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Abstract: Head-related transfer function (HRTF) interpolation plays an important role for
implementation of 3D sound system because it can not only reduce the number of measurements
for HRTFs, but also reduce the data of HRTFs for seamless binaural synthesis. This paper addresses
the problem of accurately realizing the interpolation of HRTF for synthesis of virtual auditory space,
and proposes a HRTF interpolation method based on principal component analysis. Firstly, the HRTF
is decomposed into principal components and corresponding principal component weights, where
principal components are direction-independent and principal component weights are direction-
dependent; then the directional variation of the principal component weight is multivariate polynomial
fitted with a bivariate function of two spatial angulus (azimuth and elevation). Moreover, a sphere-
partitioning optimization scheme is employed to improve the approximation precision. Experiment
results demonstrate that HRTFs in the entire sphere surface can be interpolated by the proposed
method with small distortion, and the proposed method performs better than conventional methods.
Therefore the proposed method gives a promising way for HRTF interpolation.
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polynomial fitting
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1. INTRODUCTION

3D sound technology has great application potentials

in multimedia, home entertainment, virtual reality, and

human-computer interaction systems. In the study of 3D

sound, head-related transfer function (HRTF), which

describes the path between the sound source and the ear,

plays an important role [1]. Accurate spatial positioning of

sound sources in 3D space, to be presented via headphones,

can be achieved if we convolve the audio source with a

set of HRTFs. HRTFs are usually obtained from their

corresponding head-related impulse responses (HRIRs),

measured under controlled conditions on a spherical

surface of constant radius for a set of positions. However,

the measurement only represents the spatial characteristics

on discrete positions because of the enormous amounts of

time and physical loads of the listener. The need for

interpolating the HRTF becomes more important when we

address the problem of moving sound sources, or when the

perceived direction of the sound changes due to the

listener’s head movements. It is indispensable to consider

how to obtain the HRTFs in arbitrary directions from a

limited number of measured HRTFs, so that the switch

between different HRTFs is accomplished in a fast and

smooth way without creating audible artifacts [2].

The interpolation of HRTF enables us to reduce the

number of measurements for new HRTFs, and also reduce

the data of HRTFs in auditory virtual systems. Much work

has been done to achieve accurate interpolation of HRTF.

The interpolation methods may be summarized into two

kinds: direct interpolation method and indirect interpola-

tion method. The class of direct interpolation method

calculates the target HRTF directly with HRTFs associated

with two or more nearest points that circumscribe the

desired point. For example, the bilinear method realizes the

target position’s interpolation with its four nearest meas-

ured HRTFs according to their ubiety [1]. In [3], linear

interpolation is realized in the form of common acoustics

pole/zero (CAPZ) model. And in [4], linear interpolation is

realized in the form of inter-positional transfer function

(IPTF) model. In [5] a piecewise method is proposed,

where the whole frequency band is divided into small
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frequency bands and linear interpolation is implemented in

each narrow frequency bands separately. Since the class of

direct interpolation method supposes the linear relationship

between neighboring positions’ HRTFs, it is simple and

straightforward. But at some neighboring positions, the

relationships among them are not as described by the direct

interpolation method. In these cases, the direct interpola-

tion method fails to get good interpolation result.

The class of indirect method estimates the directional

variation function of HRTF from the known ones, so that

the coordinate of the spatial point may be directly mapped

into the corresponding HRTF. For example, the spline

interpolation methods [6], the rational interpolation method

[7], the plenacoustic function method [8], the spatial

frequency response surface (SFRS) method [9], and

angular parameterization method [10] all belong to the

class of indirect interpolation. Since the indirect interpo-

lation method makes use of the information of all the

known HRTFs to calculate the target HRTF, its perform-

ance is generally better than the direct method’s. On the

other hand, the indirect method requires large computation

and memory consumption, which is not appropriate for

real-time realization. In a word, although much work has

been done around the interpolation method, it is still

considered as an open problem.

