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Abstract: To reduce speech degradation in reverberant environments, we previously proposed a
modulation-transfer-function (MTF)-based method of speech dereverberation. By considering the
temporal modulation properties of speech, and the exponential decay properties of the power envelope
of the impulse response of room acoustics, we obtained the following MTF relation: the sub-band
power envelope of reverberant speech that can be represented as a convolution between the sub-band
power envelope of clean speech and the power envelope of the impulse response of room acoustics. On
the basis of the MTF relation, inverse MTF filtering can be applied to restoring the power envelopes of
reverberant speech. Therefore, the impulse response of the room acoustics in this restoration dose not
need to be measured at any time since we model the power envelope of the impulse response as an
exponential decay function. We have tested how effective this method is as a front-end for automatic
speech recognition (ASR) systems in artificial and real reverberant environments. Reverberant speech
signals were created by simply convoluting clean speech (AURORA-2J database) with the artificially
produced or real impulse responses of room acoustics. A method based on the auditory power
spectrum was used as a baseline for comparison. Compared with the baseline, the proposed method for
artificial reverberant environments produced a 35.67% relative improvement in the error reduction rate
(on average, for reverberation times from 0.2 to 2.0 s), and for real reverberant environments (43
reverberant impulse responses), it produced a 25.78% relative improvement in the error reduction rate.
The results demonstrate that our new approach can improve the robustness of speech-recognition
systems in reverberant environments, and it performs better than conventional methods.

Keywords: Power envelope restoration, Speech recognition, Modulation transfer function, Power
envelope inverse filtering
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1. INTRODUCTION

It is well known that reverberation smears significant

features of speech so that its quality and intelligibility are

degraded during communication. Restoring the original

clean speech from the observed reverberant speech is,

therefore, an important issue in various kinds of real

speech-signal-processing applications, e.g., speech en-

hancement, hearing improvement, and automatic speech

recognition (ASR). The ultimate goal of our work is to

construct a blind method of speech dereverberation that can

restore speech signals from reverberant speech without

having to measure the impulse response of room acoustics,

and that causes less loss due to the reverberation in the

speech intelligibility and recognition rate.

Traditional methods such as spectral subtraction,

Wiener filtering, and Bayesian estimation have been widely

used [1–3] to improve speech quality and intelligibility

when there is additive noise. These make use of different

statistical properties of speech and noise to reduce noise

components and to enhance the speech itself. Reverber-

ation can generally be regarded as the convolution

processing of acoustic speech and room acoustics. The

temporal and spectral structures of speech in a reverberant

environment are distorted by stochastic reverberation

caused by the room-reflection characteristics, of walls,

floors, and ceilings. It is difficult to distinguish clean-speech

signals in a reverberant environment by using the statistical
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properties of the original speech and of the reflected speech

because the speech is degraded by propagating alone

multiple paths. Thus, traditional methods of reducing noise

do not work well in reverberant environments.

Several algorithms for reducing convolution distortion

have been proposed [4–7]. The two most well known are

cepstral mean normalization (CMN) [8] and relative

spectral (RASTA) filtering [9]. These can effectively

reduce the distortions caused by short-term convolution

channels, e.g., microphones, and telephone-transmission

channels. In actual room acoustics, the reverberation time

is far longer, and the properties of reverberant environ-

ments are that they are both time and spatially variant.

Several dereverberation algorithms using single or

multiple microphones have been proposed for solving

the room-reverberation problem [7,10–12]. In these ap-

proaches, the basic principle of dereverberation is to

measure the impulse response of room acoustics or

propagation channels, and then use inverse filtering to

obtain dereverberated speech [10]. However, these meth-

ods require the impulse response of room acoustics for

each dereverberation process to be remeasured if the

conditions for room acoustics change.

Blind dereverberation, which does not need the impulse

response of room acoustics to be measured, is preferred

for real applications. One possible way of utilizing blind

dereverberation is to use speech characteristics. For

example, the harmonic structure of speech can be used

[13,14]. This method needs the fundamental frequency

from reverberant speech to be accurately estimated, which

is difficult [15], and it does not seem to restore the

consonant (nonharmonic) parts in speech.

In this study, we utilized the characteristics of speech

and the impulse response functions of reverberant environ-

ments for speech dereverberation. Speech signals are

highly temporally modulated in amplitude, and most of

their intelligibility information is encoded in the temporal

modulation envelope of all frequency bands [16]. This

means that we need to restore the temporal modulated

envelope of clean speech from reverberant speech to

restore clean speech for recognition.

