
Effect of Central Limit Theorem non-compliance on blind separation

of speech by negentropy maximization

Rajkishore Prasad�, Hiroshi Saruwatariy and Kiyohiro Shikanoz

Graduate School of Information Science, Nara Institute of Science and Technology,
Takayama-Cho, Ikoma, 630–0101 Japan

(Received 22 July 2004, Accepted for publication 15 April 2005 )

Abstract: In this paper the blind separation of speech signals from their convoluted mixtures using
frequency domain fixed-point independent component analysis algorithm, based on negentropy
maximization, is presented. We also discuss fundamental problems of fixed-point ICA by negentropy
maximization arising in the separation of the speech signal due to disobedience of the Central Limit
Theorem (CLT) by the mixed speech data in the frequency domain. The experimental evidences show
that CLT failure is happening due to the spectral sparseness of sources. We also present a blind method
to mitigate the negative effects of this by combining null beamforming with the ICA. This combination
gives a good result under the low reverberation conditions.
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1. INTRODUCTION

Blind signal separation (BSS), a very hot topic of

research among digital signal processing groups since a

decade, is a statistical framework to estimate signal con-

tribution of independent sources only from their observed

mixtures, with no knowledge about the mixing process i.e.

the geometry of sources and sensors is implicit. Thus in the

BSS problem we are given with the observations xðnÞ ¼
½x1ðnÞ; x2ðnÞ . . . xMðnÞ�T of M sensors produced by some

unknown interaction function F among the R original

sources sðnÞ ¼ ½s1ðnÞ; s2ðnÞ; . . . sRðnÞ� given as

xðnÞ ¼ F½sðnÞ�: ð1Þ

The task of BSS is to estimate the optimal F̂F�1, the

inverse of the interaction function, so that the underlying R

or M original sources can be optimally estimated, i.e.,

ŝsðnÞ ¼ ½ŝs1ðnÞ; ŝs2ðnÞ; . . . ŝsMðnÞ� ð2Þ

The interaction function depends on the physical

situation such as on the geometry and number of sources

and sensors, and the source to sensor transfer function.

Hereafter, we will refer to the interaction function as the

mixing system and inverse interaction function as the

demixing system. For the simplest condition F can gener-

ate linear instantaneous mixture. However, in this paper we

will consider for the case of convolutive mixing system.

The complete lack of a mixing process in the estimation of

the original sources is compensated by pivoting computa-

tion on the assumption of the statistical independence of

each source. However, the observed mixtures of signals

are not statistically independent due to the unknown

mixing process. The principle of statistical independence

is brought into play by looking for either non-Gaussianity

of or spectral dissimilarity among the sources [1]. The

process of taking out hidden sources as the most inde-

pendent components of the mixed data is called Independ-

ent Component Analysis (ICA) [2] and there have been

developments of numerous ICA-based BSS algorithms in

the different areas of practical applications e.g. see [3,4]. In

the area of speech signal processing,researchers are taking

BSS as one of the strongest aspirant techniques for the

practical solution to the Cocktail party problem [5] for

an artificial speech recognizer. The origin of the BSS

technique in audio signal separation can be traced back

to the contributions of Cardoso [6] and Jutten [7] for

practical signal separation algorithms based on the afore-

said principle of statistical independence of the sources.

The estimated ICs do not represent exact replica of the

individual source signals hidden in their observed hotch-
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potch. Recently, there have been development of many

excellent algorithms, in the time domain and in the

frequency domain or mutualistically combined in both

while weighing their pros and cons, for audio source

separation based on ICA [8–10]. In fact, in the list of BSS

methods for the audio source separation, ICA-based BSS

algorithms have been dominating due to the emergence of

several algorithms. However, due to their computational

complexities and slow convergence there hardly exists any

algorithm that can handle the general class of BSS prob-

lems for real world applications in real time [11]. The basic

functioning of the ICA based BSS algorithms are shown in

Fig. 1. The observed mixed signals xðnÞ ¼ ½x1ðnÞ; x2ðnÞ . . .
xMðnÞ�T ¼ AsðnÞ, where A is the mixing system, are pas

sed through a tentative initial demixing systemW (random-

ly chosen or based on some heuristic guess and subject to

further modification) and then the mutual independence

among the estimated independent component signals y is

evaluated by some cost function JðW ; yÞ, usually based on

the statistics of the signal and candidate demixing system.

