
Effects of the false vocal folds on sound generation by an unsteady glottal jet

through rigid wall model of the larynx

Hideyuki Nomura� and Tetsuo Funada

Division of Electrical Engineering and Computer Science, Kanazawa University,
Kakuma-machi, Kanazawa, 920–1192 Japan

(Received 3 February 2007, Accepted for publication 18 May 2007 )

Abstract: In the present paper, the effects of the false vocal folds (FVFs) on sound generation
induced by an unsteady glottal jet through a two-dimensional rigid wall model of the larynx are
investigated by conducting numerical experiments. The glottal jets are simulated by solving the basic
equations for a compressible viscous fluid based on the larynx model with and without the FVFs. The
existence of the FVFs increases the amplitude of noise-like pressure fluctuation at the glottis and
faraway from the glottis. Furthermore, the FVFs give rise to the broadbanding of the pressure spectrum
throughout the fluid domain. These results indicate that the FVFs have a profound effect on the
generation of broadband noise components in a speech wave.
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1. INTRODUCTION

With improvements in computing power, numerical

simulation has become an efficient tool for clarifying the

speech production process. A two-mass model developed

by Ishizaka and Flanagan [1] and improved models [2,3]

based on this model are the most popular numerical models

for speech production. These models can be used to

describe the principal mechanism of phonation, although

the structure of the model is simple. However, these

models are not suitable for the description of complex

phenomena [4–7] in the larynx, because these models have

a limitation with respect to the degree of freedom of fluid

motion in the larynx and do not provide accurate glottis

shapes.

During any vibration cycle of the true vocal folds

(TVFs), the glottis takes on converging, uniform, and

diverging shapes. Numerical simulations conducted by

Iijima et al. [8] and Liljencrants [9] revealed that the

pressure distributions on the glottal surface are greatly

affected by both the shape and minimal diameter of the

glottis. Although asymmetric flows similar to that observed

via measurements [10] were obtained in their simulation,

Iijima et al. conjectured that the asymmetry was due to

numerical errors in computation.

In a previous study [11], we numerically simulated

glottal flows on the basis of a two-dimensional rigid wall

model of the larynx and reported that rather than being

a steady symmetric laminar flow, the glottal flow is an

unsteady asymmetric flow similar to the physically

measured flows. In addition, the results suggest that the

existence of the false vocal folds (FVFs) increases the

intensity of the sound due to an unsteady flow. However,

the mechanism of the increase in the intensity has not been

investigated in detail.

Zhang et al. [12] numerically investigated the effect

of the FVFs on the speech production process on the basis

of the axisymmetric forced vibrating TVF model. They

reported that the impingement of the glottal jet on the FVFs

causes the generation of additional sources in speech

waves. However, we infer that they underestimated the

effects of the existence of the FVFs on the speech waves,

because, in the axisymmetric model, the degree of freedom

of the fluid motion was limited, and the glottal flow could

not be transformed into an asymmetric complicated flow.

The purpose of the present study is to investigate the

effects of the FVFs on the speech production process. As a

first step, we do not consider the interaction between the

glottal flow and vibrating TVFs, because our only focus

is on the effect of the FVFs on sound generation caused

by an unsteady flow. In the present study, we conduct a

numerical experiment with glottal jets on two-dimensional�e-mail: nomu@t.kanazawa-u.ac.jp
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rigid larynx models with and without the FVFs at different

lung pressures. The effects of the FVFs on the sound

generation within the larynx, especially on the amplitude

and spectrum slope thereof, are discussed quantitatively.

Furthermore, we show two types of mechanism of sound

generation induced by unsteady glottal flow.

2. ANALYTICAL MODEL AND
COMPUTATIONAL METHODS

A real larynx has a complex three-dimensional shape.

The main simplification of the present study is to consider

the flow to be a two-dimensional configuration. This

precludes the vortex stretching mechanism, that causes the

energy cascade from larger to smaller scale vortices [13].

Therefore, in the present simulation, large-scale vortices

tend to remain in the flow field.

2.1. Larynx Model and Governing Equations

A two-dimensional model of the larynx without

vibration in the coronal (z-x) plane is shown in Fig. 1.

The bold solid and dotted lines indicate models with and

without the FVFs, respectively. The configuration is

symmetric about the center line (dot-dashed line, i.e., the

z axis). The large ratio of the TVF length of Oð101Þ mm to

the the TVF gap of Oð100Þ mm allows the flow config-

uration in the sagittal (y) direction to be uniform; that is,

@Q=@y ¼ 0 is assumed, where Q is a physical quantity of

the flow.

