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Abstract: In this paper, we introduce a new method of robust speech recognition under noisy
conditions based on discrete-mixture hidden Markov models (DMHMMs). DMHMMs were originally
proposed to reduce calculation costs in the decoding process. Recently, we have applied DMHMMs to
noisy speech recognition, and found that they were effective for modeling noisy speech. Towards the
further improvement of noise-robust speech recognition, we propose a novel normalization method for
DMHMMs based on histogram equalization (HEQ). The HEQ method can compensate the nonlinear
effects of additive noise. It is generally used for the feature space normalization of continuous-mixture
HMM (CMHMM) systems. In this paper, we propose both model space and feature space norma-
lization of DMHMMs by using HEQ. In the model space normalization, codebooks of DMHMMs are
modified by the transform function derived from the HEQ method. The proposed method was
compared using both conventional CMHMMs and DMHMMs. The results showed that the model
space normalization of DMHMMs by multiple transform functions was effective for noise-robust
speech recognition.

Keywords: Speech recognition, Noise robustness, Hidden Markov model, Discrete HMMs, Histo-
gram equalization

PACS number: 43.72.Ne [doi:10.1250/ast.29.66]

1. INTRODUCTION

In recent speech recognition systems, continuous-

mixture hidden Markov models (CMHMMs) have been

used as acoustic models. The parameters of CMHMMs can

be estimated efficiently under the assumption of a normal

distribution. Meanwhile, discrete HMMs (DHMMs) based

on vector quantization (VQ) have a problem that they are

affected by quantization distortion. However, CMHMMs

may not be suitable for noisy speech recognition because of

the false assumption of a normal distribution. The DHMMs

can represent more complicated shapes and they are

expected to be useful for noisy speech.

Recently, discrete-mixture HMMs (DMHMMs), for

which the quantization size can be reduced, have been

proposed in [1,2]. DMHMMs require a smaller amount of

training data than ordinary DHMMs. However, they still

require a larger amount of training data than CMHMMs.

To solve the problem of trainability, we proposed a MAP

estimation of DMHMMs to further reduce the amount of

training data [3]. It was reported that this method achieved

an average error rate reduction of 28.1% in nonstationary

conditions compared with CMHMM-based recognition [4].

In this paper, we propose a normalization method of

DMHMMs based on histogram equalization (HEQ). This

technique is commonly applied for feature space normal-

ization [5]. In this method, a transform function is

calculated directly from the histograms of both training

data and test data, and the method can compensate the

nonlinear effects of additive noise. This method can be

applied to the normalization of an input feature vector.

However, it cannot be used for model space normalization

if CMHMMs are used as acoustic models. In a normal

distribution, the shape of the distribution is represented by a

continuous function that has two parameters, the mean and

variance. The mean can be shifted by the transform function

based on the HEQ method. However, the shape of the

distribution cannot be modified by such a nonlinear trans-

form function because it is determined only by the variance.

In contrast, the shape of a DHMM can be modified because

each sample value of the discrete stochastic variable can

be shifted by the nonlinear transform function.
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In this paper, we propose both feature space and model

space normalization based on the HEQ method. The

normalization in model space has a merit compared with

that in feature space. In the former, a transform function

can be prepared for each acoustic model or model class

separately. It is expected that the transform functions will

depend on the feature of each phoneme or phoneme class.

Then, experiments on normalization using multiple trans-

form functions are conducted in this study to verify the

effectiveness of multiple transformations.

The paper is organized as follows. In Sect. 2, we present

a brief overview of the parameter estimation of DMHMMs.

In Sect. 3, both model and feature space normalization

methods based on HEQ are described. The experimental

setup is described in Sect. 4. In Sect. 5, we present results

showing the improved performance of this method. Finally,

we conclude this paper in Sect. 6.

2. PARAMETER ESTIMATION OF
DISCRETE-MIXTURE HMMS

2.1. Discrete-Mixture HMMs

In this section, DMHMMs are briefly introduced. In

recent years, two types of DMHMM have been proposed.

