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Abstract: A method for in situ estimation of the acoustic impedance of surfaces in interiors is
introduced in this paper. The key difference with traditional in situ measurement techniques is the use
of an inverse acoustic boundary framework which allows us to overcome some geometry constraints
from previous methods (such as the planar-surface requirement and placement of microphone arrays).
Furthermore, estimation of the acoustic impedance of not only one but all the surfaces is possible
provided that local reaction is the predominant effect, and the following parameters are known:
geometry of the surfaces, sound pressure at a number of arbitrary points in the interior field and the
strength of the sound source. The estimation of the acoustic impedance at each surface is achieved by
the solution of an optimization problem formulated from the linear equations of the boundary element
method (BEM) applied to the discretized interior boundaries of an interior space. Previous work on
similar methods have reported examples with numerical simulations. The work in this paper goes
further and numerical examples together with results obtained with experimental data are presented.
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1. INTRODUCTION

Since around seven decades ago, several techniques for

the measurement of sound absorption and acoustic impe-

dance of the materials have been proposed [1]. Among

them, laboratory methods (e.g. reverberation room and

impedance tube) are extensively used providing important

information about the test materials during an acoustic

design stage. These methods, however, rely on assumptions

of ideal acoustic conditions that in practice are not

frequently met. For this reason, several in situ measure-

ment techniques were developed. For example, one of the

most widely used basic principles for in situ measurements

is based on the use of two microphones to measure the

direct and reflected sound over a planar test surface (e.g.

[2–4]). In this approach the reflection coefficient is

computed from the amplitude and phase relationships

between the sound from the source and the reflected sound.

While this technique is accurate at high frequencies, it will

fail if unwanted reflections from other surfaces cannot be

removed, or if non-plane wave reflections are predominant.

These conditions are translated into geometrical constraints

such as: a) the measurements should be performed in free

field, or at least in a large space where the unwanted

reflective surfaces are far enough, b) the test surface should

be large, otherwise the accuracy at low frequency is poor,

c) the microphones should be apart from the test surface so

as to provide suitable measurement of the direct and

reflected sound, but close enough so that undesired

reflections can be clustered.

In efforts to overcome some of the above constraints, a

method that uses a particle velocity and a sound pressure

sensors integrated in a single package (named ‘‘micro-

flown’’) has been developed [5]. By measuring the particle

velocity and the sound pressure placing the microflown

close to the test surface, the acoustic impedance of the

normal and oblique incidence is calculated. Therefore,

what this technique actually measures is the acoustic

�e-mail: pablo@cslab.kecl.ntt.co.jp
ye-mail: yyasuda@k.u-tokyo.ac.jp
ze-mail: ysato@iis.u-tokyo.ac.jp
xe-mail: sakamoto@iis.u-tokyo.ac.jp

100

Acoust. Sci. & Tech. 30, 2 (2009) #2009 The Acoustical Society of Japan

PAPER

http://dx.doi.org/10.1250/ast.30.100


impedance of the incident wave at the near vicinity of the

surface. Moreover, before performing the measurements,

the microflown, together with the sound source, has to be

calibrated either in a standing wave tube or in free field.

Another technique reported in [6] uses the sound of the

surrounding ambient as source, hence eliminating the need

of a speaker, and consequently the microphone-speaker

calibration. In this approach the complex acoustic impe-

dance of planar surfaces is estimated from the transfer

functions of a pair of microphones collocated at prescribed

distances from the test surface. Although this method is

claimed to be universally applicable [6], a key step in the

estimation of the transfer functions is to average the

measured data over time and angle of incidence, which in

turn implicitly imposes a strong assumption of random

incidence of plane waves in a diffuse field (with almost no

directivity), condition which in practical situations is

hardly achieved.

