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Abstract: The present study is intended as an investigation of speech dynamics, particularly the
unsteady motion of glottal flow in the larynx. In order to focus on only fluid motion, the vocal cords
are assumed to be non-vibrating rigid bodies, although the glottal sound source is described as the
interaction between the flow and the vibrating vocal cords. The glottal flow based on the two-
dimensional rigid body model is simulated by solving basic equations in a compressible viscous fluid
that is subject to appropriate initial and boundary conditions. The obtained results demonstrate that the
initial glottal flow was a simple symmetric jet and that the flow became an unsteady complicated flow
with vortices distributed in two-dimensional space. Furthermore, the structure of the complicated flow
changed with time. These results indicate that simple assumptions, such as linearization of the fluid
equations or one-dimensional models, are inappropriate for analysis of the speech production process.

Keywords: Speech production, Glottal flow, Rigid glottal model, Unsteady flow, Numerical
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1. INTRODUCTION

A better understanding of the dynamics of the speech

production process may help to improve the quality of

voice synthesis or contribute to the treatment of voice

disorders.

Several studies have investigated model analysis of the

speech production process. Ishizaka and Flanagan [1] have

proposed a well-known two-mass model as a sound source

model, and improvement models of that, for example, a

three-mass model [2] and a single mass model with two

degrees of freedom in the direction parallel and perpen-

dicular to the main flow [3], were proposed. Although the

structure of the two-mass model is simple, this model can

be used to describe the principal mechanisms of phona-

tion. The glottal flow in the two-mass model is assumed

to be a one-dimensional quasi-steady state flow in order

to simplify analysis. In addition, the pressure drop in the

convergent part of the glottis is described by an exper-

imentally obtained formula reported by van den Berg et al.

[4], and the pressure increase in the supraglottal region is

described using a formula that was derived under the

assumption of a steady flow under sudden expansion.

On the other hand, flows through the glottis based on a

physical glottal model have been measured in order to

clarify complicated phenomena in the larynx. The meas-

urements have indicated jet-like unsteady and asymmetric

flows with several vortices, which cause turbulent noises

[5–9]. However, very few attempts have been made to

theoretically or numerically explain such unsteady or

asymmetrical glottal flows obtained experimentally. Iijima

et al. [10] and Liljencrants [11] have conducted detailed

numerical analyses of the pressure distributions in a two-

dimensional static glottis based on fluid dynamics assumed

an incompressible fluid for the glottal flow. Although their

results suggested that the shape of the glottis affects the

pressure distribution in the larynx, experimentally obtained

results for unsteady or asymmetric flows could not be

confirmed using their analyses.

The purpose of the present study is to clarify the

dynamics of the speech production process, in particular,

the unsteady behavior and nonlinear motion of the glottal

flow in phonation. In general, the glottal flow and the vocal

cords interact. In the present study however, as a first step,

we do not consider this interaction, because our focus is

only on fluid motion. The present paper describes numerical

simulations of the glottal flow based on a static glottal

model and prediction of the experimentally obtained results

for asymmetrical or unsteady flows is attempted. From the

results, we indicate that the assumption of one-dimensional

or symmetric flows in the larynx are not appropriate for

analyses of the speech production process, due to the com-�e-mail: nomu@t.kanazawa-u.ac.jp
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plicated nature of such flows. Furthermore, the asymmetric

glottal flow obtained herein by computation is not caused by

numerical errors and represents valid physical phenomena.

2. ANALYTICAL MODEL

2.1. Rigid Glottal Model

A rigid model without vibration is shown in Fig. 1. In

order to formulate the problems, we shall introduce the

following nondimensional variables:

t ¼
c�0t

�

D� ; x ¼
x�

D� ; y ¼
y�

D� ;

u ¼
u�

c�0
; v ¼

v�

c�0
; P ¼

P�

��0c
�
0
2
; T ¼

T�

T�
0

; ð1Þ

where t is the time, x and y are the spatial coordinates, u

and v indicate the x and y components, respectively, of the

flow velocity vector u, P is the total pressure, � is the

density of the medium, and T is the absolute temperature.