That in turn goes on modifying demixing system unless

and until the cost function is not optimized for the

maximum mutual independence among the separated ICs.

So, paradigmatically, most of the known ICA-based BSS

algorithms exhibit such functional similarities, but basic

differences occur in the choice of the cost function, the

domain of operation and the process of optimization.

The cost function may be based on the joint distribution

or the marginal distribution of the signal. The most popu-

lar example of the first category is the Kullback-Liebler

Divergence (KLD) metric, which measures deviation

between the joint distribution of the signal and a pre-

assumed source distribution. However, prior knowledge of

the joint distribution of sources is not always feasible. The

second category of cost functions exploits only statistical

properties of the marginal distribution and non-Gaussianity

of the data and are statistically less efficient. A lot of algo-

rithms using such cost functions have also been developed

and is main concern of this paper. One of the examples of

algorithms based on such cost functions and non-Gaussia-

nization of the signals are fixed-point ICA by the kurtosis

or negentropy maximization in [12] for the separation of

the instantaneousmixture for real valued signal and in [13]

for complex-valued signals; however, this al gorithm has

no strategy for solving the problems of permutation and

scaling arising in speech signal separation in the frequency

domain. The fixed-point algorithm for audio source separa-

tion can be found in [14,15]. The fixed-point Frequency

Domain ICA (FDICA) algorithm for audio source separa-

tion work on the Time-Frequency Series of Speech (TFSS),

and thus assumes obeyance of CLT from the TFSS in each

frequency bin. However, in [16] it has been shown that

TFSS of the mixed speech signal fails to follow CLT in

every frequency bin and also the separation performance of

the algorithm falls in such frequency bins. In general, any

ICA algorithm based on the non-Gaussianization of the

signal in the light of CLT can face a similar adverse

situation and may fight to loose its performance in the same

way because of non-compliance with CLT by the TFSS.

Such disobedience of CLT by the TFSS pops up many

hooked-up questions such as regarding suitability of

negentropy based method for speech signal separation,

why does such failure occur and how to get rid of it? These

novel points are the focal topics of discussion in this paper.

For this study we have used fixed-point FDICA based on

negentropy maximization, as described in [15]. Here, We

have investigated in details event of CLT non-compliance

and proposed a method of blind detection of CLT disobey-

ing bins for combining Null beamformer and FDICA.

The rest of this paper is organized as follows. In the

next section a signal mixing and demixing model of the

microphone array is presented. Section 3 and its subsection

provide a brief overview of functioning of fixed-point

FDICA based on the negentropy maximization. Section 4

deals with the obeyance of CLT by the TFSS and their

testing using frequency domain kurtosis. Section 5 and its

subsections present a different experimental result, fol-

lowed by the conclusions and references.

2. SIGNAL MIXING AND DEMIXING MODEL

In the real recording environment, signals reaching

each microphone are not only direct-path signals, but also

delayed and attenuated versions of the source signals.

Therefore, the real world mixing model is best approxi-

mated by the convolution of the source to sensor transfer

function and the source signal. Accordingly, the speech

signal picked up by a microphone array with M micro-

phones is modeled as a linear convolutive mixture of R

impinging source signals such that the M-dimensional

signal captured by the array is given by

xjðnÞ ¼
XR
i

XP
p

hjisiðn� pþ 1Þ; ð j ¼ 1; 2; . . . ;MÞ ð3Þ

where siðnÞ ¼ ½s1ðnÞ; s2ðnÞ . . . sRðnÞ� represents the original

MIXING
A 
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s
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Fig. 1 Block diagram of ICA based BSS algorithm.
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source signals, hij is the P-point impulse response between

the source i and the microphone j, and n is the time index.