In contrast to the traditional methods discussed above,

a method which is applicable to arbitrary-shape surfaces is

described in the following paragraphs. To estimate the

normal-incidence acoustic impedance of all the surfaces

within a room, the proposed algorithm takes as input: 1) the

geometric model of the room, 2) the position and strength

of a harmonically vibrating sound source, and 3) a set of

sound pressures measured at arbitrary points in the interior

field using a single microphone. The estimation of the

acoustic impedance of the surfaces is formulated as an

inverse boundary problem in which the boundary values of

a bounded homogeneous domain are to be found from

samples of the interior field governed by a wave prop-

agation model. Similar acoustical inverse approaches have

been studied before to localize and estimate the vibration

strength on the surface of vibrating objects. The near-field

acoustic holography (NAH) is the most representative

technique in this context (e.g. [7–9]). On the other hand,

scarce work in this context has been done for the in situ

measurement of acoustic impedance. Nevertheless, one of

the firsts attempts to estimate the acoustic impedance of

interior surfaces was reported in [10], where the inverse

formulation of the boundary problem is based on the finite

element mehtod (FEM) framework in combination with

evolution strategies (ES). Although FEM is widely used in

many acoustic analyses, let us note that the boundary

element method (BEM) is a more efficient numerical tool

to model the interaction between the boundary parameters

and the interior sound field. Furthermore, in virtue of the

linear equations derived from the BEM formulation and the

prior knowledge of the geometric segmentation of the

surfaces, it is possible to derive an iterative algorithm that

estimates the acoustic impedances of the surfaces. Let us

remark also that, while numerical examples are shown in

[10], an experimental setup in a controlled environment

together with preliminary results are presented in further

sections of this paper.

2. THEORETICAL FRAMEWORK

2.1. The Boundary Element Formulation of the Inte-

rior Field

Consider a sound field bounded by an arbitrary surface

S where a subsegment Sv is harmonically vibrating at a

frequency ! and radiating sound into the interior field, as

depicted in Fig. 1. The boundary conditions at the nodal

points rS on S, namely the sound pressure pS and the

particle velocity vS, are related to the sound pressure pf at

any point rf in the interior by the Kirchhoff-Helmholtz

integral equationI
S

pS
@GðrS; rf Þ

@n
þ j!�GðrS; rf Þ vS

� �
dSþ pf ¼ 0; ð1Þ

where GðrS; rf Þ denotes the three dimensional Green’s

function G ¼ e� jkr=4�r, with r ¼ jrS � rf j, k the wave

number, � the density of the field, and j ¼
ffiffiffiffiffiffiffi
�1
p

.

Note in Eq. (1) that prescribing boundary values to pS
and vS, the sound field pf can be readily predicted (the

forward analysis). However, in the inverse problem, both

pS and vS are unknown, and the sound pressure pf at

different points represents input data directly measured

from the test field. Therefore, if pf is measured at M

positions, and S is discretized into N nodes, a linear system

of equations can be stated in a matrix equation using the

discrete form of Eq. (1) [11], as follows:

Af pS � Bf vS ¼ �pf : ð2Þ

When constant elements on S and one node in their

centroid is considered, the entries of the matrices Af and

Bf can be computed by the operators

ai;k ¼
I
Sk

@Gðrk; riÞ
@n

ds;

bi;k ¼ �j!�
I
Sk

Gðrk; riÞ ds;
ð3Þ

),( SS vp
discrete nodes

S

fp

vibrating surface Svx

y

z

interior sound fieldSr

fr

bounding
surface

Fig. 1 Boundary element formulation of the interior sound field.
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with i ¼ 1; 2; . . . ;M and k ¼ 1; 2; . . . ;N. In a similar way,

if the points rf are chosen to match the surface nodes, the

following linear system is derived:

AS pS � BS vS ¼ 0: ð4Þ

Furthermore, since the vibration strength of the sound

source is assumed to be known, the corresponding nodal

values become input data and Eq. (2) can be rewritten

as

Af pS �eBBfevvS ¼ bBBfbvvS � pf ; ð5Þ

denoting bybvvS and bBBf the known nodal particle velocities

and their corresponding influence coefficients, and by evvS
the unknowns with their corresponding known influence

coefficients eBBf . Equation (5) describes the relationship

between all the elements of the acoustic system: the sound

source, the boundary S, and the interior field.

2.2. Statement of the Problem

Let us suppose that in a given room the acoustic

impedances of the interior surfaces S1; S2; . . . ; Sn are to be

estimated. Assume also that one harmonic sound source

(a speaker) produces a steady-state field in which the

complex sound pressure at M arbitrary points is measured

using a microphone, as illustrated in Fig. 2. The acoustic

impedance zS at any point x on the surfaces is given by the

relation:

zSx ¼
pSx

vSx
: ð6Þ

Noting that the following are known parameters: 1) the

geometry of the room, 2) information of the sound source

(i.e. its location, vibration strength, phase and frequency),

and 3) a set of sound pressures measured at M random

points in the field, then the task is to recover the impedance

values of the interior surfaces as defined by Eq. (6).

2.3. Estimation of the Acoustic Impedances: The

T-SVD Based Approach

In inverse acoustics, a widely used approach to recover

the pS and vS is based on singular value decomposition

(SVD) analysis. This method consists on solving the BEM

equations for one unknown boundary parameter at a time.

In addition, truncation of some singular values (known as

truncated-SVD or T-SVD [8,12,13],) is done to reduce the

sensitivity to noise. This approach is briefly discussed here

for the purpose of comparisons in further numerical

examples.