Furthermore, D� ¼ D�
t is a characteristic length, and c�0 is

the sound velocity of infinitesimal amplitude. In this paper,

all variables denoted by � are dimensional values, and the

subscript 0 designates quantities at an atmospheric pressure

of 1 atm and a temperature of T� ¼ 310:15K (¼ T�
0 , 37

�C).

The configuration is symmetric about the center line

(dot-dashed line, i.e. the x� axis) and uniform in the z�

direction in Fig. 1. In other words, we assume that the

glottis can be approximated by a symmetrical two-dimen-

sional rigid channel.

The shape of the glottis is described by the function

d�gðx�Þ. Based on the models of Zhang et al. [12] and

Scherer et al. [13], the glottal shape function is written as

d�gðx
�Þ ¼ d�vcðx

�Þ þ d�fvcðx
�Þ; ð2Þ

d�vcðx
�Þ ¼

1

2
fA�

1 þ A�
2 þ ðA�

1 � A�
2Þ tanh sðx

�Þg; ð3Þ

d�fvcðx
�Þ ¼

0 ðx� < L�fvc ��L�fvcCÞ,
d�fvcCðx

�Þ ðL�fvc ��L�fvcC � x� < L�fvcÞ,
d�fvcEðx

�Þ ðx� � L�fvcÞ,

8><
>: ð4Þ

where

A�
1 ¼ D�

s ; A�
2 ¼ D�

g;

sðx�Þ ¼
a�

D� jx
� þ D�c�j �

D�b�

jx� þ D�c�j
;

9>=
>; ðx� � 0Þ;

A�
1 ¼ D�

v; A�
2 ¼ D�

g;

sðx�Þ ¼
aþ

D� jx
�j �

D�bþ

jx�j
;

9>=
>; ðx� > 0Þ; ð5Þ

d�fvcCðx
�Þ ¼

1

2
ðD�

f � D�
vÞ 1þ cos �

x� � L�fvc
�L�fvcC

� �� �
; ð6Þ

d�fvcEðx
�Þ ¼ D�

t � D�
v

þ ðD�
f � D�

t Þ exp �
1

2

x� � L�fvc
�L�fvcE

� �2
( )

: ð7Þ

The size parameters of the glottis in Eqs. (2)–(7) are

indicated in Table 1 according to the data measured by

Scherer et al. [13].

In the model, it is assumed that lung pressure can be

described by an air reservoir at the boundary �1 in Fig. 1,

where the pressure is set to P�
in.

In reality, speech production involves excitation of

several acoustic modes within the vocal tract, i.e. formants.

However, we assume herein that the vocal tract config-

uration is approximated by a uniform duct in order to

highlight acoustic and fluid phenomena within the larynx.

The effects of such acoustic loadings are ignored herein.

2.2. Governing Equations

Several studies have assumed the glottal flow to be

incompressible [8,10,11], since, in general, the velocity of

glottal flow (� Oð100Þ m/s) is much slower than the speed

of sound (’ 350m/s), except at the exit of the glottis, and

the pressure difference (� Oð103Þ Pa) between the sub-

glottal and supraglottal pressures is smaller than the

atmospheric pressure (’ Oð105Þ Pa). On the other hand, a

jet-like flow with a velocity comparable to the sound

velocity has been observed downstream of the glottis [5].

In addition, since the voice is a sound wave, i.e., an elastic

wave in a fluid, the compressibility of the air should be

important in the speech production phenomena. Therefore,

in the present paper, we assume the glottal flow to be a

compressible viscous fluid.

For a complicated configuration such as the glottis,

shown in Fig. 1, it is difficult to specify the boundary

Table 1 Size parameters of the glottis.