In the concept underlying the modulation transfer

function (MTF), the impulse response of room acoustics

is assumed to be a random variable with properties of

exponential-decay temporally modulated and white-noise

carriers [17,18]. In addition, in MTF-based speech der-

everberation [7,19–21], the same assumption as for room

acoustics is used and the speech signal is assumed to be a

random variable with properties of temporally modulated

and white noise carriers in each frequency band. On the

basis of the results of stochastical analysis of the signals,

the sub-band power envelope of reverberant speech can be

exactly represented as the convolution between the sub-

band power envelope of clean speech and the power

envelope of the impulse response of room acoustics. To

obtain sub-band power envelopes of clean speech, only

inverse MTF (IMTF) filtering is needed because of the

relationships between the power envelopes of sub-band

reverberant speech, of sub-band clean speech, and of the

impulse response of room acoustics. Therefore, this method

of restoration does not need the impulse response of

room acoustics to be measured to derive inverse filtering

[21,22].

We previously proposed a sub-band power envelope

inverse filtering method based on the MTF concept

[21–23]. We tested its effectiveness in restoring the

temporal power envelopes of reverberant signals using

correlation and SNR measurements [21,22]. These tests

demonstrated that the proposed method improves the

accuracy of power-envelope restoration and improves

speech intelligibility [23]. We also conducted a preliminary

test on its capability to act as a front-end processor for

speech recognition in artificial reverberant environments

[24], and we found that it was extremely effective.

However, we have not yet tested its effectiveness as a

front-end processor for speech recognition in real rever-

berant environments. We evaluated how well the proposed

method performed in real reverberant environments,

including multipurpose halls, classic concert halls, lecture

rooms, churches, event halls, and speech halls. In addition,

we compared the new approach with some traditional

front-end processes, including auditory-filter band process-

ing, as well as CMN and RASTA processing.

The paper is organized as follows. Chapter 2 describes

the underlying concept and the model for restoring the

MTF-based sub-band power envelope. Chapter 3 describes

how features are extracted for speech recognition.

Chapter 4 describes the recognition experiments we

conducted in artificial reverberant environments, and

Chapter 5 describes the ones we undertook in real

reverberant environments. In Chapter 6, we summarize

the key points, discuss the improvements that are needed,

and briefly describe future work.

2. CONCEPT, MODEL, AND ALGORITHM
FOR RESTORING MTF-BASED
SUB BAND POWER ENVELOPE

2.1. Concept and Model

The MTF concept was proposed by Houtgast and

Steeneken [17] to account for the relationship between the

transfer function in an enclosure in terms of input and

output signal envelopes and the characteristics of the

enclosure such as reverberation. This concept was intro-

duced as a measure in room acoustics for assessing the

effect of an enclosure on speech intelligibility [17]. The

complex MTF is defined [18] as
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Mð!Þ ¼

Z 1

0

h2ðtÞ expð�j!tÞdtZ 1

0

h2ðtÞdt
; ð1Þ

where hðtÞ is the impulse response of the room and ! is

the radian frequency. For room acoustics, a well-known

stochastic approximation of the impulse response is defined

[18] as

hðtÞ ¼ ehðtÞn1ðtÞ ¼ a expð�6:9t=TRÞn1ðtÞ; ð2Þ

where ehðtÞ is the exponential decay temporal envelope, a

is a constant amplitude, TR is the reverberant time defined

as the time required for the power of hðtÞ to decay by

60 dB, and n1ðtÞ is white noise as a random variable

(uncorrelated carrier) [21].

The corresponding MTF is obtained using

jMð!Þj ¼ 1þ !
TR

13:8

� �2
" #�1=2

: ð3Þ

For modulation frequency ! of the temporal envelope,

Eq. (3) can be regarded as the modulation index, i.e., the

degree of relative fluctuation in the normalized amplitude

with respect to the modulation frequency. On the basis of

this characteristic, TR can be predicted from a specific

modulation frequency by using the MTF.

We modeled what effect room acoustics has on speech

signals on the basis of the MTF concept. The convolution

distortion in each sub-band is written as

ynðtÞ ¼ xnðtÞ � hðtÞ; n ¼ 1; 2; � � � ;N; ð4Þ

where ynðtÞ and xnðtÞ correspond to the reverberant and

clean speech signals in the sub-band, n is the sub-band

index, and N is the total number of sub-bands. Using the

temporal modulation properties of the speech signal, we

model the sub-band speech, xnðtÞ, as

xnðtÞ ¼ ex;nðtÞn2ðtÞ: ð5Þ

The temporal envelope of sub-band n is ex;nðtÞ. In Eqs. (2)