One is subvector-based quantization [2] and the other is

scalar-based quantization [1]. In the former method, feature

vectors are partitioned into subvectors, and then the

subvectors are quantized using separate codebooks. In the

latter, each dimension of the feature vectors is scalar-

quantized. The quantization size can be reduced markedly

by partitioning the feature vectors. For example, in [2], the

quantization size was reported as 2 to 5 bits, and in [1], it

was 4 to 6 bits. Because the quantization size is small, the

DMHMM has superior trainability for acoustic modeling.

In this work, subvector quantization is used because it has

been reported that the subvector-based method is more

effective than the scalar-quantized method.

The subvector-based method can be described as

follows. The feature vector is partitioned into S subvectors,

ot ¼ ½o1t; . . . ; ost; . . . ; oSt�. VQ codebooks are provided for

each subvector, and then the feature vector ot is quantized,

qðotÞ ¼ ½q1ðo1tÞ; . . . ; qsðostÞ; . . . ; qSðoStÞ�: ð1Þ

The output distribution of the DMHMM, biðotÞ, is given by

biðotÞ ¼
X
m

wim

Y
s

p̂psimðqsðostÞÞ; ð2Þ

where wim is the mixture coefficient for the mth mixture in

state i, and p̂psim is the probability of the discrete symbol for

the sth subvector.

2.2. MAP Estimation for DMHMM

In ML estimation, the effect of the prior distribution

is ignored; however, an appropriate prior distribution is

used for parameter estimation in MAP estimation. In

this section, the training of DMHMMs based on MAP

estimation is described. The ML estimate of the discrete

probability psimðkÞ is calculated in the following form:

psimðkÞ ¼

XT
t¼1

�imt �ðqsðostÞ; kÞ

XT
t¼1

�imt

ð3Þ

�ðqsðostÞ; kÞ ¼
1 qsðostÞ ¼ k

0 otherwise

�
; ð4Þ

where k is the index of the subvector codebook and �imt is

the probability of the mth mixture component being in state

i at time t. We assume that the prior distribution can be

represented by the Dirichlet density. The MAP estimate of

DMHMM, p̂psimðkÞ, is given by

p̂psimðkÞ ¼
� � p0simðkÞ þ nim � psimðkÞ

� þ nim
ð5Þ

nim ¼
XT
t¼1

�imt; ð6Þ

where p0simðkÞ is the constrained prior parameter and �

indicates the relative balance between the corresponding

prior parameter and the observed data. In our experiments,

� was set to 10.0 based on the results of experiments in [4].

Although both the mixture coefficient and the transition

probability can be estimated by MAP, only the output

probability is estimated by MAP in this paper.

2.3. Prior Distribution

The specification of the parameters of prior distribu-

tions is one of the key issues of MAP estimation. In our

work, it is assumed that the prior distributions can be

represented by models that are converted from CMHMMs

to DMHMMs. In this case, the parameters of the prior

distribution p0simðkÞ are given by

p0simðkÞ ¼
b0simð�sðkÞÞX
k

b0simð�sðkÞÞ
; ð7Þ

where b0simð Þ is the probability density of the CMHMM,

and �sðkÞ is the centroid for each subvector s. While p0simðkÞ
has the constraint that it must be a normal distribution,

p̂psimðkÞ in Eq. (5) does not have such a constraint. Thus, it

is expected that p̂psimðkÞ will be updated to represent more

complicated shapes in the training session.

2.4. Compensation for Discrete Distributions

To improve noise robustness, a compensation method

for discrete distributions is applied. It is more likely that

the significant degradation of output probability will appear
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in the case of mismatch conditions caused by unknown

noise. This method can reduce the negative effect of

unknown noise in the decoding process. It is particularly

effective for short-duration noise [4]. The compensation

method is given as follows: If p̂psimðqsðostÞÞ < dth in Eq. (2),

the output probability is set to dth, where dth is the

threshold for the subvector.

3. CODEBOOK NORMALIZATION
BASED ON HISTOGRAM

EQUALIZATION

The HEQ technique is commonly applied for feature

space normalization [5]. In this paper, this technique is

applied for both feature space and model space normal-

ization of DMHMMs. Model space normalization can be

realized as a method of codebook normalization of

DMHMMs. While model space normalization can be

applied to DMHMMs, it cannot be applied to CMHMMs.