D�
s 16.4mm �L�fvcE 3.0mm

D�
v 10.3mm a� 3.0

D�
f 5.1mm b� 0.3

D�
t 19.0mm c� 2:0� 10�2

L�fvc 5.8mm aþ 17.0
�L�fvcC 3.8mm bþ 0.1

x*

y*

Vocal cords

False vocal cords

Vocal tract 
Trachea

P*, ρ*, T *

v*

u*Γ1

Γ2

Γ3

Γ4

d* (x*)g

D*f

D*s D*t
D*g D*v

L*fvc

z*

x*

y*

0

Fig. 1 Rigid glottal model.
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conditions in Cartesian coordinates. Therefore, transformed

general curvilinear coordinates ð�; �Þ in Fig. 2 are obtained

from the normalized Cartesian coordinates system ðx; yÞ by

� ¼ �ðx; yÞ;

� ¼ �ðx; yÞ ¼
yþ dgðxÞ
2dgðxÞ

:
ð8Þ

The glottal flows, P, u, �, and T , are numerically

analyzed based on the rigid model shown in Fig. 1. The

basic governing equations of hydrodynamics in a two-

dimensional space ð�; �Þ, determined elsewhere, are sum-

marized in the following compact form [14]:

@Q

@t
þ

@E

@�
þ

@F

@�
¼

1

Re

@R

@�
þ

@S

@�

� �
; ð9Þ

where Re ¼ ��0c
�
0D

�=��
0 is the Reynolds number, and ��

0 is

the shear viscosity. Other dependent variables for the flow

field are expressed as

Q ¼
1

J

�

�u

�v

e

2
66664

3
77775; ð10Þ

E ¼
1

J

�U

�uU þ �xP

�vU þ �yP

ðeþ PÞU

2
66664

3
77775;F ¼

1

J

�V

�uV þ �xP

�vV þ �yP

ðeþ PÞV

2
66664

3
77775; ð11Þ

R ¼
1

J

0

�x�xx þ �y�xy

�x�yx þ �y�yy

�x�x þ �y�y

2
66664

3
77775;S ¼

1

J

0

�x�xx þ �y�xy

�x�yx þ �y�yy

�x�x þ �y�y

2
66664

3
77775: ð12Þ

Here, U and V are contravariant velocity components in the

� and � directions, respectively, and are written as

U ¼ �xuþ �yv;

V ¼ �xuþ �yv:
ð13Þ

J is the Jacobian of the coordinate transformation

J ¼
@ð�; �Þ
@ðx; yÞ

¼

@�

@x

@�

@y

@�

@x

@�

@y

��������

�������� ¼
�x �y

�x �y

����
����; ð14Þ

and �x, �y, �x, and �y are the metrics. In the present study,

for the relationship � ¼ �ðx; yÞ ¼ �ðxÞ specified in Fig. 2,

the metric �y becomes zero, and so each component related

to �y in the governing equations Eqs. (11) and (12) can be

partially simplified.

The dimensionless total energy density is given as

e ¼
P

	 � 1
þ

1

2
�ðu2 þ v2Þ; ð15Þ

where 	 is the specific heat ratio. The dimensionless

viscosity-induced drag forces in Eq. (12) are written as

�xx ¼
2

3
� 2

@u

@x
�

@v

@y

� �
;

�yy ¼
2

3
� 2

@v

@y
�

@u

@x

� �
;

�xy ¼ �yx ¼ �
@u

@y
þ

@v

@x

� �
;

ð16Þ

�x ¼ �xxuþ �xyvþ



ð	 � 1ÞPr
@T

@x
;

�y ¼ �yxuþ �yyvþ



ð	 � 1ÞPr
@T

@y
:

ð17Þ

Here, � ¼ ��=��
0 and 
 ¼ 
�=
�0 are the dimensionless

shear viscosity and thermal conductivity, respectively.

Pr ¼ c�p�
�
0=


�
0 is the Prandtl number, and c�p is the specific

heat coefficient at a constant pressure. Operators @=@x and

@=@y in Eqs. (16) and (17) are described as

@

@x
¼ �x

@

@�
þ �x

@

@�
;

@

@y
¼ �y

@

@�
þ �y

@

@�
¼ �y

@

@�
:

ð18Þ

The viscosity and the thermal conductivity in air

depend primarily on temperature. Thus, the semiempirical

formulae proposed by Sutherland [15]:

x axis

y 
ax

is

ξ axis

η 
ax

is

(a) Physical plane (x, y) (b) Computational plane (ξ, η)

P

Q
Q’

P’

Q

P

Q’

P’

ξ const.