and (5), n1ðtÞ and n2ðtÞ are mutually independent random

variables that satisfy

hnkðtÞnkðt � �Þi ¼ �ð�Þ; k ¼ 1; 2; ð6Þ

where h�i is the ensemble average operator. Using Eqs. (4)–

(6), we can calculate the power envelope of ynðtÞ as

hy2nðtÞi ¼ e2y;nðtÞ ¼ e2x;nðtÞ � e
2
hðtÞ ð7Þ

(for details, see Appendix in [21]). This equation shows

that the restoration of e2x;nðtÞ can be completed by

deconvoluting e2y;nðtÞ with e2hðtÞ. To cope with these signals

in computer simulation, the variables are transformed from

a continuous signal into a discrete signal on the basis of

sampling theorems, such as e2x;n½m�, e2h½m�, e2y;n½m�, x½m�,

h½m�, and y½m� (m is the number of samples). The transfer

functions of power envelopes ExðzÞ, EhðzÞ, and EyðzÞ are

assumed to be the respective z-transforms of e2x½m�, e2h½m�,
and e2y½m�. The input-output relationship for deconvolution

can be represented as

Ex;nðzÞ ¼
Ey;nðzÞ
EhðzÞ

¼
Ey;nðzÞ
a2

1� exp �
13:8

TR;n � fs

� �
z�1

� �
; ð8Þ

where fs is the sampling frequency. The power envelope

of sub-band signal e2x;nðtÞ can be restored using the

inverse z-transform of Ex;nðzÞ. In Eq. (8), we only need to

estimate parameters TR;n and a. Here, the parameter of

the inverse MTF filter related to reverberant time TR;n is

assumed to be a function of n since it is dependent on the

sub-band, and is independently estimated from each sub-

band.

2.2. Algorithm

The algorithm for inverse filtering of the sub-band

power envelope was developed on the basis of the analysis

above. The processing scheme for inverse filtering of the

sub-band power envelope is outlined in Fig. 1. In the

processing scheme, observed signal yðtÞ (a pre-emphasized

signal of the original signal with a coefficient of 0.97) is

decomposed into a series of frequency sub-bands; envelope

detectors then extract temporal modulation envelopes

e2y;nðtÞ. Considering the co-modulation characteristics of

speech signals in the sub-bands [22], we deliberately

designed a series of FIR-type band-pass filters with a

constant bandwidth (100Hz was chosen in this study) for

the decomposition (see Subchapter 4.1 for bandwidth

selection). Thus, this filterbank is referred to as a

constant-bandwidth filterbank (CBFB) in this paper. The

extracted envelopes are used for inverse filtering of the

power envelope, which is controlled using the estimated

parameters of TR;n and a (referred to as T̂TR;n and âa). The

final output is the restored or dereverberated power

envelope, êe2x;nðtÞ, for all sub-bands. The implementation

is detailed in the three steps in Subsections 2.2.1, 2.2.2,

and 2.2.3.

2.2.1. Power envelope extraction

The power envelopes in the sub-bands are extracted by

low-pass filtering of the Hilbert transform of the sub-band

signals [21,22].

êe2y;nðtÞ ¼ LPF½jynðtÞ þ jHilbertðynðtÞÞj2� ð9Þ

Here LPF[�] is a low-pass filtering operator and Hilbert(�)
is the Hilbert transform. We set the cut-off frequency of

the low-pass filtering to 20Hz to retain most of the

important modulation information for speech perception

[22].
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2.2.2. Parameter estimation

The TR;n and a in Eq. (8) are estimated using Unoki

et al.’s formulas [21]:

T̂TR;n ¼ max

�
argmin

TR;n

Z T

0

minðêe2x;n;TR;nðtÞ; 0Þ
��� ���dt�; ð10Þ

and

âa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

� Z T

0

exp �
13:8t

T̂TR;n

� �
dt

s
; ð11Þ

where T is the signal duration, and êe2x;n;TR;nðtÞ represents the
candidates of the restored power envelope as a function

of TR;n. The reverberant time is constrained as TR;n;min <

TR;n < TR;n;max. TR;n;min and TR;n;max are the lower and upper

bounds of TR;n (the former was set to 0 s and the latter to

3 s in our study). Estimating the reverberant time using

Eq. (10) means finding the maximum argument of TR;n
from a time point to obtain the minimum area of the

estimated inverse power envelope with a constraint of no

less than zero. Equations (10) and (11) are described in

detail elsewhere [21,22].