To increase the HRTF interpolation accuracy, an

interpolation method based on principal component analy-

sis is proposed in this paper. Differentiating from the

methods above which implement HRTF interpolation in

time or frequency domain, the proposed method firstly

decomposes the HRTF into direction-independent principal

components and the direction-dependent principal compo-

nent weights. Then the directional variation of the principal

component weight is multivariate polynomial fitted with a

bivariate function of two spatial angulus (azimuth and

elevation). Moreover, a sphere-partitioning optimization

method is employed to improve the approximation pre-

cision. HRTFs in the entire sphere surface can be

interpolated by the proposed method with small distortion.

The paper is organized as follows. Two classical

interpolation methods, the linear and spline methods are

introduced in Section 2. In Section 3, model order reduc-

tion is applied to HRTF by principal component analysis

and the performance of the conventional interpolation

methods are discussed. In Section 4, the multivariate

polynomial fitting method is described in detail. Experi-

ments and analysis are carried out in Section 5. At last

conclusions are drawn in Section 6.

2. LINEAR AND SPLINE
INTERPOLATION METHODS

Two classical interpolation methods, the linear inter-

polation method and spline interpolation method, are

investigated in this section. The linear method is the

simplest and straightforward method and the spline method

is used widely in various fields.

In linear method, the target (interpolated) HRTF

magnitude is computed as a weighted mean of the

measured HRTF magnitudes associated with the two

nearest points that circumscribe the desired point. This

can be expressed as

Hð!Þ ¼ rH1ð!Þ þ ð1� rÞH2ð!Þ; 0 � r � 1 ð1Þ

where Hð!Þ is the target HRTF magnitude, H1ð!Þ and

H2ð!Þ are two reference HRTF magnitudes, r is the

dividing ratio which relates to the distance of the desired

point to the two reference points.

In the case of the spline method, the cubic spline is

generally used. It uses the piecewise third-order poly-

nomials to connect the data points which often results in

strictly smooth curve. Given a set of data of N þ 1 points,

ð�0;H0ð!ÞÞ; ð�1;H1ð!ÞÞ; � � � ; ð�N ;HNð!ÞÞ, where Hið!Þ is the
magnitude of the ith HRTF and �i is the spatial position of

the ith HRTF. The spline method is as follows.

Assuming the second derivatives of the two end points

are

H00
0 ð!Þ ¼ H00

Nð!Þ ¼ 0 ð2Þ

other second derivatives can be evaluated by the equation

set

ð�i � �i�1ÞH00
i�1ð!Þ þ 2ð�iþ1 � �i�1ÞH00

i ð!Þ

þ ð�iþ1 � �iÞH00
iþ1ð!Þ

¼
6

�iþ1 � �i
½Hiþ1ð!Þ � Hið!Þ�

þ
6

�i � �i�1

½Hi�1ð!Þ � Hið!Þ�;

i ¼ 1; 2; 3; � � � ;N � 1 ð3Þ
The cubic function for each interval ð�i�1; �iÞ is

Hð!Þ ¼
H00

i�1ð!Þ
6ð�i � �i�1Þ

ð�i � �Þ3 þ
H00

i ð!Þ
6ð�i � �i�1Þ

ð� � �i�1Þ3

þ
Hi�1ð!Þ
�i � �i�1

�
H00

i�1ð!Þð�i � �i�1Þ
6

� �
ð�i � �Þ

þ
Hið!Þ

�i � �i�1

�
H00

i ð!Þð�i � �i�1Þ
6

� �
ð� � �i�1Þ ð4Þ

where Hð!Þ is the target HRTF magnitude, and

� 2 ð�i�1; �iÞ.
Comparing two methods above, the linear interpolation

method is simple because the information available for

interpolation is few, while the spline interpolation method

makes use of the information of all the known points and

thus is more complicated and computation consuming.