The size parameters of the larynx presented in Table 1

are based on the data reported by Scherer et al. [14]. In

the present study, we consider only a simple uniform

parallel glottis model with a TVF gap of GTVF ¼ 1mm,

although the glottal angle affects the glottal jet

[5,10,11,15]. The function of larynx width is described

by the function wLðzÞ in the Appendix. In addition, the

vocal tract configuration is assumed to be a uniform duct

in order to highlight the acoustic and fluid phenomena

within the larynx.

In the present paper, all variables denoted by the

superscript � are nondimensional values. In order to

formulate the problems, we introduce the following

dimensionless variables:

t� ¼
c0t

L
; z� ¼

z

L
; x� ¼

x

L
;

u� ¼
u

c0
; v� ¼

v

c0
; P� ¼

P

�0c02
; T� ¼

T

T0
;

9>>=
>>; ð1Þ

where t is the time, u and v indicate the z and x

components, respectively, of the flow velocity vector u,

P ¼ pþ Patm is the total pressure (p is the pressure

variation from the atmospheric pressure value Patm), � is

the density of the medium, T is the absolute temperature,

L ¼ WVT (¼20mm) is the characteristic length, �0
(¼ 1:138 kg/m3) is the fluid density at rest, and c0
(¼ 3:532� 102 m/s) is the sound velocity of infinitesimal

amplitude. The variables denoted by the subscript 0 are

quantities at an atmospheric pressure Patm of 101.3 kPa and

a temperature of 310.15K (¼T0, 37
�C).

Because of the complexity of the boundary shape in the

larynx, the Cartesian coordinates (z�, x�) are transformed

into general curvilinear coordinates (��, ��) along the

laryngeal surface. The basic governing equations of a

compressible viscous fluid like the glottal flow in a two-

dimensional space are summarized in the following

compact form [11,16]:

@Q�

@t�
þ

@E�

@��
þ

@F�

@��
¼

1

Re

@R�

@��
þ

@S�

@��

� �
; ð2Þ

where Re (¼ �0c0L=�0) is the Reynolds number, and �0

(¼ 1:902� 10�5 Pa�s) is the shear viscosity. Other depend-
ent variable vectors for the flow are expressed as follows:
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Fig. 1 Analytical model for the glottal flow in the
coronal (z-x) plane. Bold solid and dotted lines indicate
the model with the false vocal folds (FVFs) and the
model without the FVFs and the ventricle of the larynx,
respectively. The configuration is assumed to be
uniform in the sagittal (y) direction. The function of
larynx width is described by the function wLðzÞ in the
Appendix.

Table 1 Size parameters for the larynx (values are in
mm).

Wsub Width of subglottal region 16.4
WVL Width of ventricle of the larynx 10.3
WVT Width of vocal tract 20.0
GTVF True vocal fold gap 1.0
GFVF False vocal fold gap 5.1
HFVF False vocal fold height 6.2
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Q� ¼
1

J�

��

��u�

��v�

e�

2
6664

3
7775; ð3Þ

E� ¼
1

J�

��U�

��u�U� þ ��xP
�

��v�U� þ ��yP
�

ðe� þ P�ÞU�

2
6664

3
7775;

F� ¼
1

J�

��V�

��u�V� þ ��z P
�

��v�V� þ ��xP
�

ðe� þ P�ÞV�

2
6664

3
7775;

ð4Þ

R� ¼
1

J�

0

��z �
�
zz þ ��x�

�
zx

��z �
�
xz þ ��x�

�
xx

��z R
�
4 þ ��xS

�
4

2
6664

3
7775;

S� ¼
1

J�

0

��z �
�
zz þ ��x�

�
zx

��z �
�
xz þ ��x�

�
xx

��z R
�
4 þ ��xS

�
4

2
6664

3
7775:

ð5Þ

Here,

R�
4 ¼ ��zzu

� þ ��zxv
� þ q�z ;

S�4 ¼ ��xzu
� þ ��xxv

� þ q�x :

�
ð6Þ

U� and V� are contravariant velocity components in the ��

and �� directions, respectively, and are written as

U� ¼ ��z u
� þ ��xv

�;

V� ¼ ��z u
� þ ��xv

�:

�
ð7Þ

J� is the Jacobian of the coordinate transformation, and ��z ,

��x , �
�
z , and ��x are the components of the transformation

matrix @ð��; ��Þ=@ðz�; x�Þ. In addition, ��zz, �
�
xx, and ��zx ¼ ��xz

are the dimensionless viscosity-induced drag forces, and q�z
and q�x are the dimensionless heat fluxes.