First, let us observe that equations (2) and (4) form a

linear system of two equations with two unknowns, hence

they can be combined to solve for one unknown, for

example vS, yielding

DvS ¼ p; ð7Þ

where D ¼ ðAfA
�1
S BS � Bf Þ and p ¼ �pf . Notice that the

degrees of freedom (DOF) of Eq. (7) is therefore OðNÞ.
Because the matrix D is usually rank-deficient, Eq. (7) has

to be solved in the least-squares sense using regularization

techniques such as truncated-SVD analysis as follows.

Let D ¼ U�WH be the singular value factorization

of D, such that UUT ¼ WWT ¼ I, diagð�Þ ¼ f�1 �
�2 � . . . � �Ng are the singular values of D, and the

superscripts H and T are the hermitian and transpose

respectively. The matrix D can be further represented as

D ¼ U�WH ¼
XN
i¼1

ui�iw
H
i ; ð8Þ

in which ui and wi are the left and right singular vectors

respectively. Using the orthonormal properties of U and

W , the solution of Eq. (7) for vS takes the form

vS ¼ W��1UHpf ¼
XN
i¼1

uH
i pf

�i

wi: ð9Þ

From Eq. (9) note that the effect of the singular values

�i’s over pf is an scaling factor. In practice, when the

measurements of pf are taken on the surface matching the

nodal points, as in Fig. 3a, the computation of the

influence matrices A’s and B’s of Eqs. (2) and (4)

produces a full-rank D matrix in Eq. (7), but as soon as

the measurements points are placed in the interior field

(out of the surface, as in Fig. 3b), some rows of D tend to

become linearly dependent making D rank-deficient. This

effect is observed as a rapid decay of the singular values

�i’s into small values (Fig. 3c, dotted line), which in turn

makes the system sensitive to perturbations in pf by

amplifying the noise components. Therefore, in order to

reduce the sensitiveness to noise, the regularization by

truncation consists on discarding an appropriate number

ðN � �Þ of the smallest singular values. Thus, the solution

of Eq. (7) becomes

s1

s2

s3

s4

s5

s6

s7

speakerInterior
surfaces

moving
microphone

measurement points

Fig. 2 Inverse estimation of the acoustic impedances on
the surfaces of a room.
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vST-SVD ¼
X�
i¼1

uH
i pf

�i

wi ¼ Dþpf ; ð10Þ

where Dþ is the so-called pseudo-inverse of D. Several

criteria for the choice of the truncation number � have been

suggested in the literature, and a detailed description of

some of them can be found in [14].

Once vS is known, back substitution in Eqs. (2) and

(4) yields the solution of pS, and the normal acoustic

impedance at each node can be computed as in Eq. (6).

2.4. Iterative Estimation of the Acoustic Impedances

A drawback of the T-SVD approach is its high

sensitivity to noise. Experience of previous work (e.g.

[9,12,13]) has shown also that the estimation of vS and pS by

this method tends to become more unstable as the DOF (i.e.

the number of surface nodes) increases. On the other hand,

it is possible to estimate the acoustic impedances of the

surfaces in a more straightforward way and with reduced

DOF leading to an improvement of noise sensitivity.

For simplicity, let us consider the geometry model of

an empty room in which the surfaces have been clustered

in such a way that each surface is define by a single

homogeneous material (for example, information of ap-

pearance such as texture and color can be used to infer

homogeneous regions), resulting in a total of n different

surfaces fSijS ¼ S1 [ S2 . . . Sn; 8i ¼ 1; 2; . . . ; ng, as illus-

trated in Figure 2. Thus, recalling the BEM formulation

given in a previous section, two matrix equations can be

derived by including the effect of the acoustic impedance

zS of the surfaces into Eqs. (4) and (5):

ðCS � ~BBSÞ ~vvS ¼ B̂BSv̂vS; ð11Þ

and

ðCf � ~BBf Þ ~vvS ¼ B̂Bf v̂vS � pf ; ð12Þ

where the elements of CS and Cf are computed as

ci;k ¼ zS;k � ai;k: ð13Þ

Let us further assume that each zS;k is basically determined

by the local reaction at the incident point, (i.e. locally

reactive surfaces), then, because the surfaces have been

segmented by homogeneity, the following approximation

holds:

pSi;1

vSi;1
�

pSi;2

vSi;2
� . . . �

pSi;mi

vSi;mi

; ð14Þ

or

zSi;1 � zSi;2 � . . . � zSi;mi
¼ Zi; ð15Þ

where mi indicates the number of discrete nodes that belong

to the i-th surface. Therefore, the original problem turns into

that of finding the parameters Zi’s of the n surfaces.