η const.

Fig. 2 Transformation from the physical plane ðx; yÞ to the computational plane ð�; �Þ and the grids used in the numerical
simulation.
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� ¼
T�
0 þ T�

S

T�
0T þ T�

S

T3=2;


 ¼
T�
0 þ T�

Ae
�T�

B
=T�

0

T�
0T þ T�

Ae
�T�

B
=ðT�

0
TÞ T

3=2;

ð19Þ

are then utilized, where T�
S ¼ 110:4K, T�

A ¼ 245:4K, and

T�
B ¼ 27:6K.

In addition, an adiabatic relationship for a compressible

fluid is used to related the absolute temperature and the

pressure

P ¼
�T

	
: ð20Þ

Since the governing equations, Eqs. (9)–(12), are non-

linear partial differential equations, solving these equations

analytically subject to initial and boundary conditions is

extremely involved. Instead, we employ a numerical com-

putation method, MacCormack’s finite-difference scheme

[16,17], which has forth-order accuracy with respect to

space and second-order accuracy with respect to time.

2.3. Initial and Boundary Conditions

Suppose that the air in the larynx is uniform and at rest

for t � 0. Then, the initial conditions are readily obtained

for the entire space of the larynx and the vocal tract

juj ¼ 0; � ¼ 1; P ¼ 1=	 ðt � 0Þ; ð21Þ

where 1=	 is the nondimensional atmospheric pressure.

The boundary conditions for t > 0 are given below.

Non-slip and adiabatic conditions are specified on the

boundaries �3 and �4 in Fig. 1. At the surfaces of the vocal

cords, the velocity of the fluid becomes zero due to the

existence of viscosity. Furthermore, a non-reflecting

characteristic boundary condition [18] is imposed at the

outflow boundary �2 in order to minimize acoustic reflec-

tion. In reality, although speech waves within the vocal

tract involve forward (þx) and backward (�x, reflecting)

waves, which interfere with each other, we ignore such

reflecting waves, since our focus in the present study is on

the fluid motion within the glottis. A pressure function

PinðtÞ ¼ pLðtÞ þ 1=	 is applied to the boundary �1, where

pLðtÞ is the lung pressure,

pLðtÞ ¼
PL0

2
1� cos

�t

tr

� �� �
ð0 < t � trÞ,

PL0 ðt > trÞ.

8<
: ð22Þ

PL0ð¼ P�
L0=ð��0c�0

2ÞÞ and trð¼ c�0t
�
r =D

�Þ are the steady-state

value of pLðtÞ and the time required for pLðtÞ to increase to

PL0 from zero (referred to as the rise time), respectively.

2.4. Analysis Conditions

A computational domain extends from x ¼ �8 to x ¼
10, i.e. x� ¼ �150mm to x� ¼ 190mm. An integration

region is divided into 800 grids along the � direction and

120 grids along the � direction, as shown in Fig. 2(a). The

method used to decide these grid numbers is discussed in

the Appendix.

The dimensions of the grids in the x direction are

reduced near the vocal cords at x ¼ 0, and the grids in the y

direction are regular. Here, the minimum grid sizes become

�x� ’ 40�m and �y� ’ 8�m. The physical parameters

used in this study are listed in Table 2. In the present paper,

the rise time is set to a constant value of t�r ¼ 10ms.

3. RESULTS

3.1. Flow Pattern in the Glottis

The flow pattern in the glottis at t� ¼ 10ms is shown in

Fig. 3. The gap distance between the vocal cords D�
g is

1mm, and the lung pressure P�
L0 is set to 1,000 Pa, which

corresponds to the value on a middle conversation level.