The dimensionless total energy density is given as

e� ¼
P�

� � 1
þ

1

2
�� u�2 þ v�2
� �

; ð8Þ

where � (¼ 1:403) is the specific heat ratio. In addition, an

adiabatic relationship for a compressible fluid is used to

connect the absolute temperature and the pressure, as

follows:

P� ¼
��T�

�
: ð9Þ

2.2. Numerical Simulation

In order to solve these nonlinear partial differential

equations, we employ a numerical computation method,

MacCormack’s finite difference scheme, which has fourth-

order accuracy with respect to space and second-order

accuracy with respect to time [17]. The computational

domain extends from z� ¼ �8 to z� ¼ 10, i.e., z ¼ �160 �
200mm. The grid number is 800� 120. A greater grid

number is necessary in computations in order to obtain an

accurate solution. However, we reached a compromise

between numerical accuracy and computational time [11].

The dimensions of the grid in the z� direction are

reduced near the glottis at z� ¼ 0, and the dimensions of

the grid in the x� direction are regular. Here, the minimum

grid sizes become �z ’ 40 mm and �x ’ 8 mm.

The time is discretized at an interval of �t ’ 0:1 ms.
The Courant-Friedrichs-Levy condition [16] for numerical

convergence of the difference equations is satisfied because

the CFL number becomes 0.6, which is less than unity.

Calculated data are written to output files at intervals of

10 ms.
The details of the analysis are found in the previous

paper [11].

2.3. Initial and Boundary Conditions

Suppose that the air in the entire fluid space is uniform

and at rest for t� � 0. The initial conditions are then readily

obtained for the entire space:

ju�j ¼ 0; �� ¼ 1; P� ¼ 1=� for t� � 0: ð10Þ

Nonslip and adiabatic boundary conditions are speci-

fied on the boundaries �3 and �4 in Fig. 1. A nonreflecting

characteristic boundary condition [18] is imposed at the

outflow boundary �2 in order to minimize acoustic

reflection. A pressure function P�
inðt�Þ ¼ p�Lðt�Þ þ 1=� is

applied to the boundary �1, where p�Lðt�Þ is the lung

pressure,

p�Lðt
�Þ ¼

P�
L0

2
1� cos

�t�

t�r

� �� �
for 0 < t� � t�r ,

P�
L0 for t� > t�r .

8<
: ð11Þ

Here, P�
L0ð¼ PL0=ð�0c02ÞÞ and t�r ð¼ c0tr=LÞ are the steady

state value of the lung pressure and the time required for

the lung pressure to increase to P�
L0 from atmospheric

pressure, respectively. In the present paper, the rise time tr
is set to a constant value of 10ms.

3. RESULTS AND DISCUSSION

In order to gain insight into the effects of the FVFs on

sound generation induced by unsteady glottal jets, the jets

based on the two-dimensional model of the larynx with and

without FVFs are numerically simulated by varying the

lung pressure PL0. We first show the effects of the FVFs on

the amplitude of the sound caused by the unsteady glottal

jet, and then show the effects on the spectrum thereof.
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3.1. Glottal Jet Distribution in the Larynx

Figure 2 shows the time sequences of instantaneous

streamline patterns of two-dimensional glottal flows based

on the models with and without the FVFs at every 5ms.

The lung pressure PL0 is set at 800 Pa, which corresponds

to the value for an ordinary conversation level. In both

models, symmetric jets about the z axis are first ejected

from the glottis, and the symmetries of the jets are then

broken for each jet front. Finally, the flow changes into an

unsteady pattern with several vortices.

The flows at t ¼ 40ms in Fig. 2 near the glottis are

shown in Fig. 3 with expanded coordinates. In the model

with the FVFs, the impingement of the glottal jet on the

FVFs and small vortices within the ventricle of the larynx

are observed.

3.2. Sound Generation Induced by Unsteady Glottal

Flow

Figure 4 shows the instantaneous pressure pðtÞ ¼
PðtÞ � Patm at different distances from the glottis. These

sound waves are directly obtained by numerical simula-

tions without any acoustic analogy.
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Fig. 2 Time sequences of instantaneous streamline patterns of the glottal flow at PL0 ¼ 800 Pa.
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At z ¼ 0mm, the amplitude (peak-to-peak) of pressure

variation in the model with the FVFs is approximately 1

in Fig. 4(a1), and that in the model without the FVFs is

approximately 0.4 in Fig. 4(b1). The pressure amplitude in

the model without the FVFs is in rough agreement that

according to the measured data based on a rigid model

having a lip like glottis without FVFs reported by Hofmans

et al. [5].