Generally, the spline method performs better than the linear

method.
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3. HRTF INTERPOLATION BASED ON
PRINCIPAL COMPONENT ANALYSIS

This section introduces the interpolation method based

on principal component analysis, and discusses the inter-

polation results of conventional interpolation methods. It

should be mentioned that the discussion only talks about

the magnitude of HRTF and ignores the phase. The reason

is that, during the measurement, phase is easy to be

contaminated by equipments and circumvents, and the

phase we measured is not accurate in the beginning. The

information of phase can be recovered by means of the

minimum phase characteristics corresponding to magni-

tude, which can not cause special perception reduction in

synthesis [11].

3.1. Principal Component Analysis of HRTF

HRTF interpolation is generally implemented at the

frequency domain where the magnitude is composed of

a lot of frequency bins. To make the analysis of the

interpolation more clearly, we apply principal component

analysis (PCA) to HRTF magnitude to reduce the model

order [12]. Principal component analysis is a classical

model order reduction method. Its key idea is to reduce the

dimensionality of a data set while retaining the primary

variation in the data. PCA decomposes a set of magnitude

spectra into weighted combinations of basis functions. The

basis functions are shared by the whole spectrum set, they

can be considered the basic spectral shapes from which

each spectrum is built. Each spectrum is approximated by

a weighted sum of these basis functions, and the weight

define the relative contribution of each basis function to the

spectrum. Thus each spectrum has its unique weights. The

basis function is called principal component and its weight

is called principal component weight. Suppose dk, a vector

of dimensionality p, is the kth magnitude spectrum of the

data set, it can be represented as a linear combination of

basis functions by PCA, this is

dk ¼
Xq
i¼1

wkici ð5Þ

where ci is the ith principal component, wki is the ith

weight for dk, and q is the total number of principal

components. The number of principal components required

to provide an adequate representation of the data depends

on the amount of redundancy or correlation presented in

the data set. The greater the redundancy, the smaller the

number of principal components needed. Generally the

number of basis functions is much smaller than the

dimensionality of dk, i.e. q � p, thus the data size is

reduced greatly. The detailed process of principal compo-

nent analysis is described in [12]. By principal component

analysis, a group of HRTFs can be decomposed into the

principal components and the corresponding principal

component weights. The principal components are shared

by the all the HRTFs, they are direction-independent; while

the principal component weights remain unique for each

HRTF, they are direction-dependent. Based on this, we

propose to implement HRTF interpolation via the principal

component weight.

3.2. Interpolation of the Principal Component

Weights

The idea of interpolation on the principal component

weight has ever been proposed in [13,14]. In [13], a two-

dimensional spline method is used for interpolation, which

is computation consuming. In [14], a Fourier series

expansion fitting of the principal component weight is

proposed for interpolation in the horizontal plan. To

simplify the discussion, here we only discuss interpolation

from two points by linear and spline method.

For linear method, the interpolation of frequency

magnitude is equivalent to the interpolation of the

corresponding principal component weights. The proof is

as follows.

By principal component analysis, the two reference

HRTF magnitude can be expressed as H1ð!Þ ¼
P

i w1ici,

H2ð!Þ ¼
P

i w2ici, where H1ð!Þ and H2ð!Þ are two

reference HRTF magnitudes, ci is the ith principal

component, w1i and w2i are the corresponding ith principal

component weight of H1 and H2 respectively. The target

HRTF magnitude is

Hð!Þ ¼ rH1ð!Þ þ ð1� rÞH2ð!Þ

¼ r
X
i

w1ici þ ð1� rÞ
X
i

w2ici

¼
X
i

½rw1i þ ð1� rÞw2i�ci

ð6Þ

It can be seen from (6) that the interpolation of

magnitude is equivalent to the interpolation of the

corresponding principal component weights.