For CMHMMs, the shape of the distribution cannot be

modified by a nonlinear transform function because the

shape is determined only by the variance. In contrast, the

shape of the DHMM can be modified because each sample

value of the discrete stochastic variable can be shifted

using the nonlinear transform function. There is a merit in

choosing model space normalization. In the method of

model space normalization, a transform function can be

prepared for each acoustic model or model class. For

example, a voiced model and an unvoiced model can be

normalized separately. It is expected that a more accurate

method using multiple transformations will improve

recognition performance.

The basic idea of HEQ is that a coefficient is trans-

formed from one probability distribution to fit another.

Cumulative density functions (CDFs) of both training and

test data are used to calculate the transformation function.

Two types of normalization, model space normalization

and feature space normalization, are described. The trans-

form function HEQmð Þ for codebook normalization can be

written as follows:

q0sðostÞ ¼ HEQmðqsðostÞÞ ¼ C�1
E ðCT ðqsðostÞÞÞ; ð8Þ

where CE is the CDF estimated from test data and CT is the

CDF from training data. Note that only the centroid qs is

transformed and the discrete probability p̂psim is not

changed. Then this normalization can be carried out using

a small amount of input speech for CDF estimation.

Furthermore, since all models share a set of codebooks, it is

not necessary to normalize each model individually.

The transform function HEQf ð Þ for feature space

normalization is given by

o0st ¼ HEQf ðostÞ ¼ C�1
T ðCEðostÞÞ: ð9Þ

In this case, both CDFs, CT and CE, are the same as the

CDFs in Eq. (8), and HEQf ð Þ is the inverse transform of

HEQmð Þ.
In the experiment, the parameters are 39 MFCCs with

12mel cepstrum, log energy and their first- and second-

order derivatives. There are various HEQ methods for

transforming time derivatives [6]. In this work, each

dimension is transformed independently.

Figure 1 shows the block diagram of codebook normal-

ization, and Fig. 2 shows that of feature vector normal-

ization. In Fig. 1, histograms derived from both training

and test data are calculated to make a transform function.

Then each codebook for the subvectors is normalized using

the transform function. Only acoustic models are modified

by using the normalized codebooks, and they are used in

decoding process. In Fig. 2, each input utterance in the

evaluation data is analyzed and normalized.

4. EXPERIMENTAL SETUP

The analysis conditions are summarized in Table 1. A

set of shared state triphones was used as an acoustic model.

The total number of states was 2,000, and the number of

mixture components was 16.

For experiments, we used ‘‘JNAS: Japanese Newspaper

Fig. 1 Block diagram of codebook normalization.

Fig. 2 Block diagram of feature vector normalization.
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Article Sentences’’ as training and test data, which contains

speech recordings and their orthographic transcriptions.

Text sets for reading were extracted from the ‘‘Mainichi

Shinbun’’ newspaper. We prepared two sets of training

data. One was used for clean training, and the other was

used for multicondition training [7]. The training data set

consisted of 15,732 Japanese sentences uttered by 102 male

speakers. For clean training, no noise was added to the

data. For multicondition training, the utterances were

divided into 20 subsets. No noise was added to 4 subsets.

In the rest of the data, noise was artificially added. Four

types of noise (car, exhibition hall, crowd and train) were

selected and added to the utterances at SNRs of 20, 15, 10

and 5 dB. The noise data were selected from the JEIDA

noise database [8], and the type of noise was determined

with reference to the AURORA training set [7]. The set of

clean training data was used for parameter estimation of the

initial CMHMMs. After obtaining the initial CMHMMs,

they were converted into DMHMMs by Eq. (7). In order

to obtain noisy acoustic models, the parameters of

DMHMMs were retrained using multicondition training

data. Initial CMHMMs were also retrained using multi-

condition data, and retrained models were used for

comparative experiments. The total number of states and

the number of mixture components were the same as those

of the DMHMM.

Two sets of test data were prepared for evaluation.

Testset A The noise condition is the same as that in the

multicondition training set. Car, exhibition hall, crowd

and train noises are used.

Testset B The noise condition is different from that in the

multicondition training dataset. Station, factory, street

crossing and elevator hall noises are used.