In the region downstream of the FVFs, both amplitudes

(peak-to-peak) of the pressure variation are approximately

2 in Figs. 4(a2) and (b2).

It is difficult to obtain radiated sounds from the mouth,

since the effects of acoustic loading of the vocal tract and

the mouth in the present simulation are ignored. Instead,

the sound within the vocal tract at a distance faraway from

the glottis z ¼ 160mm are shown in Figs. 4(a3) and (b3).

The amplitude in the model with the FVFs is about twice

that in the model without the FVFs.

The unsteady glottal flow causes pressure fluctuation

within the larynx. The pressure wave pðtÞ shows a

fluctuation, p0ðtÞ, around the average component hpi,
where the notation h i denotes a time averaging operator.
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Fig. 3 Instantaneous streamline of the glottal flow near the glottis for PL0 ¼ 800 Pa at t ¼ 40ms. The flow is identical to
that shown in Fig. 2 at t ¼ 40ms (shown with expanded coordinates).
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Fig. 4 Instantaneous pressure pðtÞ ¼ PðtÞ � Patm in the glottal flow for PL0 ¼ 800Pa.
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We can write an expression for the instantaneous pressure

as

pðtÞ ¼ hpi þ p0ðtÞ: ð12Þ

The average pressure hpi at the glottis corresponds to

Bernoulli’s pressure, which indicates negative pressure due

to high-speed flow through a constriction. Theoretical and

measured Bernoulli’s pressures (the maximum average

pressure drops in the glottis) are of the order of �0:1PL0 in

the model without the FVFs based on a steady flow

assumption [1,5,19]. In the present simulation, Bernoulli’s

pressures at z ¼ 0mm in the models with and without

the FVFs are �0:4PL0 and �0:05PL0, respectively. The

reasons why the Bernoulli’s pressure in the model without

the FVFs is somewhat lower than the pressures in the

theory and measurements are that the value of intraglottal

pressure depends on the measured location within the

glottis [19], and that the pressure measured at z ¼ 0mm in

this model is not the maximum value. On the other hand,

the Bernoulli’s pressure of this simulation in the model

with the FVFs is four times higher than the theoretical and

measured pressures. This large Bernoulli’s pressure is most

likely due to an effect of vortex motions within the

ventricle of the larynx. This effect will be discussed in

Sect. 3.3.

Figure 5 shows the normalized pressure spectra

Pð f Þ=PL0, where f is the frequency. The spectra are

obtained by performing an FFT analysis on the pressure

fluctuation sampled at 100 kHz in the range of 60 to 100

ms. The dashed curves indicate the fitting curves obtained

using a function of the frequency f with exponent 	:

Pð f Þ
�� �� / f�	; ð13Þ

in the frequency range of 1 kHz to 10 kHz.

The pressure spectra roughly decrease with increasing

frequency. The slopes in the model with the FVFs are less

steep than those in the model without the FVFs. In

addition, both slopes in the region downstream of the FVFs

z ¼ 40mm in the model with and without the FVFs are

more tilted than those at the glottis. In the model with the

FVFs, the slope faraway from the glottis is less steep than

that at the glottis, whereas, in the model without the FVFs,

the slope faraway from the glottis is greater than that at the

glottis.

3.3. Amplitude of Pressure Fluctuation

The lung pressure dependence of the amplitude of the

pressure fluctuation

Prms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp02ðtÞi

p
; ð14Þ

is shown in Fig. 6. Both the amplitudes at the glottis

z ¼ 0mm and in the region downstream of the FVFs z ¼
40mm exhibit a rapid increase, reaching a value of

Oð10�2Þ � Oð10�1Þ from Oð10�3Þ above 100 Pa in lung

pressure.

In the region downstream of the FVFs at z ¼ 40mm in

Fig. 6(b), both the amplitudes of pressure fluctuation in the

models with and without the FVFs have the same order of

magnitude. On the other hand, at the glottis (z ¼ 0mm) and

faraway from the glottis (z ¼ 160mm), the amplitude in

the model with the FVFs is one order of magnitude larger

than that in the model without the FVFs in Figs. 6(a) and
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(c). These results suggest that the addition of the FVFs

increases the amplitude of the pressure fluctuation within

the larynx and the vocal tract except in the region

downstream of the FVFs.