Following the definition of the coefficients ci;k in

Eq. (13), the nodal impedances can be grouped in

accordance to Eq. (15), and Eq. (12) is rewritten in the

matrix form of Eq. (16) in which the af ;ði;kÞ’s are the ai;k
elements of Af .

Xm1

k¼1
af ;ð1;kÞ ~vvS;k

Xm2

k¼m1þ1
af ;ð1;kÞ ~vvS;k � � �

Xmn

k¼mn�1þ1
af ;ð1;kÞ ~vvS;k

..

. ..
.

� � � ..
.

..

. ..
.

� � � ..
.

Xm1

k¼1
af ;ðM;kÞ ~vvS;k

Xm2

k¼m1þ1
af ;ðM;kÞ ~vvS;k � � �

Xmn

k¼mn�1þ1
af ;ðM;kÞ ~vvS;k

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Z1

Z2

..

.

Zn

0
BBBB@

1
CCCCA�eBBfevvS ¼ bBBfbvvS � pf ð16Þ

Writing Eq. (16) in a compact form yields

interior field

node k

node 
k +1

influences 
to node k +1

influences 
to node k

surface 
nodes

a)

field point i

field point i +1

influences to 
field points i +1

influences to field point isurface 
nodes

interior field

b)

0 100 200 300
10

10

10

10
0

singular value index

c)

–15

–10

–5

Fig. 3 a) Measurements taken at the surface nodal points. b) Measurements taken in the interior field. c) Example of
singular values �i of the matrix D when the measurements are taken at the surface nodal points (solid line), and when
taken in the interior field (dotted line).

G. P. NAVA et al.: IN SITU ESTIMATION OF SURFACE ACOUSTIC IMPEDANCE IN INTERIORS

103



hAf � ~vvSiz� ~BBf ~vvS ¼ p̂pf ; ð17Þ

where h�i indicates a column-grouped matrix, and p̂pf ¼
B̂fBf v̂vS � pf .

In Eq. (16) there are still two unknowns, namely the

impedance values Zi’s and the nodal volume velocities

~vvS, but in contrast to Eq. (7), an iterative optimization

procedure can be now applied to find the desired surface

impedances, as described in Algorithm 1 below.

At the first iteration (l ¼ 0) of the procedure, the

optimization is started with an initial guess of impedances

zð0Þ ¼ fZð0Þ1 ; Zð0Þ2 ; . . . ;Zð0Þn g. Afterwards, the process is con-

tinued until the evaluation of the objective function

f ð pg; pf Þ satisfies the user-specified criterion �. Here

f ð pg; pf Þ is defined as

f ð pg; pf Þ ¼
kpg � pf k2

kpf k2
þ

1

M � 1

kpG � pFk2

kpFk2
; ð18Þ

where pg is a set of M sound pressures predicted at the

same points of pf using zðlþ1Þ through steps 4 and 5. The

vectors pG and pF are respectively the sound pressures pg
and pf taken in dB’s.

The operator k k indicates the euclidian norm.

At step 3 of the Algorithm 1, the update of zð‘þ1Þ

involves a minimization problem (i.e. Eq. (19)) which is

solved by nonlinear optimization using a Sequential

Quadratic Programming (SQP) method. The implementa-

tion of this method is based on the algorithms described in

[15,16], and is available as a function in the commercial

software Matlab. Moreover, this function allows the user to

input the bounds on the solution space indicated as Zmin �
z � Zmax. In practice, when the impedance of the materials

is visualized in terms of the absorption coefficient �,

positive values of the latter are expected. Hence, from the

definition of the absorption coefficient

� ¼ 1�
Z � �c

Z þ �c

����
����2; ð22Þ

Algorithm 1: Iterative estimation of z

1: Solve for ~vvðlÞS using zð0Þ in Eq. (11)

2: While condition (21) is false do

3: Update z by

zðlþ1Þ ¼ argmin khAf � ~vvðlÞS iz� ~BBf ~vv
ðlÞ
S � p̂pf k

s.t. Zmin � z � Zmax (19)

4: Update ~vvðlþ1ÞS using zð‘þ1Þ in Eq. (11)

5: Compute pg by

pg ¼ B̂Bf v̂vS � ðCf � ~BBf Þ~vvðlþ1ÞS (20)

6: Evaluate

f ð pg; pf Þ � � (21)

7: l lþ 1

8: end while

and the observation of its general behavior with respect to

the real and imaginary parts of Z (see Fig. 4), the bounds of

the solution space are prescribed as 0 < Refzg � Zmax and

Zmin � Imfzg � Zmax.