2.2.3. Power envelope inverse filtering

After the power envelopes (e2y;nðtÞ) and the parameters

of room acoustics (T̂TR;n and âa) are obtained, the power

envelopes are inverse filtered using Eq. (8) to restore the

power envelopes of dereverberated speech in the sub-bands

(e2x;nðtÞ). Here, the restored power envelope of the derever-

berated speech in a sub-band is denoted as êe2x;nðtÞ.
Figure 2 shows an example of the effect of restoring

the sub-band power envelope on reverberant speech. The

stimulus was a Japanese sentence (/aikawarazu/) uttered

by a male speaker (panel (a)), and reverberant speech

occurred when TR ¼ 1:0 s (panel (b)). The power enve-

lopes of only odd-numbered channels are plotted in this

figure (channels #1, #3, #5, . . ., #39). All pairs of the power

envelopes (solid and dashed lines) have also been plotted

by normalizing them to qualitatively compare matches

between the power envelopes of the original and the

restored envelopes. Comparing the sub-band envelopes in

panels (c) and (d) in Fig. 2, we can see that, based on the

processing procedures, the sub-band power envelope of

reverberant speech can be restored to be close to that of

clean speech.

We have already investigated the restoration accuracy

using two methods. The first was the correlation between

the restored sub-band power envelopes of reverberant

speech and the sub-band power envelope of original clean

speech, while the second was the SNR, where S is the

original sub-band power envelope, and N is the difference

between the original and the restored sub-band power

envelope (see Eqs. (14) and (15) in [21,22]). Many

improvements have been reported for both evaluations

(see Fig. 10 in [22] for details). At the same time, we found

that over- and under estimating the reverberant time does

not optimally restore the temporal power envelope based on

the MTF concept (see Appendix I for a further illustration

of the effect of over- and under estimating of TR;n).

3. FEATURE EXTRACTION FOR
SPEECH RECOGNITION

We tested the effectiveness of the proposed algorithm

for dereverberation as a front-end processor for ASR of

reverberant speech. We used clean speech from the

AURORA-2J database as the speech material [25], and

8,840 clean speech sentences to train the acoustic models.

We used 1,001 clean speech sentences to produce

reverberant speech to test recognition in reverberant

environments by convolving the speech signals with the

impulse responses of room acoustics. As the sampling

frequency, fs, was 8 kHz, we used 40 sub-band channels

(N ¼ 40) to cover the frequency region from 0 to 4 kHz.

After the restored power envelopes had been obtained from

the processing blocks represented in Fig. 1, the speech

feature was further extracted as illustrated in Fig. 3.

In Fig. 3, the first block is for smoothing which

comprises frame integration and log compression. Because

the inverse filtering of power envelopes is a high-pass

process, low-pass filtering with a forgotten parameter, �

(in the region between 0 and 1), was used to smooth the

envelope dips in each sub-band:

Power envelope
   extraction

Parameter
   estimation

Reverberant
      signal Power envelope

   inverse-filtering

Recovered 
   power  envelope

.

.

.

.

.

.
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.

.

.

.

.

.

#n
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Analysis
block

(Filterbank)

Power envelope restoration

y(t) ey,n(t)2

a, TR

ex,n(t)^ 2
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Fig. 1 Sub-band power envelope method of inverse filtering.
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�eex;n½m� ¼ � �eex;n½m� 1� þ ð1� �Þêex;n½m�; ð12Þ

where êex;n½m� is the original restored sub-band power

envelope, and �eex;n½m� is the smoothed output. In this study,

we set � to 0.98. To integrate the frames, we used a 32ms

frame length with a Hamming window and a frame rate of

16ms. After the integrated spectrum was obtained, log

compression was carried out. The discrete cosine transform

(DCT) was used for dimensional decorrelation. The first 12

dimensions of the decorrelated log power spectrum were

used (the zeroth-order coefficient was discarded). Combin-

ing the log power energies, we obtained 13-dimensional

static feature sets. Together with their first- and second-

order delta dynamic values, 39-dimensional feature vectors

were formed. The acoustic models consist of ten digits, one

silence and short-pause HMM models which are the same

as those used in the AURORA-2J experiments [25]. Each

digit model had 18 states with 16 output distributions. The

silence model had five states with three distributions, and

the short-pause model had three states with one distribu-

tion. Each distribution of digits had 20 Gaussian mixtures,

while those of the silence and short-pause models had 36

Gaussian mixtures. The HTK speech toolkit [26] was used

for training the HMM acoustic models.

4. RECOGNITION EXPERIMENTS
IN ARTIFICIAL REVERBERANT

ENVIRONMENTS

As previously mentioned, we tested the recognition of

our proposed method in artificial reverberant environments

by using 1,001 clean speech sentences to produce rever-

berant speech. The speech signals were convolved with the

artificial impulse responses of room acoustics (produced

using Eq. (2)) with a reverberation time of 0.0, 0.2, 0.4,

0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 or 2.0 s. In total, we used

1,001 clean speech signals and 1;001� 10 reverberant

speech signals.

For comparison, we also tested the performance of

a conventional method of feature extraction based on a

computational auditory model under the same conditions.

