of backscattered

signal can be given as [8]

Sggð!Þ ¼
c

2�d

½1� 2	 cosð2!�d=cÞ�; ð7Þ

where 	 is a constant. Equation (7) indicates that a periodic

oscillation, the period of which determines the MSS,

should be observed. However, the PSD of the echo from

the semiregular tissue is altered by speckle noise, which

is modeled by the second term in Eq. (1). In addition to

the speckle noise, the effect of the impulse response

of the transducer introduces another perturbation. For

these reasons, it is necessary to estimate the PSD of

backscattered signals in order to deduce the MSS. Several

authors [7–9] have shown the efficiency of an AR

model using the second-order statistics for the estima-

tion of backscattered signals. The same model will

therefore be considered in the scope of the TFOC

method.

3. CUMULANTS FOR MSS ESTIMATION

The PSD of backscattereds signal from regular struc-

tures presents equidistant peaks, separated by a frequency

increment to the structure period (hence, this property

justifies the choice of the AR model [17]), which is

proportional to MSS. The MSS estimation is based on the

estimation of PSD of the backscattered signal. However, all

proposed methods for PSD estimation are based on two

important hypotheses: stationarity and Gaussianity. These

hypothesis leads to the use of only the second-order

statistics (autocorrelation) and the amplitude information

while ignoring the phase information. Hence, these

hypotheses lead to a very restrictive class of ultrasonic

signals backscattered from tissues. In the general case, the

signals are non-Gaussian and sometimes even cyclosta-

tionary (class between stationary and no stationary) [21].

Higher-order statistics known as cumulants and their

associated Fourier transforms, known as polyspectra,

reveal not only amplitude information, but also phase

information. They also automatically null the effects of

colored Gaussian measurement noise, whereas correla-

tion-based methods do not. Therefore, the higher-order

statistics appears suitable here. An AR model for back-

scattered signals, excited by non-Gaussian white noise, is

proposed in this section. Its parameters are estimated

using the third- and the fourth-order cumulants named

CUM3-AR and CUM4-AR. Let the backscattered signal

yðnÞ from tissue be modeled by a non-Gaussian AR model

of order P as

yðnÞ ¼ �
XP
i¼1

aðiÞyðn� iÞ þ 
ðnÞ: ð8Þ

The input 
ðnÞ will have a nonsymmetric and non-Gaussian

distribution law, and að0Þ ¼ 1. The system given in Eq. (8)

is assumed to be stable and is statistically independent of


ðnÞ. If the kth-order cumulant of the driving non-Gaussian

noise is nonzero, yðnÞ has also a kth-order cumulant. This

cumulant is defined (for k ¼ 3; 4) as [22]

Ck
yð�1; �2; . . . ; �k�1Þ ¼ E½yðtÞyðt þ �1Þ . . . yðt þ �k�1Þ�

� E½ f ðtÞ f ðt þ �1Þ . . . f ðt þ �k�1Þ�;
ð9Þ

where E½�� denotes the statistical expectation with respect

to t, and f ðtÞ is a Gaussian process with zero mean. Both

yðnÞ and f ðnÞ have the same auto-covariance.

The second-, third-, and fourth-order cumulants, for a

zero mean variable, are given by [22]

C
y
2ðmÞ ¼E½yðnÞ � yðnþmÞ�;

C
y
3ðm1;m2Þ ¼E½yðnÞ � yðnþm1Þ � yðnþm2Þ�; ð10Þ

C
y
4ðm1;m2;m3Þ ¼E½yðnÞ � yðnþm1Þ � yðnþm2Þ � yðnþm3Þ�

� C
y
2ðm1ÞCy

2ðm2 � m3Þ

� C
y
2ðm2ÞCy

2ðm3 � m1Þ

� C
y
2ðm3ÞCy

2ðm1 � m2Þ: ð11Þ

As previously noted, the AR coefficients of a back-

scattered signal PSD may be estimated from the following

correlation-based normal equations [22]:

XP
k¼0

aðkÞCy
2ðk � mÞ ¼ 0; m > 0: ð12Þ
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The AR coefficients can also be determined using the

third- and the fourth-order cumulants. Hence, using Eqs. (4)

and (10), the relation linking the AR model parameters and

the cumulants is (the third-order cumulant) given as [23]

XP
k¼0

aðkÞC3
y ðk � m; k � nÞ ¼ ��ðm; nÞ; ð13Þ

where � ¼ E½
2ðnÞ�.