Let us further note that the DOF of the optimization

problem (19) is n, i.e. the number of different surfaces in

the room, while in the T-SVD based approach discussed

before, the DOF is N (where n� N). Dealing with the

inverse of a rank-deficient matrix is also avoided in the

iterative approach by solving instead the optimization

problem of Eq. (19). These makes the algorithm less

sensitive to noise and allows us to place the measurement

points at arbitrary locations in the interior field giving

meaningful results after the analysis, as will be shown in

the following numerical simulations.

3. NUMERICAL EXAMPLE

The geometry chosen for a numerical example is the

3D model of a realistic office room, which is shown in

Fig. 5.

For a BEM analysis, the model is meshed using N ¼
1;044 triangular-isoparametric elements with a maximum

edge size of 0.24m, allowing a frequency analysis up to

125Hz (i.e. six elements per wavelength). The simulation

test consists on recovering the acoustic impedance values

of the interior surfaces from M field measurements

simulated at uniformly distributed points in the field, using

both the T-SVD and the iterative approaches. In the

forward analysis, the set of M field pressures pf is

generated by manually assigning surface impedances

relative to the impedance of the propagation media

(Z0 ¼ �c). Table 1 shows the assessment of the surface

impedances whose values have been arbitrarily assigned

only with real part for simplicity. Once pf is computed, the

effect of the noise in the measurements is artificially

simulated by adding broadband noise with a given signal to

noise ratio (SNR) as follows:

ab
so

rp
tio

n 
co

ef
fic

ie
nt

 (
 α

 )

Re { Z }
0

0

1

0.5

–1

–0.5

5 10 2015–20 –10 –5–15

Im { Z }  =  0 

Im { Z }  =  ± 3  

Im { Z }  =  ± 6 

Im { Z }  =  ± 12  

Im { Z }  =  ± 9 

Fig. 4 Behaviour of the absorption coefficient in rela-
tion with the real and imaginary parts of the acoustic
impedance.
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e ¼ ð2�� 1Þ �
kpf k
k�k
� 10�SNR=10;

pe ¼ pf þ e; ð23Þ

where � is an M-length vector whose elements are

uniformly distributed within the interval ð0; 1Þ. Thus, pe
represents the simulated measurements.

In the case of the T-SVD analysis, the value of � is

computed using the L-curve approach [14]. Figure 6 shows

an example of the optimum value of � in the L-curve plot.

For the optimization step of the iterative approach (step 3

of Algorithm 1), the solution space is constrained to

ðZmin ¼ �500Þ � z � ðZmax ¼ 500Þ, and the initial guess

is set to zð0Þ ¼ 1 (i.e. the relative acoustic impedance of the

propagation media).

The performance of the iterative algorithm is illustrated

in Fig. 7. The results of this numerical example are shown

in Fig. 8 for the cases when SNR = {1 dB (noiseless),

60 dB, 25 dB}. From these results it can be observed that

both methods successfully recovered the surface impedan-

ces when the measurements are free from noise. However,

when noise is attached to the data, the accuracy of the

0.65 1.17

2.48

0.78

4.16

0.96

0.46

2.7

speaker

door

walls

window

window

floor

Fig. 5 3D geometry of an office (units in meters).

Table 1 Assignment of impedance values for the
numerical example.

Surface
Relative Impedance (Z ¼ Zc=Z0)
(air: Z0 � 415 Rayls)

Floor 37.0
Ceiling 260.0
Walls 55.0

Windows 108.0
Door 63.0
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Fig. 6 Example of an L-cure showing the optimum
value of � for the T-SVD approach.
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Fig. 7 Convergence history of the iterative approach in
the numerical tests.
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Fig. 8 Results obtained from the numerical tests at 125Hz: impedance values recovered using the least-squares approach
(T-SVD) with M ¼ 2N field pressures, and using the iterative optimization (Algorithm 1) with M ¼ N field pressures.
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T-SVD approach is greatly degenerated (as seen in

Fig. 8c), while the iterative approach converged, in the

worst case, to a value of 0.42 (in a normalized scale) and

still giving meaningful impedance values. On the other

hand, the selection of an appropriate threshold � is crucial.

If too small values of � are chosen, the condition of

Eq. (21) is frequently not satisfied and the process has to be

stopped before the solutions at each iteration start to fit the

noise in the data. For this numerical example, � has been

assign as small as 1� 10�2 which was successfully

satisfied for the cases of SNR = {noiseless, 60 dB} (see

Fig. 7). The process was prematurely stopped for the case

of SNR ¼ 25 dB. While the parameter �, together with a

minimum-improvement threshold, has been used to stop

the iterations in the current implementation, a universally

applicable stopping criterion is still a subject of research.