The one-dimensional distributions of pressure p ¼
P� 1=	 and velocities u and v along the x axis (y ¼ 0) are

shown in Figs. 3(a) and (b), respectively. The results near

the glottis in the range of x ¼ �2 to x ¼ 4 are only plotted

in Fig. 3, although we computed the flow in the range of

Table 2 Physical parameters (37�C, 1 atm).

c�0 Speed of sound 3:532� 102 m/s
��0 Density of the medium 1.138 kg/m3

��
0 Shear viscosity 1:902� 10�5 Pa�s


�0 Thermal conductivity 2:530� 10�2 W�m�1�K�1

c�p
Specific heat coefficient
at constant pressure

1:006� 103 J�K�1�kg�1

	 Specific heat ratio 1.403

–2 0 2 4
–0.5

0

0.5
–10

0

10

20
–0.5

0

0.5

1

1.5

(c)

x axis

y 
ax

is
Pr

es
su

re
p/

M
a

 V
el

oc
ity

u/
M

a,
 v

/M
a

(b)

(a)

u

v

|u|/Ma=32

Fig. 3 Glottal flow distribution at t� ¼ 10ms. Pressure
(a) and flow velocity (b) distributions along the x axis.
Vorticity and flow vector distributions in the larynx are
shown in (c), in which the straight-line segments
denote glottal flow vectors and the contour lines denote
the z components of the vorticity. P�

L0 ¼ 1;000Pa and
D�

g ¼ 1mm.
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x ¼ �8 to x ¼ 10. Each value is normalized by Ma ¼
P�
L0=ð��0c�0

2Þ. The maximum values of pressure and velocity

correspond to approximately 1,000 Pa and 38m/s, respec-

tively. A sudden pressure drop occurred at the glottal

entrance x ’ �0:2, due to a flow acceleration, and a main

flow in the x direction was generated from x ¼ 0 to 3. A

two-dimensional glottal flow pattern is shown in Fig. 3(c).

The straight-line segments represent glottal flow vectors,

and the contour lines denote the z components of vorticity

! ¼ r � u; ð23Þ

which is a measure of angular velocity. The jet-like flow

pattern was approximately symmetric about the x axis and

was concentrated on the x axis.

Figure 4 shows the time sequences of a two-dimen-

sional glottal flow with a gap D�
g ¼ 1mm. In order to

examine glottal flows under both phonation and non-

phonation conditions, the lung pressure P�
L0 in (a) is set to

1,000 Pa above the phonation threshold pressure, which is

usually from 300 to 400 Pa, and that in (b) is set to 100 Pa

below the phonation threshold pressure. For P�
L0 ¼ 1;000

Pa, although a symmetric jet was observed for t� < 10ms,

several vortices were generated within the flow for

t� > 15ms and the structure of the jet became asymmetric.

Furthermore, comparatively large vortices were generated

downstream of the glottis 0 < x < 2, and the structure of

vortices indicated unsteady patterns that changed with

time. On the other hand, for the condition of P�
L0 ¼ 100 Pa,

the flow was a jet-like structure having two vortices and a

symmetric pattern for t� ¼ 0{30ms. The jet for t� > 50ms

at P�
L0 ¼ 100 Pa is finally translated into an asymmetric

flow similar to that at 1,000 Pa.

The vortices in the flow shown in Fig. 4 at t� ¼ 30ms

are shown in Fig. 5 with expanded coordinates. The flow at

1,000 Pa is not parallel to the x axis and is skewed toward

the side for y < 0 near the glottis (x ’ 0:3), and several

vortices are observed. Although the jet shifted toward y <

0 at 30ms, after that the jet angle changed with time

between the sides for y < 0 and > 0. The contour lines of

vortices are concentrated within the ventricle of the larynx,

and the glottal jet, which impinges on the false vocal cord,

is mainly formed for 0 < x < 0:5. Furthermore, the length

of the jet is approximately consistent with the distance

between the true and false vocal cords. In contrast, the

Fig. 4 Time sequences of the glottal flow pattern for D�
g ¼ 1mm. Straight-line segments denote glottal flow vectors, and

contour lines denote the z components of the vorticity.
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contour of the vortices at 100 Pa in (b) indicate that the

flow is ejected from the glottis parallel to the x axis.