However, in this paper we consider the case of two micro-

phones and two sources, i.e., M ¼ R ¼ 2, for which the

signal mixing and demixing models are shown in Fig. 2. A

block diagram of the proposed system is illustrated in

Fig. 2. Accordingly, the observed signals x1ðnÞ and x2ðnÞ at
the microphones are given by

x1ðnÞ
x2ðnÞ

� �
¼

re f11ðnÞ þ re f12ðnÞ
re f21ðnÞ þ re f22ðnÞ

� �
; ð4Þ

where re f11ðnÞ ¼ h11 � s1ðnÞ, re f12ðnÞ ¼ h12 � s2ðnÞ,
re f21ðnÞ ¼ h21 � s2ðnÞ, and re f22ðnÞ ¼ h22 � s2ðnÞ are here

called reference signals and ‘�’ represents the convolution

operation. In the frequency domain, the same model is

represented by taking Short-Time Fourier Transform

(STFT) of Eq. (4) as:

X1ð f Þ
X2ð f Þ

� �
¼

H11ð f Þ H12ð f Þ
H21ð f Þ H22ð f Þ

� �
S1ð f Þ
S2ð f Þ

� �
: ð5Þ

The FDICA separates the signal in each frequency bin

independently. The separation process is given by

Y1ð f Þ
Y2ð f Þ

� �
¼

W11ð f Þ W12ð f Þ
W21ð f Þ W22ð f Þ

� �
X1ð f Þ
X2ð f Þ

� �
; ð6Þ

where ½Y1ð f Þ Y2ð f Þ�T are ICs in frequency bin f .

3. FREQUENCY DOMAIN FIXED-POINT ICA

The fixed-point FDICA by negentropy maximization

works, like other FDICA, on the time-frequency series

obtained by STFT analysis of the speech data. From Eq. (5),

it is obvious that the mixed signal in any frequency bin is a

summation of contribution of each source in the same

frequency bin. Thus, in the frequency domain, assumption

of CLT should be obeyed by the TFSS in every frequency

bin and its non-Gaussianization in proper way can give

optimally non-Gaussian components as ICs or demixed

signal [12]. The whole process of fixed-point FDICA is

depicted in Fig. 3. It consists of two major operations,

namely, whitening and rotation. Whitening or sphering of

TFSS is the first half of the ICA task and this process

transforms the mixed signal into a spatially decorrelated

form. Whitening of the zero mean TFSS can be done using

Mahalanobis transform [17]. Accordingly, the whitened

signal in the pth frequency bin fp is obtained as

Xwð fp; tÞ ¼ Qð fpÞXð fp; tÞ ð7Þ

where Qð fpÞ ¼ ��0:5
x Vx is called whitening matrix; �x ¼

diagf1=
ffiffiffiffiffi
�1

p
; 1=

ffiffiffiffiffi
�2

p
; . . . 1=

ffiffiffiffiffi
�n

p
g is the diagonal matrix with

positive eigenvalues �1 > �2 > . . . > �n of the covariance

matrix of Xð fp; tÞ and V x is an orthogonal matrix con-

sisting of eigenvectors of covariance matrix. The remaining

task involves rotating the whitened signal vector Xwð fp; tÞ
by the separation matrix such that Yð fpÞ ¼ Wð fpÞXwð fp; tÞ
equals TFSS of the independent components in the pth

frequency bin. Negentropy is used as cost function to meas-

ure degree of non-Gaussianization. The negentropy JðYÞ of
the TFSS of the candidate IC, is given by (frequency index

f and frame index t are dropped hereafter for clarity) [12].

JðYÞ ¼ HðYGaussÞ � HðYÞ; ð8Þ

where Hð�Þ is the differential entropy of the ð�Þ and YGauss is

the Gaussian random variable with the same covariance as

of Y . This definition of negentropy ensures that it will be

zero if Yð f ; tÞ is Gaussian and will be positive if Yð f ; tÞ is
tending towards non-Gaussianity. The negentropy can be

approximated in terms of non-quadratic non-linear function

G as follows [18]:

JðYÞ ¼ �½EfGðYÞg � EfGðYGaussÞg�2; ð9Þ

where � is a constant. The choice of the non-linear function

G depends on the Probability Distribution Function (PDF)

of the data. The most general form of non-linear function

that can be used for speech data (assuming TFSS has super-

Gaussian distribution) separation is given as

GðYÞ ¼ logða2 þ YÞ; ð10Þ

where a2 ¼ 0:1. In the deflation type algorithm, the

rotation step consists of a one-unit ICA which is used to

estimate one separation vector w (any one row of the

separation matrix) at a time and is obtained by maximizing

negentropy given by

Fig. 2 Convolutive mixing and demixing models for
speech signal at two element microphone array.
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Fig. 3 Block diagram showing basic working principle
of the ICA based BSS algorithms.
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JðYÞ ¼ EfGðjwHXwj2Þg; ð11Þ

where w is an M-dimensional complex vector such that

EfjwHXwj2g ¼ 1 ) jwj ¼ 1: ð12Þ

Using Lagrangian method, the optimization of the above

contrast function gives following iterative learning equa-

tion for w [13,15].

wnew ¼ wðEfgðjwHXwj2Þ þ ðjwHXwj2Þg0ðjwHXwj2ÞgÞ

� EfgðjwHXwj2ÞðXH
wwÞXwg; ð13Þ

where g and g0 are first and second order derivatives of

G. The stopping criteria for iteration is defined as � ¼
Efjwold � wnewj2g, which becomes very small near the

convergence. Since each update changes the norm of w,

after each iteration w is normalized to maintain compliance

of Eq. (12). Also, it is essential to decorrelate w, after each

iteration to forbid convergence to the previously converged

point. To achieve this, Gram-Schmidt sequential orthogon-

alization has been used by which the orthogonalized

separation vector for the ith source after jth iteration is

given by

wi ¼ wi �
Xi�1

j¼1

ðwT
i w jÞw j ð14Þ

After finishing ICA in every frequency bin for N sources

(less than or equal to the number of microphones), a

separation matrix is obtained in every frequency bins for

every sources which is given by

Wð f Þ ¼
w1

�
w2

2
64

3
75 ¼

W11ð f Þ . . . W1Mð f Þ
. . . . . . . . .

WR1ð f Þ . . . WRMð f Þ

2
64

3
75 ð15Þ

The deflationary algorithm extracts the TFSS of independ-

ent sources one by one in decreasing order of negentropy,

however, it is not granted that the ranking of the

negentropy of latent sources is the same in the each

frequency bin. It depends on the content of the signal. If it

is different in different frequency bins, this leads to the

inter-exchange or flipping of rows of Wð f Þ, given in

Eq. (15), in each frequency bin in an unknown order which

is called permutation problem. There is no known way, to

the best of our knowledge, which can compel algorithm to

learn the separation matrix in the same order of sources in

each frequency bin. Also, the gain value in each frequency

bin is not the same. However, it needs to be the same in

each frequency bin for the faithful reconstruction of the

signal. This is called the scaling problem. If these two

problems are not solved after Eq. (15), further processing

with Eq. (16) will give another mixed signals instead of

separated components. There have been developments of

several methods to resolve these two inherent problems

[19]. However, we will use here directivity pattern based

method using null beamformer as described in the [15,20].

The Direction of Arrival (DOA) of each source is estimated

from the DPs of the separation matrix [19] and is used in

solving permutation and scaling problems. The estimated

DOA can be further used to do NBF based initialization to

algorithm. The depermuted and scaled matrix is used to

separate the independent components. The separation

matrix has been obtained using whitened signals, its pre-

multiplication with whitened signals in the frequency

domain gives the TFSS Yð f ; tÞ ¼ ½Y1ð f ; tÞ;Y2ð f ; tÞ . . .
YRð f ; tÞ�T of the separated signal, i.e.,

ŜSð f ; tÞ ¼ Yð f ; tÞ ¼ Wð f ÞXwð f ; tÞ: ð16Þ

The separated signal is reconstructed using well known add

and overlap method. However, in order to use Wð f Þ of

Eq. (15) in the time domain to form an FIR filter, it is

essential to de-whiten the separation filter as follows:

Wdð f Þ ¼ Wð f ÞQð f Þ�1: ð17Þ

Then using de-whitened Wdð f Þ, an FIR filter of length

P can be formulated to separate the signal.