In testset A, the selected noise data were similar to the

AURORA closed testset. With the exception of stationary

noise data such as air conditioning noise and noise data in

testset A, there were six types of noise. Four types of noise

data out of the six were used as testset B, and the rest

(distribution center and public telephone box) were omitted

because they were similar to the noise data in testset B.

Each type of noise was added to 100 sentences uttered by

10 male speakers at SNRs of 10 dB. Thus, the number of

utterances was 400 for each testset.

All results presented here were extracted using a

decoder with a word bigram with a 5K word vocabulary.

Table 2 shows the subvector allocation and codebook

size. In the table, although � and �2 are omitted, these

codebooks were designed in the same manner. The

codebook design was determined with reference to the

results in [2] and the split vector quantizer in the DSR front

end [9]. In [2], it was reported that DMHMMs with from

9 to 24 subvectors showed better performance. The feature

vector was partitioned into subvectors that contain two

consecutive coefficients. The consecutive coefficients that

comprise subvectors are expected to be more correlated.

Also, it was reported in [2] that subvectors that contained

consecutive coefficients performed well. The LBG algo-

rithm was utilized for creating the codebook. Multicondi-

tion training data was used for codebook creation.

5. RESULTS AND DISCUSSION

5.1. Comparison of Normalization Methods

Table 3 shows the set of experiments we conducted in

this section. The nine methods shown in the table were

compared in Japanese speech recognition experiments. The

description of the table is as follows:

model Two types of model were compared. ‘DMHMM’

means a discrete-mixture HMM trained by multi-

condition method. ‘CMHMM’ is a conventional con-

tinuous-mixture HMM trained in the same way and is

used for performance comparison.

normalization Two types of normalization were com-

Table 1 Analysis conditions.

Sampling rate 16 kHz
Frame period 8ms
Frame length 32ms
Analysis MFCC (1–12), log powerþ�þ��

Table 2 Codebook design.

Parameter log P c1, c3, c5, c7, c9, c11,
c2 c4 c6 c8 c10 c12

Codebook size 64 64 64 64 64 64 64

Table 3 Set of recognition experiments.

Model Normalization
Notation

w/o Normalization Noise Utterance

DMHMM
Feature

DMHMM
DMHMM-fer-noise DMHMM-fer-utter

Model DMHMM-mod-noise DMHMM-mod-utter

CMHMM
Feature

CMHMM
CMHMM-fer-noise CMHMM-fer-utter

Model CMHMM-mod-noise —
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pared. ‘Feature’ means feature space normalization

and ‘model’ means model space normalization.

normalization data Two types of normalization data were

compared. In the ‘noise’ condition, the histogram of

the test data was calculated for all the utterances of one

noise type. In the ‘utterance’ condition, the histogram

of the test data was calculated only by each utterance

that would be recognized. Then, histogram estimation

is carried out using a very short calibration speech in

this case.

For example, ‘DMHMM-fer-noise’ means that the

DMHMM is normalized in feature space using all the

utterances of one noise type, and ‘DMHMM’ means that

the DMHMM is used without normalization. As we

mentioned in Sect. 3, HEQ cannot be applied to CMHMMs

in model space in a general way because the shape of the

distribution is represented by the variance. In our experi-

ments, model space normalization of the CMHMM was

carried out by transforming mean values only. Thus, the

shape of the distribution of the CMHMM was not changed

in this case. The model space normalization of the

CMHMM for each utterance was not performed. For

DMHMMs, all acoustic models can be normalized by

changing only the codebooks. In the case of CMHMMs,

however, it is difficult to perform the normalization

because the mean values of all the models should be

normalized for every single utterance and the calculation

cost is high. The threshold value dth was set to 2:5� 10�4

in all the experiments in this section. A detailed discussion

of the threshold is described in Sect. 5.3.

Figure 3 shows the recognition results (word error rate)

for testset A and testset B, and the same results are shown

in Table 4.