In general, the iterative approach was proved to be

robust to noise and therefore suitable for practical

applications. For this reason, only the iterative method

will be further considered for experimental tests.

4. EXPERIMENTAL SETUP

Preliminary experiments consisted on attempting to

estimate the acoustic impedance of the interior surfaces of

a 30mm thick-acrylic reverberation chamber whose di-

mensions are shown in the diagram of Fig. 9. In this

chamber, different types of surfaces were setup by

installing three commonly used acoustic absorbents:

glass wool 50mm � 32 kg/m3, glass wool 15mm � 32

kg/m3, and wool felt 5mm � 96 kg/m3. Figure 10a shows

the location of these test surfaces.

The physical parameters to be measured during the

experiments are the vibration velocity of the sound source

and M sound pressures (amplitude and phase) which are

expressed respectively as follows:

vsource ¼ jV jejð!tþ�vÞ;

pf ¼ jPjejð!tþ�f Þ: ð24Þ
For a steady state analysis the time factor can be

omitted. If in addition the phase of the source signal is

�v ¼ 0, then the amplitude jVj is directly observed from the

Laser Doppler Vibrometer (LDV). jPj and the phase �f are

obtained from the microphone and the LDV signals.

In the data analysis stage, the 3D coordinates of the

measurements must be known. Thus, the location of the

microphone at the time of recording each sound sample is

estimated in real-time by 3D stereoscopic-tracking employ-

ing the four overhead video cameras. These cameras are
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Fig. 9 Artifacts used for the experiments.
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Fig. 10 a) Test surfaces considered for the experiments. b) Actual setup of the devices in the experimental chamber.
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easily mounted in the interior of the chamber, and their size

(3� 3� 5 cm) is comparably smaller than the analysis

wavelengths allowing us to neglect their acoustic scattering

effect.

Although the microphone can be freely moved in the

interior space while the speaker is emitting a tone, the

speed � (in m/s) at which the microphone can be displaced

is constrained by the frequency fs of the tone, otherwise the

doppler effect will introduce inaccurate measurements.

Hence, from the doppler relation formula, � is given by

� � c
fs þ j�j

fs
� 1

� �
; ð25Þ

where c is the velocity of sound in the medium, and � is the

tolerated frequency deviation (in Hz) of the signal observed

at the microphone. The frequency range for the experi-

ments is 60Hz to 240Hz with steps of 20Hz. At each

analysis frequency, M ¼ 2N sound pressures were meas-

ured in the interior field.

For the BEM analysis of the experimental data, the

chamber is modeled with a mesh of 1446 triangular-

isoparametric elements. The model of the homogenous

surfaces in the interior are defined as it is shown in

Fig. 10a: surface type #1) two lateral walls covered with

the 50mm glass wool, surface type #2) the floor covered

with the 5mm felt, and surface type #3) a rectangle area on

a lateral wall covered with the 5mm glass wool. The bare

walls and ceiling of the chamber are considered as rigid

boundaries in the model.

When performing the experiments, the carrier that

holds the microphone (see Fig. 10b) allows displacement

only in the horizontal plane. Therefore, the M measure-

ments are distributed in planes with equidistant hight.

Figure 11 shows two examples of the sound pressures

acquired by the implemented measurement system.

5. EXPERIMENTAL RESULTS

To start the iterations of the Algorithm 1, the initial

guess was set to zð0Þ ¼ 1. Furthermore, the unknown

surface impedances were assumed to lie within the

normalized bounds 0 < Refzg < 1;000 and �1;000 <

Imfzg < 1;000. Using these initialization settings, the

iterative process performed as shown in Fig. 12. Lets us

note first that in none of the analysis the specified stopping

threshold � ¼ 0:01 (or 1%, in the percent of the normalized

range) was achieved. The closest was 0.017 for the case of

80Hz. Nevertheless, the algorithm converged to the

experimental results that are shown in Fig. 13 where the

real and imaginary part of the normalized acoustic

impedance is plotted for each test material. These impe-

dances are further visualized in terms of the absorption

coefficients in Fig. 14.

1.5

1

Z (m)

0.5

0
0.4

0.8
1.2

0
0.4

0.8

0

1.5

1

0.5

0
0.4

0.8
1.2

0
0.4

0.8

0

60 Hz 240 Hz

Y (m)
X (m)

Y (m)
X (m)

Z (m)

Sound pressure
(dB)

100

90

80

70

60

Fig. 11 Example of 3D points and field pressures measured in the experiments with absorbent materials at 60Hz and
240Hz.