Take the KEMAR HRTF as the experiment data [15],

and apply principal component analysis to all HRTF

magnitudes in the database (710 positions totally). Take the

principal component weight-1 as an example, the weight-1

in the horizontal plane is shown in Fig. 1. It can be seen

from Fig. 1 that the curve of weight-1 in the horizontal

plane is not a monetary straight line; it is composed of

some turning curves. If the target point and its neighboring

points lie on one straight line, the target HRTF can be

calculated using linear equation with little distortion. For

example, points D, E, F are on one straight line, point E can

be interpolated linearly from D and F accurately. On the

other hand, if the target point and its neighboring points lie

on different turning curves, linear interpolation may cause

large error. For example, points A and C lie on different
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turning curves, and B lie at the turning point of two turning

curves, BB is interpolated from A and C by linear method.

It is obvious that the interpolated point BB deviates

from the target point B greatly, and the error of linear

interpolation is very large.

The curves of weight-2 and weight-3 are displayed in

Fig. 2. It is shown in Fig. 2 that the variation trends of

weight-2 and weight-3 are similar to weight-1’s. Both of

them are composed of many turning curves. Thus from the

aspect of interpolation of the weights, the linear method is

not appropriate for interpolation because large errors may

occur at turning points of weight curves.

Similarly, the spline method can not settle the problem

that large errors will occur at turning points of weight

curves either. The interpolation accuracy at the turning

points affects the global interpolation performance greatly.

4. MULTIVARIATE POLYNOMIAL
FITTING METHOD

Based on the analysis in Section 3, we find that large

interpolation errors generally occur at the turning points of

weight curves. Excellent interpolation result will not be

obtained until the weight curves are represented precisely.

A multivariate polynomial fitting method is presented to

approximate the weight curve with a bivariate function of

two spatial variables azimuth and elevation. The nth weight

of HRTF at position (azimuth, elevation), wnð�; �Þ, is

expressed as

wnð�; �Þ ¼
XP
p¼0

XQ
q¼0

�p�qcp;qn ð7Þ

where � and � are azimuth and elevation normalized into

[0, 1] respectively, cp;qn is the polynomial coefficient, P and

Q are polynomial order of azimuth and elevation respec-

tively.

Suppose Fnð�; �Þ is the target weight corresponding to

wnð�; �Þ, the total modeling square error is

J ¼
XK
k¼1

XL
l¼1

jFnð�k; �lÞ �wnð�k; �lÞj2

¼
XK
k¼1

XL
l¼1

Fnð�k; �lÞ �
XP
p¼0

XQ
q¼0

�pk �
q
l c

p;q
n

�����
�����
2 ð8Þ

where L is the number of azimuth, K is the number of

elevation, and the total number of HRTFs involved in

computation is M ¼ LK.

Solving the minimization problem of J about the

coefficient cp;qn , the least squares solution of cp;qn may be

obtained by

Cn ¼ ðXT
n XnÞ�1Xnbn ð9Þ

where Cn is the coefficient vector of length ðPþ 1ÞðQþ 1Þ

Cn ¼ ½c0;0n ; � � � ; c0;Qn ; c1;0n ; � � � ; c1;Qn ; � � � ; cP;0n ; � � � ; cP;Qn �T ð10Þ

and bn is a vector of length M, X is a matrix of size M �
ðPþ 1ÞðQþ 1Þ

bn ¼ ½Fnð�1; �1Þ; � � � ;Fnð�1; �KÞ;Fnð�2; �1Þ; � � � ;
Fnð�L; �1Þ; � � � ;Fnð�L; �KÞ�T

ð11Þ

X ¼
�01�

0
1 � � � �P1�

Q
1

� � � � � � � � �

�0L�
0
K � � � �PL�

Q
K

2
64

3
75 ð12Þ

Given the desired accuracy, the required polynomial

order P and Q are related to the total number of HRTFs

involved in the computation. Applying the solution over

the entire reference sphere may leads to a very high

polynomial order, which may increase computational

cost greatly. A sphere-partitioning parameter optimization

method is employed to decrease the polynomial order,

which partitions the sphere into several subareas [10]. And

polynomial fitting is implemented in each subarea sepa-

rately. There are many partitioning schemes, such as along
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Fig. 1 Weight-1 in the horizontal plane.