The results indicate that the glottal flow initially has a

symmetric jet structure with vortices at the flow front, after

which the structure of the vortices becomes asymmetric,

and the flow pattern changes with time.

3.2. Pressure Fluctuations in the Flow

Next, we measured the instantaneous pressure of the

flow at fixed points in order to examine behavior of the

unsteady glottal flow. Normalized nondimensional pressure

at different distances from the glottis for D�
g ¼ 1mm

and P�
L0 ¼ 1;000Pa are shown in Fig. 6. Pressure fluctua-

tions were generated at all observation points. In particular,

the fluctuations at x ¼ 0, 1, and 2 for t� > 10ms were

remarkable. The transient time at which the pressure began

to fluctuate was nearly equal to the time of translation from

the simple jet into the asymmetric flow in Fig. 4(a).

Figure 7 shows the pressures measured at x ¼ 2 and

y ¼ 0 for the glottis D�
g ¼ 1mm at P�

L0 ¼ 1;000 and 100

Pa. The fluctuation component at 100 Pa was less than that

at 1,000 Pa.

These results indicate that the fluctuations tend to

decrease with the distance from the glottis and increase

with lung pressure.

4. DISCUSSION

In the previous section, we indicated the unsteady

glottal flow and the asymmetric structure thereof. Similar

results have been obtained by Iijima et al. [10], and they

conjectured that an observed asymmetry was due to

numerical errors in a computation. Therefore, let us discuss

whether the asymmetric flow based on the static glottal

0 0.5 1
–0.5

0

0.5

x axis

y 
ax

is

(a) P *L0=1000 Pa

0 0.5 1
–0.5

0

0.5

x axis

y 
ax

is

(b) P *L0=100 Pa

Fig. 5 Glottal flow patterns at the exit of the glottis at t� ¼ 30ms for D�
g ¼ 1mm. The contour lines denote the z

components of the vorticity. The flow is identical to that shown in Fig. 4 at t� ¼ 30ms (shown with expanded
coordinates).
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Fig. 6 Pressure in the glottal flow at y ¼ 0 for P�
L0 ¼

1;000 Pa and D�
g ¼ 1mm.
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model is an essential phenomenon in physics or is perhaps

caused by numerical errors in computation.

It is possible that asymmetrical numerical computation

could cause asymmetric flow. In order to avoid such an

asymmetry, we used forward and backward differences in

differential operations at alternate time steps. Furthermore,

we have compared the numerical and analytical solutions

of the Poiseuille flow [19] in order to verify our numerical

method, and both results were in good agreement and

indicated symmetric flows. In addition, a numerical flow

having an orifice with one half width of the duct was

calculated in order to verify the stability for the boundary

shape. The obtained result indicates that the flow with

vortices remained symmetric for a long computational time

(t� < 1 s).

On the other hand, a flow instability can be determined

using the Reynolds number. A critical Reynolds number

exists, beyond which a flow is unstable, and this Reynolds

number is determined by, for example, the geometry of

duct or the scale of the disturbance in the flow. Therefore,

in the present numerical experiments, we estimate the

Reynolds number Reg at the glottis. We define the

Reynolds number as Reg ¼ ��0ju�
maxjD�

g=�
�
0, where u�

max is

the maximum velocity of the flow within the glottis. The

obtained Reynolds numbers are listed in Table 3. Since

critical Reynolds numbers of the glottal flow are unknown,

we compared the obtained values of Oð103Þ with the

general critical Reynolds number of Oð100Þ � Oð103Þ [20].
The comparison indicates that the obtained Reynolds

numbers are not much greater than the general critical

Reynolds number. However, the obtained Reynolds num-

bers are sufficient to translation from a steady and stable

flow to an unsteady and unstable flow. Therefore, the

transition to an asymmetric flow is physically plausible,

and numerical errors do not affect the asymmetric flow.