0 20 40 60 80 100 120 140 160 180 200

10
-1

10
0

iterations

ob
je

tiv
e 

fu
nc

tio
n

60 Hz
80 Hz
100 Hz
120 Hz
140 Hz
160 Hz
180 Hz
200 Hz
220 Hz
240 Hz

f (
p g

 , 
p 

f )

Fig. 12 Convergence history of the iterative estimation
of the surface impedances using experimental data.

G. P. NAVA et al.: IN SITU ESTIMATION OF SURFACE ACOUSTIC IMPEDANCE IN INTERIORS

107



During the analysis of the experimental data, the

iterative process (Algorithm 1) has been run with four

different subsets of M ¼ N arbitrary measurements out of

the total M ¼ 2N acquired. Thus for each frequency, the

mean and standard deviation of the error between the

predicted and actual sound field in dB’s jpG � pFj has been
plotted in Fig. 15. The validation of experimental results is

often done by comparisons with the ground-truth data or

with results obtained by other measurement methods.

However, by the time of preparation of this material, there

is still no other practical method to estimate the acoustic

impedances of the surfaces under similar conditions (i.e.

in an enclosed space with different types of materials

interacting with each other). Therefore, this lack of true

data impedes an immediate validation of the method, but in

the other hand, the rates of Fig. 15 can give margins of the

expected error within the specified frequency when

numerical simulations with the model of the chamber and

the tested materials are performed. As Fig. 15 suggests, the

estimated acoustic impedances approximate the actual

sound field within a maximum average error of 0.7 dB’s

(for 240Hz), and in the worst case, with a standard

deviation of 5.2 dB’s (for 140Hz).

6. CONCLUSIONS

Two theoretical frameworks for the estimation of

acoustic impedance on the surfaces of interiors have been

compared with numerical examples: on one hand, a method

based on the traditional T-SVD analysis, and on the other

hand, a novel iterative approach based on the boundary

element method. The latter was further tested with experi-

ments in a controlled environment. The preliminary results

suggest that indeed, it is possible to get an estimate of the

normal-incidence acoustic impedances of the test materials

by using the inverse formulation of the BEM and prior

knowledge of the geometry of the surfaces. Approaching

the problem in this way (together with the measurement

system implemented) overcomes most of the physical

constraints that traditional methods suffer. A key point to

keep in mind, however, is that because of the inherent

features of its framework, the system considers only the

local impedance effect (local reaction) of the surfaces. If

surfaces with extended reaction are present (e.g. those of

thick-porous objects), a suitable model (e.g. FEM) should

be included for those surfaces in the general BEM analysis.

Improvements can also be achieved in the measurement

process. In the current implementation, the measurements

must be repeated for each analysis frequency outputting a

pure tone from the speaker. This troublesome process can

be avoided by using broadband noise and careful Fourier
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analysis of the data, thus the acoustic impedance for a

range of frequencies can be computed. Other improve-

ments are in the computational cost. Because the system

requires the storage of two N2 and two M � N complex

full-populated matrices, the immediate use of the iterative

method in a real-scale room is still prohibited. Never-

theless, note that this method requires only the computation

of the objective function Eq. (18) and the evaluation of

Eq. (21), hence the possibility to use highly efficient BEM

implementations that do not require full matrix storage.

Among the candidates to exploit this feature is the Fast

Multipole BEM (FMBEM) which has been successfully

used for the acoustic analysis of large-scale models [17].

REFERENCES

[1] C. Noke and V. Mellert, ‘‘Breif review on in situ measurement
techniques of impedance or absorption,’’ in Proc. Forum
Acusticum, Sevilla (2002).

[2] J. F. Allard, C. Depoiller and P. Guignouard, ‘‘Free field
surface impedance measurements of sound absorbing materials
with surface coatings,’’ Appl. Acoust., 26, 199–207 (1989).

[3] A. J. Cramond and C. G. Don, ‘‘Reflection of impulses as a
method of determining the acoustic impedance,’’ J. Acoust.
Soc. Am., 75, 328–344 (1984).

[4] E. Mommertz, ‘‘Angle-dependent in situ measurement of
reflections coefficients using a substraction technique,’’ Appl.
Acoust., 46, 251–264 (1995).

[5] R. Lanoye, G. Vermeir and W. Lauriks, ‘‘Measuring the free
field acoustic impedance and absorption of sound absorbing
materials with a combined particle velocity-pressure sensor,’’
J. Acoust. Soc. Am., 119, 2826–2831 (2006).

[6] Y. Takahashi, T. Otsuru and R. Tomiku, ‘‘In situ measurements
of surface impedance and absorption coefficients of porous
materials using two microphones and ambient noise,’’ Appl.
Acoust., 66, 845–865 (2005).