Once the 3rd-order cumulant is computed, the model

parameters aðkÞ can be estimated by solving Eq. (13) along

lines m ¼ n ¼ 0; 1; . . . ;P. The diagonal slice of the third-

order cumulant sequences is given by the following matrix

equation [23]:

JA ¼ B; ð14Þ

where

J ¼

C
y
3ð0; 0Þ C

y
3ð1; 1Þ . . . C

y
3ðP;PÞ

C
y
3ð�1;�1Þ C

y
3ð0; 0Þ . . . C

y
3ðP� 1;P� 1Þ

: : . . . :

: : . . . :

: : . . . :

C
y
3ð�P;�PÞ C

y
3ð�Pþ 1;�Pþ 1Þ : . . . C

y
3ð0; 0Þ

2
66666666664

3
77777777775
;

A ¼ ½1að1Þ . . . aðPÞ�T; ð15Þ

and

B ¼ ½�0 . . . 0�T: ð16Þ

The correlation-based method is one way to solve these

equtions with P parameters. The second way is that, when

we have more equations then unknown parameters, where-

by the resulting system (known as higher-order Yule-

Walker equtions) is overdetermined, the least-squares or

singular value decomposition (SVD) is used.

The PSD of the backscattered signal may be estimated

from the parameters determined using the fourth-order

cumulants. The process to follow is then the same as, to

that described above, with identical equations (Cy
3 being

simply replaced with C
y
4). The estimated parametric PSD is

smooth, which helps to better localize the amplitude pics

and thus estimate the frequency interval. The next section

deals with the simulation of the proposed method (CUM3-

AR and CUM4-AR) and its comparison with that based on

second-order statistics (PSD-AR).

4. RESULTS AND DISCUSSION

The aim of this part is to demonstrate the efficiency of

the TFOC-based method in estimating the MSS. For the

simulation, an elaborate (and hopefully realistic) model is

used. Monte-Carlo simulations for the three methods

(CUM3-AR, CUM4-AR and PSD-AR) are run in order to

study their robustness. Using the tissue model described

by Eqs. (1) and (4), a large number of data sets (100

realisations) is generated for each combination of param-

eter values. For each realisation, the MSS is determined

from its PSD, which is estimated using CUM3-AR, CUM4-

AR or PSD-AR. For each set, the mean and the standard

deviation of the MSS are then computed and compared.

The true MSS � is chosen to be equal to 1.5mm, with

distance approximately equal to the size of a liver nodule.

The standard deviation of the semiregular spacing � is first

varied and the regular spacing to diffuse the amplitude ratio

SNRs is kept constant.

According to reference [9], the AR method gives good

results if the data window size is greater than 4mm. There-

fore, in our simulation, the data window size is taken to be

25mm (window time is 34 ms, �17 semiregular scatterers

by window), corresponding to sampling frequency Fs ¼ 30

MHz. The simulation parameters are given in Table 1. Our

simulation is based on the HOSA toolbox MATLAB [24].

Figure 1(a), 1(b) and 1(c) shows respectively the RF

simulated signals of the regular structure, of the irregular

structure and the backscattered signal with SNRs ¼ 0 dB

and SNR ¼ 15 dB. Figures 2, 3 and 4 show results of

CUM3-AR and PSD-AR for three values of � with SNR

value of 0 dB. The corresponding performances for 3 of

setresults is shown in Table 2. The black solid lines and

dashed lines corresponding to �� �.

Table 1 Simulation parameters.

MSS: Mean scatter spacing 1.5mm
�1: Poisson parameter distribution 10 (�=� ¼ 3), 25 (�=� ¼ 5),

100 (�=� ¼ 10)
�2: parameter of Rayleigh distribution
SNR: signal-to-noise ratio, 15 dB
SNRs: regular-to-diffuse amplitude ratio, �5, 0, 5 dB
N: length of RF signal, 1,024 points
Fs: sampling frequency, 30MHz
ai, bi: uniformly distributed 2 ½0; 1�
P: order of the AR Model, 65
Nr: number of realizations, 500
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The results obtained with CUM4-AR are added even

though the results of CUM4-AR are not shown. It is seen

that CUM3-AR and CUM4-AR perform better than PSD-

AR, which is much more sensitive to variations of the

standard deviation �. For CUM4-AR, the mean value falls

closer to the true value and the standard deviation is lower.