Liljencrants has also reported asymmetric flows ob-

tained in numerical simulations based on a rigid glottal

model [11]. However, he did not examine whether the

asymmetry was only a transient phenomenon of the flow or

the flow had completely translated into an unsteady flow.

Therefore, the present study is important because we have

demonstrated that the glottal flow eventually translates into

unsteady and asymmetric flow. Although he assumed the

glottal flow to be incompressible, asymmetric flow was

obtained in the larynx as well as that in the present study.

This result indicates that the asymmetric glottal flows do

not depend on the assumption of compressible or incom-

pressible flows. The effect of the compressibility of air on

speech production remains a topic for further discussion.

We next compare the numerical flow obtained by the

present simulation with measured flows through a rigid

glottis. Hofmans et al. [8] and Pelorson et al. [9] have

measured flows based on rigid models having lip-like or

divergent glottises without false vocal cords.

In their experiments, instantaneous pressures measured

at the glottis also indicated fluctuations. However, the

amplitude of pressure fluctuation calculated by the our

numerical analysis is greater than that measured in their

experiment. The pressure fluctuations (peak to peak values)

at the smallest aperture of the constriction in the present

study and in their experiment are 1 and 0.5 times lung

pressure, respectively.

The discrepancy in the pressure fluctuations may be

due to the difference of model configuration, in other

words, the numerical glottal model has the false vocal

cords whereas the physical models do not. A result related

to the false vocal cords of the numerical simulation is that

the length of the jet was approximately consistent with

distance between the true and false vocal cords. Figure 5(a)

shows that the impingement of the flow on the false vocal

cords causes vortices in the ventricle of larynx. Circulating

these vortices in the ventricle of the larynx, a small and

local instability of the flow transforms into a greater and

more global phenomenon with time. In order to confirm

this hypothesis, we compared numerical glottal flows based

on models with and without false vocal cords. Measured

instantaneous pressure at the glottis, x ¼ 0, for D�
g ¼ 1mm

and P�
L0 ¼ 1;000Pa are showed in Fig. 8. This result

indites that the normalized pressure fluctuation is about 1

on the model with false vocal cords, while the fluctuation is

about 0.5 on the model without false vocal cords. There-

fore, it is concluded that the difference of pressure

fluctuations between results on the numerical and measured

glottal flow is caused by the existence of the false vocal
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Fig. 7 Effect of lung pressure on pressure for D�
g ¼ 1

mm. Pressures are measured at x ¼ 2, y ¼ 0.

Table 3 Reynolds numbers at the glottis.

Lung pressure
P�
L0 (Pa)

Reynolds number
Reg

1,000 2:9� 103

100 8:7� 102
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cords. Furthermore, the value based on the numerical

model without false vocal cords is consistent with the value

measured by Hofmans et al. [8], therefore, the verification

of our numerical simulation is confirmed.

Glottal flows in static models have been visualized by

Shinwari et al. [5] and Pelorson et al. [9]. Both results

showed that glottal jets were not symmetric about the main

flow direction and skewed toward each side. These results

were also obtained in the numerical experiments of the

present study. This indicates that a one-dimensional model,

which assumes the flow distribution in the direction

perpendicular to the main flow to be uniform, is inappro-

priate for the analysis of a complicated glottal flow with

several vortices and asymmetry. This conclusion is

supported by our numerical simulation, which showed

symmetric vortices based on the two-dimensional larynx

model.

We indicated earlier that the fluctuation of pressure

obtained in the numerical simulation of the present study

was larger than that measured by Hofmans et al. [8].

Another difference between the simulation and measure-

ment results is that the asymmetric jets obtained by the

measurement were quite steady, whereas the numerical jets

formed unsteady flow patterns. When the glottal flows in

the visualization were skewed toward the each side at some

angle, the angle of the jet was not changed and a stationary

pattern was formed [5], although the numerical jet

indicated unsteady flow patterns and an unsteady oblique

angle which varied in direction with time for y < 0 and

> 0. In general, the generation of skewed jets, namely the

Coanda effect, requires steady flow conditions and the

existence of a diffuser with a divergent angle greater than

approximately 10 degrees [21]. Under these conditions, a

small perturbation in shear layer at the glottis causes the

Coanda effect. Therefore, the Coanda effect did not occur

in the present numerical experiment, because the model is

based on the parallel glottal model with a divergent angle

of 0 degrees.