0 50 100 150 200 250 300 350 400
–8

–6

–4

–2

0

2

azimuth (degree)

w
ei

gh
t–

2

0 50 100 150 200 250 300 350 400
–2

–1

0

1

2

3

azimuth (degree)

w
ei

gh
t–

3
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the meridians, along the horizontal strips, and by constant-

area regions. A typical partitioning scheme by constant-

area regions is shown in Fig. 3. Suppose the sphere is

divided into R subregions, the total number of required

parameters is RðPþ 1ÞðQþ 1Þ. For a desired accuracy,

small regions may lead to low model order, while the total

parameter number in the entire sphere may be large. On the

other hand, large regions needs fewer parameters in the

entire sphere, while the model order may be high. Thus a

careful balance should be considered between the poly-

nomial order and the number of regions.

Based on the analysis above, the whole flow chart of

the proposed method is shown in Fig. 4. The polynomial

coefficients have been computed offline and stored in the

memory beforehand. Given the spatial position, the target

HRTF principal component weight can be calculated from

(7) with the corresponding polynomial coefficients read

from the memory. The reconstruction process consumes

little computation.

5. EXPERIMENT RESULTS AND ANALYSIS

To evaluate the performance of the proposed method,

we firstly compare the interpolation results of the linear,

spline, and proposed method in the horizontal plane, then

give the interpolation result of the proposed method over the

entire sphere region. The experiments above are conducted

using one dataset: KEMAR HRTF. To examine the

generality of the proposed method, its interpolation per-

formance are investigated for various HRTF measurements.

5.1. KEMAR HRTF

A lot of research projects of institutions and univer-

sities have collected libraries of HRTF measurements in

their anechoic chambers. One of the famous libraries is

called KEMAR database, which is available on the Internet

[15]. The HRTF measurements were made in the anechoic

chamber of MIT Media Laboratory. In the database, the

HRIRs were measured for elevations �40�–90� in 10�

steps, and azimuths 0�–360� for the steps listed in Table 1

(710 positions altogether). It is apparent that the spatial

sampling is quite discrete. Therefore, interpolation is

requisite for practical application. The impulse response

of each HRTF measurement is 512 taps long at the sample

rate 44.1 kHz. Before the experiment, some preprocessing

operation, such as windowing, equalization, and so on,

have been applied to the original data, and the final HRIR

data is 128 taps long [15]. In Section 5.2. and Section 5.3.,

the experiments are carried out using KEMAR HRTF.

5.2. Experiments of Interpolation in the Horizontal

Plane

Two interpolation methods (linear and spline) and the

proposed method are considered in this experiment. In

principal component analysis, 10 principal components are

chosen to account for about 92% of the variation in the

HRTF magnitude functions. It has been proved in [12] that

the localization performance degraded little when above

90% of variation is retained. Interpolation of the principal

component weights is performed in the horizontal plane

using the three methods respectively. In linear and spline

methods, the reference points are selected at angles 5� to

365� with an interval of 20�, i.e. 19 reference points are

used. In the proposed method, the horizontal plane is

divided into three subregions, i.e. 0�–120�, 120�–240�, and

240�–360�, the polynomial order is set as P ¼ 7, Q ¼ 0.

The total parameter number of the proposed method is 24,

which is a little larger than those of the linear and spline

methods. To compare the interpolation precision of the

weight, we define the relative error between the original

weight and the interpolated weight as

Fig. 3 Partition scheme by constant-area regions.

HRTF

magnigude PCA

Principal components

Principal component

weights

Region 1

Region R
Multivariate

polynomial fitting

…
…

Multivariate

polynomial fitting

Fig. 4 Flow chart of the proposed method.

Table 1 The azimuth intervals of KEMAR’s measure-
ment.