CUM3-AR also appears to be better than PSD-AR with low

variance, giving a good mean value estimate, but a standard

Fig. 1 Simulated signals: a) RF from regular structure, b) RF from irregular structure, c) backscattered signal with
SNRs ¼ 0 dB and SNR ¼ 15 dB.

Fig. 2 100 realizations of MSS for �=� ¼ 3 and
SNRs ¼ 0 dB. CUM3-AR: solid lines, PSD-AR: dots.

Fig. 3 100 realizations of MSS for �=� ¼ 5 and
SNRs ¼ 0 dB. CUM3-AR: solid lines, PSD-AR: dots.
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deviation of the same order (much higher than with CUM3-

AR). CUM3-AR may therefore be preferred, except when

the backscattered signal has a symmetric distribution

(CUM4-AR then being a better, natural, choice).

Figures 4, 5 and 6 show results of CUM3-AR and PSD-

AR for various regular-to-diffuse amplitude ratios, the

standard deviation of the semiregular spacing being kept

constant (�=� ¼ 10). The results are summarized in

Table 3. It must be noted that CUM3-AR and CUM4-AR

give similar results for fixed and variable speckles and yield

consistent estimators for MSS, even in the extreme case.

Moreover, the performance may be further enhanced by

taking a higher number of realizations into account. The

CUM4-AR is preferable if the backscattered signal has a

symmetric distribution. One point could be a weakness of

the parametric-cumulant-based method (even though the

fact that is time-consuming is another point but it is not an

issue in these applications) which is the stability of our AR

model. During the simulation and before estimating the PSD

using AR parameters, we check if all poles are inside the

unit circle. We noticed that this condition is always verified.

Fig. 5 100 realizations of MSS for �=� ¼ 10 and
SNRs ¼ �5 dB. CUM3-AR: solid lines, PSD-AR: dots.

Fig. 6 100 realizations of MSS for �=� ¼ 10 and
SNRs ¼ 5 dB. CUM3-AR: solid lines, PSD-AR: dots.

Table 2 MSS values (mm) for SNRs ¼ 0 dB.

�=� Method Mean Variance

AR 1.47 (0.35)2

10 CUM3-AR 1.57 (0.21)2

CUM4-AR 1.44 (0.35)2

AR 1.37 (0.34)2

5 CUM3-AR 1.49 (0.22)2

CUM4-AR 1.50 (0.26)2

AR 1.44 (0.30)2

3 CUM3-AR 1.42 (0.24)2

CUM4-AR 1.50 (0.26)2

Fig. 4 100 realizations of MSS for �=� ¼ 10 and
SNRs ¼ 0 dB. CUM3-AR: solid lines, PSD-AR: dots.

Table 3 MSS values (mm) for �=� ¼ 100.

SNRs (dB) Method Mean Variance

AR 1.44 (0.34)2

�5 CUM3-AR 1.56 (0.21)2

CUM4-AR 1.50 (0.26)2

AR 1.47 (0.35)2

0 CUM3-AR 1.57 (0.21)2

CUM4-AR 1.45 (0.28)2

AR 1.44 (0.35)2

5 CUM3-AR 1.57 (0.21)2

CUM4-AR 1.38 (0.21)2
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5. CONCLUSION

In this paper we proposed a new method, called TFOC,

for MSS estimation using the third-order and the fourth-

order cumulants of a parametric AR model for ultrasonic

signals backscattered from human tissue. This method was

compared with PSD of a parametric AR model. The

comparison was based on the performance of each method

upon varying the standard deviation of the MSS � and the

semiregular-to-irregular signal ratio, which is considered to

be a parameter qualifying the homogeneity of the tissue. A

set of simulations results (obtained for 100 realizations in

each case) showed the good performance of the TFOC

method.
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