[7] J. D. Maynard, E. G. Williams and Y. Lee, ‘‘Nearfield Acoustic
Holography: I. Theory of the generalized holography and the
developement of the NAH,’’ J. Acoust. Soc. Am., 78, 1395–
1413 (1985).

[8] M. R. Bai, ‘‘Application of BEM (boundary element mehtod)-
based acoustic holography to radiation analysis of sound
sources with arbitrarily shaped geometries,’’ J. Acoust. Soc.
Am., 92, 533–549 (1992).

[9] E. G. Williams and B. H. Houston, ‘‘Interior near–field
acoustical holography in flight,’’ J. Acoust. Soc. Am., 108,
1451–1463 (2000).

[10] G. Dutilleux, F. C. Sgarg and U. R. Kristiansen, ‘‘Low-
frequency assessment of the in situ acoustic absorption of
materials in rooms: an inverse problem approach using
evolutionary optimization,’’ Int. J. Numer. Methods Eng., 53,
2143–2161 (2002).

[11] O. von Estorff, Boundary Elements in Acoustics—Advances
and Applications (WIT Press, Southampton, UK, 2000).

[12] P. A. Nelson and S. H. Yoo, ‘‘Estimation of acoustic source
strength by inverse methods: Part I, conditioning of the inverse

problem,’’ J. Sound Vib., 233, 643–668 (2000).
[13] B.-K. Kim and J.-G. Ih, ‘‘On the reconstruction of the vibro-

acoustic field over the surface enclosing and interior space
using the boundary element method,’’ J. Acoust. Soc. Am., 100,
3003–3016 (1996).

[14] P. C. Hansen, ‘‘Regularization tools: A Matlab package for
analysis and solution of discrete ill-posed problems,’’ J.
Numer. Algorithms, 6, 1–35 (1994).

[15] S. P. Han, ‘‘A globally convergent method for nonlinear
programming,’’ J. Optimization Theory Appl., 22, 297 (1977).

[16] M. J. D. Powell, ‘‘A fast algorithm for nonlinearly constrained
optimization calculations,’’ in Numerical Analysis, Lecture
Notes in Mathematics, 630 (Springer Verlag, Berlin, 1978).

[17] T. Sakuma and Y. Yasuda, ‘‘Fast Multipole Boundary Element
Method for large-scale steady-state sound field analysis. Part I:
setup and validation,’’ Acta Acustica united with Acustica, 88,
513–525 (2002).

Gabriel Pablo Nava completed his B.E. studies in Mexico City at
the Instituto Politecnico Nacional in 1999. He received his M.S. and
Ph.D. degrees in 2004 and 2007 respectively, from the Department of
Information Science and Technology of the University of Tokyo.
After staying as a postdoc at the Institute of Industrial Science of the
University of Tokyo until March 2008, he joined the Innovative
Communications group of the NTT Communication Science Labo-
ratories where he is currently conducting research on acoustics for
sound localization in the t-Room project.

Yosuke Yasuda graduated from the Faculty of Engineering of the
University of Tokyo in 1999 and received a Ph. D. degree from the
same university in 2004. He was a JSPS Research fellow at the
Institute of Industrial Science of the University of Tokyo from 2004
to 2007. Research fellow of Department of Socio-cultural Environ-
mental Studies, Graduate School of Frontier Sciences, University of
Tokyo since 2007. Member of the Acoustical Society of Japan and
the Architectural Institute of Japan. Excellent Master’s Thesis Award
from the Architectural Institute of Japan, 2001, and Awaya Prize
from ASJ, 2005.

Yoichi Sato is an associate professor jointly affiliated with the
Graduate School of Interdisciplinary Information Studies, and the
Institute of Industrial Science, at the University of Tokyo, Japan. He
received the BSE degree from the University of Tokyo in 1990, and
the M.S. and Ph.D. degrees in robotics from the School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, in
1993 and 1997 respectively. His research interests include various
topics in computer vision such as physics-based vision, reflectance
analysis, image-based modeling and rendering, tracking and gesture
analysis, and computer vision for HCI.

Shinichi Sakamoto received his B.S. in 1991 and his Ph.D. degree
in 1996 from the Faculty of Engineering of the University of Tokyo.
He is currently an Associate professor at the Institute of Industrial
Science of the University of Tokyo where he conducts research on
architectural acoustics and environmental noise control. Granted with
the Awaya Prize from the Acoustic Society of Japan in 2001, and
prized for outstanding presentations at the annual meetings of the
INCE-Japan in 2001. Member of the Architectural Institute of Japan
and ASJ.

G. P. NAVA et al.: IN SITU ESTIMATION OF SURFACE ACOUSTIC IMPEDANCE IN INTERIORS

109