There are two steps in processing by conventional feature

extraction: extraction of the sub-band power envelope

using the auditory filterbank illustrated in Fig. 4, and

post-processing of speech feature extraction on the basis of

the sub-band power envelopes using the same process as

illustrated in Fig. 3.
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Fig. 2 Effect of restoring temporal envelope by inverse
MTF filtering: (a) clean speech, (b) reverberant speech
with TR ¼ 1:0 s, (c) no dereverberation processing
(solid lines), and (d) restored envelope using inverse
filtering (solid lines). The dotted lines correspond to
the power envelopes of the original clean speech.
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As seen in Fig. 4, the speech signal is first decomposed

using a gammatone auditory filterbank with an equivalent

rectangular bandwidth (ERB). Half-wave rectification and

low-pass filtering are then used to extract the sub-band

temporal amplitude envelopes. The power envelopes are

obtained by square processing of the amplitude envelopes.

The filterbank can be regarded as a constant-Q filterbank

(CQFB). On the basis of the sub-band power envelopes,

we obtain the auditory cepstral feature vector, which is

denoted as CQFB, using the processing block in Fig. 3. In

our preliminary experiments on speech recognition, we find

that CQFB exhibits equivalent performance to or slightly

better performance than the Mel Frequency Cepstral

Coefficient (MFCC) representation. Considering that our

new approach involves sub-band filtering and extraction

processing of the temporal envelope, we choose the

performance of CQFB as a baseline for comparison. Two

conventional post-processing methods, i.e., RASTA filter-

ing [9] and CMN [8], are also implemented in this study

to deal with convolution distortion. In our study, the two

processes are used on utterance-based cepstral temporal

trajectories. Consequently, the features extracted are

denoted here as Fea RASTA and Fea CMN (where ‘‘Fea’’

is either CQFB or CBFB).

4.1. Effect of Bandwidth of Band-Pass Filtering

Constant-Q band-pass-filtering (ERB or Mel)-based

extraction of features is widely accepted as being more

robust under most additive noise conditions than constant

band-pass filtering. However, because our MTF-based

dereverberation is based on the inverse process of the

sub-band power envelope, this envelope should have co-

modulation characteristics in the sub-bands while satisfy-

ing the MTF concept. We carefully choose the bandwidth

by considering the trade-off in their characteristics [22,23].

In an earlier experiment, we tested what the effect of using

ERBs of gammatone auditory filters (i.e., constant-Q) and

constant filter bandwidths would have on recognition [24].

We found that a constant bandwidth of 100Hz is more

suitable for satisfying the envelope co-modulation proper-

ties and the MTF concept. This result is consistent with that

reported elsewhere [19,20]. Therefore, in our MTF-based

dereverberation experiments, we used band-pass filters

with a 100Hz bandwidth. In addition, we compared the

results of recognition using CQFB and CBFB, and found

that CBFB outperformed CQFB [27].

4.2. Comparison with Conventional Feature Extrac-

tion Methods

We simulated speech recognition using many types

of feature vectors, i.e., CQFB, CBFB, CBFB CMN,

CBFB RASTA, and CBFB IMTF.

The recognition for short reverberation times (TR <

0:2 s) was best, as can be seen from the magnified plot in

Fig. 5(b). As seen in the figure, the speech-recognition

rate decreased as the reverberation time increased; the rate

of decrease was particularly high when the reverberation

time was long (TR > 0:2 s). When it was short (TR < 0:2 s),

all the features performed well (recognition rate > 97%).

The CBFB-based feature performed better for long

reverberant times, TR > 0:15 s, and slightly worse for short

reverberant times, TR < 0:15 s, than the CQFB-based

feature. Also, as shown in Fig. 5, CBFB RASTA per-
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formed worse than CBFB alone. CBFB CMN performed

slightly worse or almost the same as CBFB alone (except

for short reverberant times, TR < 0:2 s). However,

CBFB IMTF consistently improved the performance of

CBFB alone. We also tested how well CQFB CMN,

CQFB RASTA, and CQFB IMTF performed. They per-

formed worse than CBFB alone (see Appendix II for the

results). Consequently, we did not use CQFB CMN,

CQFB RASTA, or CQFB IMTF for comparison in later

experiments. In addition, we found that adding CMN or

RASTA processing to either CQFB or CBFB did not

improve the recognition rate in our experiments, and

sometimes even decreased the performance. Therefore, in

this study, the performance of CQFB was used as a

baseline. A relative improvement (RI) in performance was

adopted as the measure of the improvement in recognition

in different reverberant environments from different base-

lines, and was defined [25] as

RI ¼
ðTRR� BRRÞ
ð1� BRRÞ

� 100 ð%Þ; ð13Þ

where ‘‘TRR’’ and ‘‘BRR’’ denote the testing recognition

rate and baseline recognition rate. With this definition,

the proposed CBFB and CBFB IMTF yielded relative

improvements of 28.64% and 35.67% on average (for

0:2 s < TR < 2 s), respectively, in the error reduction rate

compared with CQFB.