The impingement of the glottal jet on the FVFs and

small vortices within the ventricle of the larynx have been

observed in the model with the FVFs, although such

vortices are not generated in the model without the FVFs,

as shown in Fig. 3. Figure 7 shows the time sequence of

the instantaneous pressure distribution on the laryngeal

surface �3 at 800 Pa. The pressure at the FVFs (z ’ 6mm)

varies with time in the model with the FVFs, whereas the

pressure is almost uniform and shows no change in the

model without the FVFs.

In aeroacoustics, boundary layers are formed near the

surface of obstacles in a flow field, and the time variation

of pressure within the boundary layer causes sound sources

that are related to dipole sources [20]. Therefore, the

increase in the amplitude of the pressure fluctuation at

the glottis caused by the existence of the FVFs is due

principally to the interaction between the flow and the

edges of the FVFs. The fluctuations caused by the

interactions of the flow with the edges of the FVFs

propagate downstream of the glottis. The increase in the

pressure amplitude faraway from the glottis can be

explained in terms of these propagations.

The instantaneous negative pressure of �2 at z ¼
40mm and t ¼ 40ms in the model without the FVFs in

Fig. 4(b2) is a consequence of the motion of the vortex at

z ’ 40mm and t ¼ 40ms in Fig. 2(b). The large-amplitude

pressure fluctuations observed downstream of the FVFs are

caused by the passages of vortices for a high Reynolds

number [11].

The Reynolds number determines an unsteady vortex

structure. We estimated the Reynolds number with the

maximum velocity within the glottis as the characteristic

velocity. The Reynolds numbers in the model with and

without the FVFs were nearly identical. The same

amplitude levels of the pressure fluctuation at z ¼ 40mm

in both of the models in Fig. 6(b) can be explained in terms

of agreement with the Reynolds numbers.

The propagation wave caused by the interaction

between the flow and the FVFs affects the amplitudes at

the glottis (z ¼ 0mm) and faraway from the glottis (z ¼
160mm). However, the wave amplitude at z ¼ 20mm is

not greatly affected by the wave caused by the interaction

between the flow and the FVFs, since the magnitude of the

pressure due to the passages of vortices is larger than that

due to the interaction between the flow and the FVFs.

3.4. Broadband Spectrum of Pressure Fluctuation

The lung pressure dependence of the spectral slope,

20 log 2	 (dB/oct), in the range of 1 kHz to 10 kHz based

on Eq. (13) is shown in Fig. 8. The spectral slopes tend to

increase as the lung pressure exceeds 100 Pa, and then

decrease gradually with the lung pressure. The slopes in the

model with the FVFs are less steep than that in the model
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without the FVFs. This indicates that the FVFs give rise to

the broadbanding of the pressure spectrum.

Sound pressure levels at a constriction in physical

models of speech production organs have been reported to

decrease at a rate of roughly 8 dB/oct [21]. The physically

measured slope is in reasonable agreement with that

obtained by the present numerical experiment at a lung

pressure of approximately 1,000 Pa with the FVFs.

We have indicated earlier that the interaction of the

glottal flow with the edges of the FVFs increased the level

of high frequency pressure fluctuation in Fig. 4. Therefore,

it seems reasonable to conclude that the broadbanding of

the pressure spectrum is also caused by the interaction

between the flow and the FVFs.

3.5. Distribution of Pressure Amplitude

As mentioned above, there are two types of mecha-

nisms for the generation of pressure fluctuation induced by

unsteady flow within the rigid larynx model. One is the

interaction of the flow with the FVFs, which causes

broadband pressure fluctuations, and the other is the

passages of vortices which cause negative large-amplitude

pressure.

The distributions of the amplitude of the composite

pressure fluctuation caused by these mechanisms along the

z axis at PL0 ¼ 800Pa are shown in Fig. 9. The pressure

amplitude first increases, and then decreases with the

distance from the glottis. The passages of vortices cause

large negative pressure. A peak at z ’ 40mm is caused by

this mechanism. Since the vortices dissipate rapidly with

the distance from the glottis [11], the amplitude decreases

faraway from the glottis.

The broadband pressure fluctuation caused by the

interaction of the flow with the edges of the FVFs

propagates downstream and upstream of the glottis. The

increases in pressure amplitude caused by the addition of

the FVFs in the region for z > 80mm and z < 0mm can be

explained in terms of these propagations.