Elevation (�) Number Interval (�)

�20–20 72 5.00
�30 and 30 60 6.00
�40 and 40 56 6.43
50 45 8.00
60 36 10.00
70 24 15.00
80 12 30.00
90 1 /
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e ¼
wo �wr

wo

����
����� 100% ð13Þ

where wo is the original weight and wr is the interpolated

weight. Take weight-1 as an example, its relative error as a

function of azimuth is shown in Fig. 5. It can be seen that

the performance of the linear method is the worst among

the three ones. The interpolation precision of the spline

method is close to that of the proposed method except in

areas around azimuth 250�, where the error of the proposed

method (9.3%) is much less than the one of the spline

method (26%). Similar cases occur in the interpolations

of other weights too. Thus from the aspect of weight

interpolation, the performance of the proposed method is

the best among the three ones, which verifies the analysis

of Section 3.

To evaluate the global performance of the three

interpolation methods, we define the global spectral

distortion (SD) in dB as

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK�1

k¼0

½20 log10 jHð!kÞj � 20 log10 jĤHð!kÞj�2

vuut ð14Þ

where Hð!kÞ and ĤHð!kÞ are the original and interpolated

HRTF magnitude respectively, and K is the total number

of frequency bins in ½0; ��. The smaller SD is, the more

accurate the interpolation is. The spectral distortion in the

horizontal plane of the three methods is shown in Fig. 6. It

can be seen from Fig. 6 that in areas around 240�–300�

where large errors occurs, the SD curve of the proposed

method is almost always below the other two methods. In

other areas, the interpolation errors of the three methods

are all small, and their SD curves are very close. The

average SD of the linear, spline and proposed method

across the horizontal plane are 1.32 dB, 1.30 dB, and 0.98

dB respectively, where the proposed method has the lowest

average SD among the three methods. Since the proposed

method has a more gently-varying SD curve, and a lower

average SD, it is superior to the other two methods. The

interpolation performance of the linear method is similar to

the spline method.

5.3. Experiments of Interpolation over the Sphere

The interpolation in the horizontal plane has been

investigated, but the spatial information reconstruction

needs not only the information from the horizontal plane,

but also the information from the median plane. Thus the

interpolation performance in the entire sphere area using

the proposed method is examined. In the experiment,

different polynomial orders are tested, where P ¼ 3 to 8

and Q ¼ 3 to 4. The detailed sphere partitioning scheme is

shown in Table 2, where the sphere is partitioned into 10

subregions. The average spectral distortion of the proposed

method at different polynomial orders over the entire

sphere area is shown in Table 3. It can be seen from

Table 3 that the interpolation performance increases

with the polynomial order P and Q. A phenomenon is

observed that given a constant parameter number, i.e.

ðPþ 1ÞðQþ 1Þ, the performance of the condition with

higher Q is better than the condition with lower Q. For

example, SD at P ¼ 7, Q ¼ 3 is 0.99, while SD at P ¼ 5,

Q ¼ 4 is 0.89. Thus the performance seems to be more

affected by the elevation order Q than the azimuth order P.

The authors think it is due to a greater variation of HRTF

in elevation than in azimuth. However this is subject to

further investigation because HRTF is subject-dependent.

Take the interpolation precision and parameter number

both into consideration, we set P ¼ 6, Q ¼ 4. In this
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Fig. 5 Relative interpolation errors of weight-1 in the
horizontal plane for the linear method, spline method,
and proposed method.
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condition, the average SD ¼ 0:71 dB, the percentage of

SD > 2 dB is 9.6%, and the maximum SD is 6.7 dB. It

has been shown in [16] that listeners can detect HRTF

magnitude errors larger than approximately 2 dB. The

contour plot of the spectral distortion over the entire sphere

region is shown in Fig. 7. On the contour line, the number

is the spectral distortion between the original and interpo-

lated HRTF magnitude in dB. The contour line of

SD ¼ 2 dB is highlighted in thick line. The error

(SD > 2 dB) mainly occurs in region of elevation �30�–

30� and azimuth 230�–320�. And the errors in other regions

are very small. In error regions, large errors occur because

the HRTFs in this area have a great variation, and the

polynomial order is not high enough to catch the variation

precisely. If we increase the polynomial order in this area,

the interpolation performance can be further improved.