5. RECOGNITION EXPERIMENTS IN REAL
REVERBERANT ENVIRONMENTS

We then tested our method on speech recognition in

many real reverberant environments (43 halls, rooms, and

theaters [28]) under various conditions. The reverberant

speech signals were obtained from the convolutions

between clean speech signals and the impulse responses

of the environments (the sampling rate of the impulse

responses of the environments were sub-sampled to 8 kHz

to adjust it to the sampling rate of the speech database).

The speech corpus, features, and acoustic models were the

same as those used for the artificial reverberant environ-

ments described in Chapter 4. The characteristics of the

reverberant environments and the speech recognition rates

are listed in Table 1.

Rooms and halls constructed of different materials and

with different configurations have vastly different rever-

berant characteristics. As listed in Table 1, the reverberant

times for rooms and halls in which we conducted our tests

ranged widely, from 0.36 to 3.62 s. The middle-six columns

list speech-recognition rates with the highest rates for each

room or hall marked in bold. The rightmost column

indicates the relative improvements in the error reduction

rate of the CBFB IMTF feature compared with that of the

CQFB feature. The CQFB feature performs almost the

same as or slightly better than MFCC (on average).

The CBFB-based features outperformed the CQFB-

based features. CBFB RASTA and CBFB CMN showed

no improvements in performance compared with that of

CBFB alone. The CBFB IMTF-based feature had the

highest recognition in almost every case. On average,

CBFB and CBFB IMTF had relative improvements of

15.74% and 25.78% compared with CQFB. The table also

indicates how the differences in the acoustic characteristics

of the various environments affected the speech-recogni-

tion rate. There was almost no degradation in speech

recognition for the meeting room, wooden house, living

room, or movie theater (recognition rate > 90%) because

these environments had originally been designed to

minimize reverberant properties.

In contrast, there was significant degradation in speech

recognition in the classic concert hall environments,

probably because these had been designed to emphasize

reverberant properties to enhance the audience’s musical

enjoyment. In Table 1, we can see the effects of reverber-

ant configurations with various reflective properties of

room acoustics, e.g., with or without reflective boards,

absorptive boards, and absorptive curtains. In addition, we

can also see the effects of different spatial recording

locations and of the distance between the microphone and

sound sources had. A more detailed investigation of these

effects is beyond the focus of this study.

6. DISCUSSION AND CONCLUSION

Our analysis and experiments demonstrated that our

MTF-based sub-band power envelope extraction and

inverse filtering algorithm improves the robustness of

speech recognition for reverberant speech. The results

revealed that (1) constant-Q band-pass processing or

MFCC presented no advantages in improving ASR in

reverberant environments. As Shannon and Paliwal [29]

pointed out, auditory motivated band-pass processing does

not have any advantages over other types of band-pass

processing. The band-pass filters in our study were

deliberately designed to fulfill the co-modulation properties

of speech. The results also revealed that (2) considering the

exponential decay properties of an impulse response in

a reverberant environment and the temporal modulation

properties of speech, we can estimate the sub-band

temporal power envelope of speech to some degree without

having to measure the impulse response of room acoustics,

thereby improving the ASR of reverberant speech, and that

(3) in real reverberant environments, the proposed esti-

mates of the sub-band temporal envelope with inverse

filtering based on dereverberation consistently improves

ASR (25.78% relative improvement on average).

Upon comparing the recognition rates of CBFB IMTF

and CBFB in Table 1, we find that adding inverse filtering
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to CBFB does not greatly improve the recognition rate

(only a 5.77% absolute improvement in the recognition rate

on average). The recognition rates are still low for many

reverberant conditions. This suggests that we must recon-

sider how some things are handled from both model and

implementation aspects. For example, speech is assumed to

be a temporal envelope modulated with a Gaussian white-

noise carrier signal. However, the carrier may be non-

Gaussian for a real speech signal. Therefore, one direction

to take to achieve improvement is to relax the model

assumptions. In terms of implementation, dereverberation

is accomplished using the estimated reverberation time in

each sub-band independently. If there is even a small error

in the estimates, the extracted feature may differ greatly

from the actual ones owning to temporal misalignment

between sub-bands. A more accurate method of estimating

Table 1 Reverberant speech recognition rates (%) in actual reverberant environments. IRdata No. indicates File No. in
SMILE2004 [28]. The reverberation time, TR, was determined as the average of all TRs on the transfer function at 125Hz
to 8 kHz in octave frequencies. ‘‘RI CQFB’’ and ‘‘RI CBFB’’ mean the relative improvement in the error reduction rate of
the CBFB IMTF feature compared with those of CQFB and CBFB features. MPH: Multi-purpose hall; CCH: Classic
concert hall; GSH: General speech hall, RB: Reflective board, AB: Absorptive board, AC: Absorptive curtain.