3.1. Algorithm Initialization

The deflationary learning rule for w in Eq. (13) is

sensitive to the initial value of separation vector w. The

NBF-based initial value for w can be used as one of the

good guess values. NBF is geometrical technique for the

speech signal separation in which the separation filter

depends on the DOA, frequency of the signal and the

geometry of the used microphone array. In this technique

the signal from the undesired direction is jammed by

forming null in that direction while look direction is set

towards the desired signal source. The details of calculation

can be found in [20], however, we place here NBF based

separation matrix from [20] for convenience. The elements

of NBF based separation matrix are given as

WBF
11 ð f Þ ¼ � expð�q1 sin �̂�2Þ

�
� expfq1ðsin �̂�1 � sin �̂�2Þg

þ expfq2ðsin �̂�1 � sin �̂�2Þg
��1

;

WBF
12 ð f Þ ¼ � expð�q2 sin �̂�2Þ

�
� expfq2ðsin �̂�1 � sin �̂�2Þg

þ expfq2ðsin �̂�1 � sin �̂�2Þg
��1

;

WBF
21 ð f Þ ¼ � expð�q1 sin �̂�1Þ

�
� expfq1ðsin �̂�2 � sin �̂�1Þg

� expfq2ðsin �̂�2 � sin �̂�1Þg
��1

;

WBF
22 ð f Þ ¼ � expð�q2 sin �̂�1Þ

�
� expfq1ðsin �̂�2 � sin �̂�1Þg

� expfq2ðsin �̂�2 � sin �̂�1Þg
��1

: ð18Þ

where q1 ¼ 2�jd1=c and q2 ¼ 2�jd2=c, c = velocity of

sound in air. The NBF based separation matrix is approxi-

mately optimal and is derived for ideal far-field propaga-
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tion of acoustic wave. Under the reverberant condition, its

separation performance degrades markedly.

4. TFSS AND CENTRAL LIMIT THEOREM
COMPLIANCE

The fixed point FDICA by negentropy maximizations

extracts TFSS of independent sources by the non-Gaussia-

nization. For the effective functioning of the fixed-point

FDICA it is essential that the TFSS of the mixed speech

signal should be more Gaussian than that of the ICs. It is

evident from Eq. (5) that the TFSS of mixed signal in any

frequency bin is a superposition of the spectral contribu-

tions of all mixing signals in the same frequency bin. This is

the mathematical reason for the Gaussianization of the

mixed signal. Thus the power, to separate ICs, comes in the

algorithm due to the validity of the logical fact that the

Gaussianity of the mixed speech signal is more than that of

the independent speech signals. If the above fact is not

followed, it will be against the very basic working principle

of the algorithm and will hamper the performances of algo-

rithm. The validity of CLT can be checked by computing

and comparing the kurtosis of the TFSS of the mixed signal

and reference signals in each frequency bin, as it is difficult

to approximate true negentropy. The kurtosis of spectral

component in each frequency bin, denoted hereafter as

Spectral Kurtosis (SK), is given as the ratio of the fourth

order central moment C4 to the second order moment C2

[21]. Accordingly, SKð f Þ in a frequency bin f is given by

SKð f Þ ¼
C4fS�; S�; S�; S�g
½C2fS�; S�g�2

; ð19Þ

where S� 2 fXð f ; tÞ;XHð f ; tÞg. This definition varies with

the placement of conjugates but following [22,23] and

assuming spectral component of speech as complex circular

random variable, simplified expression for SK is given by

SKð f Þ ¼
EfjXð f Þj4g � 2E2fjXð f Þj2g

½EfjXð f Þj2g�2
: ð20Þ

As in the fixed point algorithm, data are sphered so that

Eq. (20) further simplifies to

SKð f Þ ¼ EfjXð f Þj4g � 2: ð21Þ

The aforementioned condition for Gaussianity of the

mixed data can be satisfied by verifying the following

conditions in terms of SK

SKm1 < minfSKre f11ð f Þ; SKre f12ð f Þg ð22Þ

SKm2 < minfSKre f21ð f Þ; SKre f22ð f Þg; ð23Þ

where SKmi ¼ SK of mixed signal at ith Microphone (Mic).