We note that, with the existence of the FVFs, the

amplitudes of pressure fluctuation increased, but the energy

within the larynx was not amplified. In fact, both energies

in the models with and without the FVFs, which are

estimated by the integral of squared pressure amplitude

along the z axis, were in agreement with each other.

3.6. Effect of Two-dimensional Assumption on Glottal

Flow

In the present study based on the two-dimensional

flow model, large-scale vortices tend to remain in the field,

since the energy cascade is restricted [13]. Relatively large

scale vortices downstream of the FVFs as shown in Fig. 2

are probably related to this artifact. The large pressure

amplitudes in the region downstream of the FVFs, as

shown in Figs. 4, 6, and 9, are affected by this fluid motion.

In a three-dimensional model and a real larynx, smaller

amplitudes of pressure fluctuation will probably be

observed.

Pressure fluctuations with a small amplitude and a high

frequency component are not greatly affected by this

artifact, since similar fluctuations were measured in a

physical model [5].

4. CONCLUSION

In the present study, we have performed numerical

experiments on the glottal flow on the basis of two-

dimensional rigid wall models of the larynx with and

without the FVFs in order to examine the effects of the

FVFs on the sound generation induced by an unsteady

glottal flow. The nonlinear hydrodynamic equations for

a compressible viscous fluid were integrated using

MacCormack’s difference scheme.
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The existence of the FVFs increases the amplitude of

pressure fluctuation at the glottis and faraway from the

glottis. These increases are due to the interaction of the

flow with the edges of the FVFs. Furthermore, the FVFs

give rise to the broadbanding of the pressure spectrum

throughout the fluid domain. In conclusion, the FVFs have

a profound effect on the generation of broadband noise

components in a speech wave.

It is difficult to correctly estimate the transition of a

turbulent glottal flow, because our computational grid

numbers, which are determined from a trade-off between

numerical accuracy and computation time (approximately

two weeks of CPU time for a workstation with an 2.8-GHz

Intel Xeon processor), are insufficient to capture very small

scale vortices [11]. In addition, under the assumption of a

two-dimensional flow field, large-scale vortices of turbu-

lent flow tend to remain in the field, since the vortex

stretching mechanism, which causes the energy cascade

from larger to smaller scale vortices, is restricted. There-

fore, it is possible that large pressure amplitudes in the

region downstream of the FVFs are affected by this fluid

motion. A more accurate simulation of the three-dimen-

sional turbulent glottal flow could be obtained if the

computing power is increased.
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APPENDIX

The width of the larynx is described by the function

wLðzÞ. On the basis of the models of Zhang et al. [12] and

Scherer et al. [14], the larynx shape function of a model

with FVFs is written as

wLðzÞ ¼ wL1ðzÞ þwL2ðzÞ; ðA:1Þ

wL1ðzÞ ¼
1

2
A1 þ A2 þ ðA1 � A2Þ tanh sðzÞf g; ðA:2Þ

wL2ðzÞ ¼
0 for z < HFVF ��HFVF1,

wL21ðzÞ for HFVF ��HFVF1 � z < HFVF,

wL22ðzÞ for z � HFVF,

8<
:

ðA:3Þ
where

A1 ¼ Wsub; A2 ¼ GTVF;

sðzÞ ¼ a� zþ c�j j �
b�

zþ c�j j
;

9=
; for z � 0mm;
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A1 ¼ WVL; A2 ¼ GTVF;

sðzÞ ¼ aþ zj j �
bþ

zj j
;

9=
; for z > 0mm; ðA:4Þ

wL21ðzÞ ¼ GFVF �WVLð Þ 1þ cos �
z� HFVF

�HFVF1

� �� �
; ðA:5Þ

wL22ðzÞ ¼ WVT �WVL

þ ðGFVF �WVTÞ exp �
1

2

z� HFVF

�HFVF2

� �2
( )

; ðA:6Þ

�HFVF1 ¼ 3:8mm, �HFVF2 ¼ 3:0mm, a� ¼ 0:15mm�1,

b� ¼ 6:0mm, c� ¼ 0:4mm, aþ ¼ 0:85mm�1, and bþ ¼
2:0 mm.

The larynx shape function of the model without the

FVFs is written as

wLðzÞ ¼ wL1ðzÞ; ðA:7Þ

where A1 ¼ WVT for z > 0mm, and aþ ¼ 0:35mm�1.

Other equations and parameters are the same as those of the

model with the FVFs.
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