Room condition (Impulse response)
IRdata
No.

TR
(s)

MFCC CQFB CBFB
CBFB
CMN

CBFB
RASTA

CBFB
IMTF

RI
CQFB

RI
CBFB

MPH 1 (with RB)(capacity: 2,000m3) 301 1.09 42.55 45.56 52.44 57.63 48.51 60.30 27.08 16.53
MPH 1 (without RB) 302 0.80 55.39 54.31 68.52 71.85 66.17 74.33 43.82 18.46
MPH 2 (with RB)(capacity: 5,700m3) 303 1.44 32.88 36.60 40.62 39.70 32.64 45.41 13.90 8.07
MPH 2 (without RB) 304 1.04 39.70 43.51 47.56 45.49 36.20 52.38 15.70 9.19
MPH 3 (with RB)(capacity: 7,200m3) 305 1.93 30.70 33.40 33.80 35.31 31.26 39.31 8.87 8.32
MPH 3 (without RB) 306 1.35 42.12 43.48 46.52 53.42 47.50 54.19 18.95 14.34
MPH 4 (with AB)(capacity: 12,000m3) 307 1.42 55.70 55.07 69.63 74.24 71.05 75.87 46.29 20.55
MPH 4 (without AB) 308 1.54 52.44 53.42 67.02 71.08 66.78 73.10 42.25 18.44
MPH 5 (capacity: 14,000m3) 319 1.47 46.55 47.28 61.38 59.84 54.71 64.04 31.79 6.89
MPH 6 (capacity: 19,000m3) 321 2.16 40.13 42.83 49.95 49.43 47.99 54.49 20.40 9.07

CCH 1 (capacity: 5,600m3) 309 2.35 27.72 34.20 35.19 33.50 28.92 35.92 2.61 1.13
CCH 1 (d ¼ 6m) 310 2.34 30.09 35.65 39.88 37.03 33.22 42.74 11.02 4.76
CCH 1 (d ¼ 11m) 311 2.35 30.40 35.22 37.67 35.34 33.19 43.17 12.27 8.82
CCH 1 (d ¼ 15m) 312 2.39 30.58 35.37 39.73 38.44 35.55 45.47 15.63 9.52
CCH 1 (d ¼ 19m) 313 2.38 27.82 33.93 36.17 34.30 32.36 40.56 10.03 6.88
CCH 2 (capacity: 6,100m3) 314 1.14 40.34 44.34 50.60 58.12 49.59 59.84 27.85 18.17
CCH 3 (capacity: 20,000m3) 315 1.96 35.00 36.81 37.73 42.80 39.12 46.33 15.07 13.81
CCH 4 (with AC)(capacity: 7,100m3) 316 1.92 41.23 41.42 50.02 49.95 46.15 54.38 22.12 8.72
CCH 4 (without AC) 317 2.55 34.33 36.72 41.97 41.14 37.15 44.43 12.18 4.24
CCH 5 (capacity: 17,000m3) 323 2.32 31.78 37.70 38.29 34.85 32.58 44.09 10.19 9.40
CCH 6 (1F front) (capacity: 17,000m3) 324 1.77 37.73 41.42 43.57 42.55 38.38 53.45 20.54 17.51
CCH 6 (2F side) 325 1.74 40.13 44.18 47.87 46.27 42.25 55.14 19.63 13.95
CCH 6 (3F) 326 1.69 34.73 38.23 44.34 43.11 41.42 52.69 23.41 15.00