In the case of testset B, the recognition performance of

the DMHMM was greater than that of the conventional

CMHMM. All types of normalization methods provided

significant improvements with respect to the DMHMM for

testset B. The improvements of normalization for testset A

were small. Because testset A consisted of known

conditions and models were matched to noisy conditions,

the improvements were not large. These results mean that

the codebook normalization based on HEQ is able to

compensate the nonlinear mismatch well.

The performance of HEQ in feature space was similar

to that in model space for both testset A and testset B

with the exception of ‘CMHMM-mod-noise.’ This can be

interpreted to mean that the direction of transformation is

different between the two HEQ methods, but the effect is

similar. In order to obtain further improvements for HEQ

in model space, a transform function may be prepared

for each acoustic model. The recognition performance

of ‘CMHMM-mod-noise’ was worse than that of the

CMHMM without normalization. In the case of

‘CMHMM-mod-noise,’ only mean values were normalized

and the shape of the distribution was not changed. This fact

means that the normalization of the distribution shape is

important for HEQ in model space.

Comparing the difference in performance between

‘noise’ and ‘utterance,’ ‘utterance’ showed slightly greater

improvements on average. It is shown that one utterance is

sufficient to estimate the transform functions. The average

length of a test utterance is 3.9 s. Thus, the proposed

normalization can be carried out using a very short

calibration speech. In both testset A and testset B, the best

performance was obtained for the ‘DMHMM-mod-utter’

condition. However, the difference in performance between

‘DMHMM-fer-utter’ and ‘DMHMM-mod-utter’ was small.

Hence, the superiority of model space normalization could

not be confirmed in these experiments.

Figures 4 and 5 show the recognition results for each

noise condition for testset A and testset B, respectively.

From these results, it turns out that recognition performance

depends on the noise type. In general, histogram normal-

ization was effective for noise data in which the variation

in noise was large, and it was less effective for noise dataFig. 3 Recognition results for testset A and testset B.

Table 4 Recognition results for testset A and testset B.
Average WERs (%) of four types of noise are
indicated.

w/o norm. -fer-noise -mod-noise -fer-utter -mod-utter

testset A

CMHMM 17.34 15.84 17.63 15.82 —
DMHMM 17.42 16.25 16.33 15.92 15.76

testset B

CMHMM 40.32 29.82 40.53 29.79 —
DMHMM 36.93 29.71 29.61 28.78 28.55
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with a small variation such as ‘‘crowd,’’ ‘‘exhibition hall’’

and ‘‘elevator hall.’’ For testset A, a significant improve-

ment was obtained for ‘‘train’’ using one utterance com-

pared with the ‘noise’ condition, while other noise types

were not. This is because large variations of the noise

condition caused by passing train occur in the ‘‘train’’

condition. The ‘‘crossing’’ condition in testset B is similar to

the ‘‘train’’ condition, because large variations of noise are

observed due to cars passing. Figures 6 and 7 show the

movement of codebook centroids on the C1–C2 plane after

normalization. Figure 6 shows results for the ‘‘train’’

condition and Fig. 7 shows those for the ‘‘car’’ condition.

Compared with the centroids before normalization for

‘‘train,’’ the difference in position is not large in the case

of normalization using the entire evaluation data. However,

in the case of normalization using one utterance, these

centroids move significantly. In the ‘‘car’’ condition,

because the noise spectrum is concentrated at low frequency

and is relatively stable, the movement of centroids is small.

5.2. Normalization Using Multiple Transform Func-

tions

In the previous section, only one transform function

was used for normalization. However, it is expected that

the transform function depends on the features of each

phoneme or phoneme class. For example, in the MLLR

adaptation method [10], which is widely used as a method

of model space transformation for speaker adaptation,

multiple transform functions are usually used to improve

adaptation performance. From a similar point of view,

experiments on normalization using multiple transform

functions were conducted. Since each transform function

needs to be used for each model or model class in this

method, model space normalization method is required.

Normalization using multiple transform functions cannot

be carried out by the conventional feature space approach.

In the experiments, acoustic models were phonetically

classified into voiced and unvoiced groups. Those groups

are shown in Table 5. Both silence (sil) and closure (cl)

classes were classified into unvoiced classes. Since the

distinction between voiced and unvoiced classes was based

Fig. 4 Recognition results for each noise in testset A.