In order to examine effects of divergent angle � on the

glottal flows, we compared the numerical jets through the

glottis with the divergent angle � ¼ 0 and 15 degrees.

Figure 9 shows the jet position in the y direction, yjet, at

x ¼ 0:5 as function of time for D�
g ¼ 1mm and P�

L0 ¼
1;000Pa. The jet position is estimated from the position at

which the glottal flow velocity u indicates the maximum

value. The result of jet position for � ¼ 15 degrees

indicates that the direction of jet is almost fixed for

y > 0, i.e. the generation of Coandar effect, although the

position of jet for � ¼ 0 degrees changes between y < 0

and y > 0, in other words, the jet position shows the

unsteady motion with change of jet angle with time. From

this result, it is conclude that the unsteady glottal flow with

the change of jet angle is a characteristic motion in the

parallel model.

5. CONCLUSION

We have numerically simulated the glottal flow based

on a two-dimensional model in order to examine behavior

of unsteady flow within the larynx. Although the glottal

sound source has been described as the interaction between

the flow and the vibrating vocal cords, in order to focus on

only fluid motion, we herein assumed the vocal cords to be

non-vibrating rigid bodies.

The nonlinear hydrodynamics equations for a compres-

sible viscous fluid were integrated using MacCormack’s

finite-difference scheme. The simulation yielded the fol-

lowing results: (1) the initial flow was a jet-like stream with

two vortices and a symmetric pattern about the x axis, (2)

after which the structure of the vortices became asymmet-

ric and the flow was translated into a complicated pattern

that changed with time, and (3) the pressure in the glottal

flow began to fluctuate sharply, and increases in the lung

pressure resulted in larger fluctuations. In summary, rather

than being a steady symmetric laminar flow, the glottal
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g ¼ 1mm and
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flow is an unsteady complicated flow having a structure

that changes with time. In addition, the results of the

present study suggest that simple assumptions, such as

linearization of the fluid equations in the speech production

process and a one-dimensional glottal model, are not

appropriate for analysis of the speech production process.

Furthermore, we indicated that the asymmetric glottal flow

in computation is not caused by numerical errors and is

valid physical phenomena.

In the present paper, we have demonstrated that the

glottal flow became unsteady with time. As such, several

numerical experiments and quantitative analyses based on

the present model are necessary in order to discuss the

relationship between unsteady flows and speech waves.

The effects of unsteady flow on the glottal sound source

remains unclear and should be discussed further.
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APPENDIX

In finite difference methods, the accuracy of numerical

solutions depends on the grid numbers. The values used in

the present study were determined as follows. Glottal flows

were numerically calculated for various grid number by

varying M in the � direction and N in the � direction. The

grid numbers at which the obtained numerical values were

saturated were used to for the computations.

Table A.1 shows the simulated pressures of glottal flow

at grid numbers of M ¼ 460 and 800 and N ¼ 60 and 120

based on the rigid model with gap D�
g ¼ 1mm. The table

indicates the normalized non-dimensional pressure fluctu-

ations Prms=Mas at x ¼ 2. The pressure values for the 800�
60 and 800� 120 grids show approximately the same.

Therefore, the grid numbers are determined as M ¼ 800

and N ¼ 120.

Table A.1 Relationship between grid numbers M and
N and root-mean-squared values of nondimensional
pressure fluctuations Prms. M and N are the grid num-
bers in � and � directions, respectively. The pressure
fluctuation is measured at x ¼ 2 for P�

L0 ¼ 1;000 Pa.

Grid number M � N Pressure Prms=Ma

460� 60 2:2� 10�1

460� 120 2:5� 10�1

800� 60 5:0� 10�1

800� 120 4:4� 10�1
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