Lecture room (with flatter echo) 201 1.36 46.76 45.72 60.85 70.31 67.58 68.53 42.02 19.62
Theater hall (capacity: 3,900m3) 318 0.85 46.24 48.82 60.55 60.39 53.39 63.68 29.03 7.93
Meeting room (capacity: 130m3) 401 0.62 77.43 72.24 89.10 91.25 89.16 91.62 69.81 25.87
Lecture room (capacity: 400m3) 402 1.12 55.85 53.18 70.83 81.12 78.75 80.32 57.97 32.53
Lecture room (capacity: 2,400m3) 403 1.09 57.48 51.30 68.35 83.97 80.75 78.85 56.57 33.18
GSH (capacity: 11,000m3) 404 1.54 40.44 44.89 51.58 46.58 44.55 54.34 17.15 5.70
Church 1 (capacity: 1,200m3) 405 0.71 57.35 56.95 70.34 76.60 72.43 77.56 47.87 24.34
Church 2 (capacity: 3,200m3) 406 1.30 33.71 37.21 41.42 40.87 30.52 42.49 8.41 1.83
Event hall 1 (capacity: 28,000m3) 407 3.03 27.51 31.19 33.40 33.40 30.80 36.87 8.25 5.21
Event hall 2 (capacity: 41,000m3) 408 3.62 28.77 32.98 35.62 37.27 34.88 41.63 12.91 9.34
Gym 1 (capacity: 12,000m3) 409 2.82 21.61 26.59 29.08 27.88 25.39 30.09 4.77 1.42
Gym 2 (capacity: 29,000m3) 410 1.70 32.51 37.33 39.98 41.60 36.29 48.23 17.39 13.90
Living room (wooden)(capacity: 110m3) 411 0.36 89.81 86.40 98.31 96.75 95.30 96.90 77.21 �83.93
Movie theater (capacity: 560m3) 412 0.38 88.36 84.22 93.49 95.95 92.85 93.18 56.78 �4.76
Antrum (capacity: 4,000m3) 413 1.57 35.19 36.91 39.70 43.97 36.08 48.60 18.53 14.76
Tunnel (capacity: 5,900m3, length: 120m) 414 2.72 28.52 25.05 25.33 26.76 35.06 33.87 11.77 11.44
Concourse in train station 415 1.95 36.66 39.64 44.06 46.18 34.48 45.93 10.42 3.34
GSH 2 (1F front) 416 1.53 38.26 41.45 48.33 46.88 42.80 56.13 25.07 21.10
GSH 2 (1F center) 417 1.49 34.26 37.67 45.13 44.98 41.26 51.77 22.62 12.10
GSH 2 (1F balcony) 418 1.40 39.73 39.05 54.41 59.81 56.19 65.18 42.87 23.62
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the reverberation time is thus needed. We must also find a

more accurate method of estimating the sub-band temporal

power envelopes because the inverse MTF filtering for

dereverberation is based on these envelopes. We need a

way to estimate the sub-band temporal power envelope by

stochastic signal processing for both Gaussian and non-

Gaussian white-noise carriers. In our experiments, rever-

berant speech was obtained by manual convolution

between the speech and the artificial or real impulse

response of the room acoustics. However, we must

consider real reverberant speech, which should be recorded

in a reverberant environment. In addition, apart from

convolution-distortion, additive noise in real reverberant

environments may cause speech to degrade.

Finally, as we mentioned in Chapter 1, the impulse

response of a reverberant environment may be time-

variant. Our proposed inverse filtering, in Eq. (8), can be

used as time-variant filtering if we can estimate the

instantaneous reverberant time. In our current study, the

reverberant time was estimated from each utterance. Some

utterances in the speech database were long (about 4.2 s),

and others were short (about 0.8 s), and, on average, they

were about 2 s for the data corpus. It is possible to estimate

the reverberant time using a short period of speech, such as

in described [23]. In the future, we intend to deal with real

recorded speech in reverberant environments by adapting

and modifying our MTF-based processing model.
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APPENDIX I

The effects of over- and under estimation of the

reverberant time TR on power envelope restoration is

illustrated in Fig. 6, which has been taken from the 20th

frequency channel of Fig. 2, as an example.

From Fig. 6, one can see that reverberant time T̂TR;n
(0.31 s in this case) estimated using Eq. (10) can guarantee

the best restoration of the power envelope, while under

estimation (about half of T̂TR;n: 0.16 s) and over estimation

(about 1:5� T̂TR;n: 0.47 s) did not yield best restoration of

the power envelope. In inverse filtering, our algorithm

reveals the best T̂TR;n for restoring the power envelope so

that the estimated values are not the same for all sub-bands.

Moreover, most of the estimated values are not equal to the

original reverberant values. In over estimates, the restored

power envelope in each sub-band is high-pass filtered with

a higher-end frequency than that used for accurate

estimates, and vice versa for under-estimates. We ex-

plained the effect of power envelope restoration in

Subsection 2.2.1. We tested its effect on ASR in over-

and under-dereverberation, and presented the results in

Fig. 7.
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recognition rates: (a) whole evaluation and (b) close-up
of plot in range from 0.0 to 0.2 s.
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From Fig. 7, we can see that the ASR system exhibits

the best performance when the reverberant time is

estimated using our new approach [27].

APPENDIX II

The accuracies of speech recognition when using

CQFB, CBFB, CQFB CMN, CQFB RASTA, and

CQFB IMTF are plotted in Fig. 8. These are additional

results to those in Fig. 5 and they have the same format.

From the figure, we can see that CMN and RASTA

processing on CQFB, on average, do not improve recog-

nition any more than does the CQFB alone. Moreover,

dereverberation based on the MTF concept in CQFB does

not improve the performance because CQFB processing

does not satisfy the requirements of MTF-based inverse

filtering.
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