Fig. 5 Recognition results for each noise in testset B.
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Fig. 6 Movement of codebook centroids after normal-
ization for ‘‘train condition.’’ �: before normalization,
: normalization using entire evaluation data, :

normalization using one utterance.
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Fig. 7 Movement of codebook centroids after normal-
ization for ‘‘car’’ condition. �: before normalization,
: normalization using entire evaluation data, :

normalization using one utterance.
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on recognition results using acoustic models without

normalization, some determination errors were included.

For the normalization of the voiced class, the histogram

was calculated using voiced speech and it was used for the

normalization of voiced phonemes. For the unvoiced class,

the histogram was calculated using voiced and unvoiced

speech and it was used for the normalization of unvoiced

phonemes because it showed better performance than the

method by which the histogram was calculated using only

unvoiced speech. Lack of data sometimes causes a problem

in such a multiple classification approach. In particular,

in the case of ‘utter,’ lack of data tends to be a problem

because the duration is short. Therefore, the experiments

on testset B were conducted with the condition of ‘noise’ as

the first stage.

The results are shown in Table 6. From the results, the

2-class normalization method showed better results than

the 1-class normalization method. Compared with feature

space normalization (29.71%), 2-class normalization

(28.44%) showed statistically significant improvement

(significance level of 5%), while the performance of 1-

class normalization did not show significant improvement.

As described above, multiple transform normalization was

successfully performed in model space and it showed better

performance than feature space normalization.

5.3. Investigation on Likelihood Compensation

All experiments described above were performed with

dth ¼ 2:5� 10�4 which was the threshold for compensa-

tion and introduced in Sect. 2.4. In order to clarify the

robustness against the value of this threshold, recognition

experiments were performed on testset B with various

values of threshold. In the experiments, dth was varied

from 0 to 1:0� 10�3 and the word error rate for each

method was calculated. The results are shown in Fig. 8.

The performance of the methods using HEQ was relatively

stable apart from the case of dth ¼ 0:0. From these results,

it can be concluded that the proposed method is robust

against the variation in threshold.

6. CONCLUSIONS

In this paper, we proposed a normalization method of

discrete-mixture HMMs (DMHMMs) with the aim of

improving the performance of recognition under noisy

conditions. The normalization method was based on histo-

gram equalization (HEQ) and can compensate the nonlinear

effects of additive noise. Both model space normalization

and feature space normalization methods were proposed. It

was difficult to apply the HEQ method to CMHMMs in

model space in a general way, because the shape of the

distribution was determined by the variance. In contrast,

the codebook normalization of the DMHMM made model

space normalization possible. In our experiments, the

model space normalization of the CMHMM was carried

out by transforming the mean values only. In this case, the

shape of the distribution of the CMHMM was not changed

and the recognition performance was unsatisfactory.

From the results of recognition experiments, both

feature and model space normalization methods were

effective for noise-robust speech recognition. From the

comparison between feature and model space normaliza-

tion, the recognition performance was similar when a single

transform function was used. Model space normalization

using multiple transform functions showed better perform-

ance than the method using a single transform function.

In this paper, only 2-class transform functions were

used for the method using multiple transform functions.

We plan to improve recognition performance further by

testing a wide variety of phoneme classes. We also plan to

use this method for speaker normalization in an LVCSR

task such as ‘‘CSJ: Corpus of Spontaneous Japanese.’’

Table 6 Comparison of recognition performance be-
tween 1-class and 2-class normalizations using
DMHMM on testset B (WER %).

w/o norm. -fer-noise -mod-noise -mod-noise
1-class 2-class

Station 39.75 30.85 31.47 30.43
Factory 47.20 36.34 35.09 33.44
Crossing 28.16 22.57 22.36 22.26

Elevator hall 32.61 29.09 29.50 27.64

Ave. 36.93 29.71 29.61 28.44

Fig. 8 Recognition performance at various threshold
values of likelihood compensation.

Table 5 Classified list of phonemes.

Voiced a aa i ii u uu e ee ei o oo ou
b d g m n N z j w y xy r

Unvoiced h f s sh ts ch p t k cl sil

Acoust. Sci. & Tech. 29, 1 (2008)
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