However a balance should be considered because higher

polynomial order may increase the computation and

memory cost. Figure 8 compares the original HRTFs with

those of their interpolated counterparts at three positions.

The solid lines represent original HRTFs, the dashed lines

represent interpolated HRTFs. The azimuth and elevation

of each HRTF is noted by symbols ‘‘AZ=’’ and ‘‘EL=’’

respectively. The symbol ‘‘SD’’ denotes the spectral

distortion between the original and interpolated HRTF.

Figure 8 shows that the original functions are well

approximated by the proposed method.

5.4. Experiments of Interpolation with CIPIC HRTF

The experiments above are carried out using only one

dataset, KEMAR HRTF, however HRTF is subject-

dependent, thus we apply the proposed method to other

measured HRTF datasets to examine its generality. The

CIPIC HRTF is another famous HRTF database available

on Internet. The HRTF measurements were made in

the anechoic chamber of U. C. Davis CIPIC Interface

Laboratory. It provides head-related impulse responses

for 45 subjects at 1,250 positions around each subject [17].

The impulse response of each HRTF measurement is 200

taps long at the sample rate 44.1 kHz. Interpolation

performances in the entire sphere area using the proposed

method are investigated for three subjects from the CIPIC

database: ‘‘003,’’ ‘‘058,’’ and ‘‘133.’’ The partitioning

scheme is shown in Table 4, where the sphere is partitioned

into 12 subregions. The polynomial order is set as P ¼ 7,

Q ¼ 5. The interpolation result is given in Table 5. It can

be seen from Table 5 that the interpolation results are

similar to the one on KEMAR HRTF in Section 5.3, where

the average SD ¼ 0:71 dB, the percentage of SD > 2 dB is

Table 2 Partitioning scheme for KEMAR HRTF.

Region Elevation (�) Azimuth (�)

1–2 40–80 0–180, 180–360
3–6 0–40 0–90, 90–180, 180–270, 270–360
7–10 �40–0 0–90, 90–180, 180–270, 270–360

Table 3 Spectral distortion at different polynomial
order.

P Q Average SD (dB)

3 3 1.52
4 3 1.30
5 3 1.17
6 3 1.06
7 3 0.99
8 3 0.92
3 4 1.34
4 4 1.06
5 4 0.89
6 4 0.71
7 4 0.62
8 4 0.51

Fig. 7 Contour plot of spectral distortion over the entire
sphere area for the proposed method (KEMAR HRTF).
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9.6%. For subject ‘‘133,’’ the contour plot of the spectral

distortion over the entire sphere region is shown in Fig. 9.

On the contour line, the number is the spectral distortion

between the original and interpolated HRTF magnitude in

dB. The contour line of SD ¼ 2 dB is highlighted in thick

line. It can be seen from Fig. 9 that large errors (SD >

2 dB) also mainly occur in some small areas. From the

experiments in Section 5.4, we can conclude that the

proposed method is valid for various HRTF measurements.

6. CONCLUSION

In this paper, the problem of efficiently realizing HRTF

interpolation is investigated. After model order reduction

by principal component analysis which decomposes HRTF

into a small set of principal components and the corre-

sponding principal component weights, the performances

of conventional interpolation methods are discussed from

the aspect of interpolation of the weights. It is found that

large interpolation errors generally occur at the turning

points of the weight curves. A multivariate polynomial

fitting method is therefore proposed to approximate the

weight curve precisely with a bivariate polynomial of

spatial variables. A sphere-partitioning optimization

scheme is employed to improve the modeling accuracy.

The proposed method performs better than conventional

methods in the horizontal plane, and the interpolation result

in the entire sphere surface is excellent. The generality of

the proposed method is also verified by experiments on

various HRTF measurements. The whole HRTF interpo-

lation process of the proposed method requires little

computation. Therefore, with the proposed method, it is

possible for a set of HRTFs to be represented efficiently.
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