Using the expressions for SK in Eq. (20), the validity of the

CLT can be tested in each frequency bin. However, this

method is not blind because it requires reference signals

which are not available in the real applications.

4.1. Blind Method of CLT Obedience Testing

In order to gain Gaussianity in mixing process, TFSS

should not belong to alpha stable PDF family as these are

closed under any linear operations. In [24] it has been

shown that the PDF of TFSS of the unmixed speech signal

can be better approximated by the Generalized Gaussian

Distribution (GGD) which is parameterized by the mean,

scale and shape parameter, say �. The value of shape

parameter � decides shape of the distribution. GGD

represents a Gaussian PDF for � ¼ 2, Laplacian PDF for

� ¼ 1, and highly parsimonious PDF for 0 < � < 1. Since

the CLT obeyance or disobeyance is logically related to the

Gaussianization of the mixed signal, the change in � and

SK of the TFSS can be used to detect CLT obeyance or

disobeyance. The shape parameter and SK can be com-

puted from data and their threshold value can be deter-

mined by looking into change in Gaussianity of the mixed

signal. The relation of � and kurtosis Kð�Þ of GGD is given

in Eq. (24) below.

Kð�Þ ¼ �
5

�

� �
�

1

�

� �� �
�

3

�

� �� ��1

ð24Þ

The variation of kurtosis with the value of � is shown in

the Fig. 15. Thus if a TFSS of the mixed signal is fully

Gaussian, its SK will correspond to SKG ¼ Kð� ¼ 2Þ ¼ 3 in

Eqs. (22) and (23), and if it is not mixed signal, the speech

signals will have at least Laplacian or strongly Laplacian

PDF for which SK corresponds to SKL ¼ Kð� ¼ 1Þ ¼ 6.

For the strongly Laplacian case, which is more accurate as

shown in [24], kurtosis will be higher than 6. The SK of

TFSS can be directly computed using Eq. (20). Thus if SK

of TFSS lies above SKL it will represent a Laplacian or

strongly Laplacian signal and related TFSS will fail to

comply CLT, however, if SK is below SKL, it means signal

has gained some Gaussianity due to mixing with other

speech signals and so it will comply with CLT. Thus change

in kurtosis can be related to the change in the shape

parameter � and some threshold value of it can be used

to detect CLT obeying and disobeying sub-bands. The

acoustic channel too Gaussianizes speech signal, so the

Gaussianity of true speech is less than that of received by

the microphones. However, mixing of two-speech signals is

bigger effect than the Gaussianization by the channel. Thus

the threshold less than 1 can work well.

4.2. Objective Evaluation Score

As a performance measure of the algorithm in each

frequency bin we define and use spectral noise reduction

rate (SNRR), spectral correlation coefficient (SCRF) �ð f Þ,
and the number of iterations required to reach convergence

in each frequency bin. SNRR is the Noise Reduction Rate

(NRR) defined for TFSS in each frequency bin and is given

as the ratio of signal power to noise power in a frequency
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bin. SNRR for the ith source (assuming M ¼ R ¼ 2) in the

f th frequency bin is given by:

SNRRið f Þ

¼ 10 log10
EfjXspeechð f Þj2g
EfjXnoiseð f Þj2g

¼ 10 log10
EfjWi1ð f Þre f1i þWi2ð f Þre f2ij2g

EfjYið f Þ �Wi1ð f Þre f1i þWi2ð f Þre f2ij2g
ð25Þ

SCRF �ð f Þ is easier to calculate and is a good

approximation for directly measuring independence. In

any frequency bin f it is given by

�ð f Þ ¼
Pm

1 ½fX1ð f Þ � �XX1ð f ÞgfX2ð f Þ � �XX2ð f Þg�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
1 jX1ð f Þ � �XX1ð f Þj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
1 jX1ð f Þ � �XX2ð f Þj2

q :

ð26Þ

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup and Conditions

In the experiment, we used a two-element linear

microphone array with inter-element spacing of 4 cm for

the simulated speech data generation. Voices of two male

and two female speakers, sampled at 8,000 kHz, situated at

the distances of 1.15 meters and from the directions of

�30� and 40� were used to generate 12 combinations of

mixed signals x1 and x2 at both microphones under the

described convolutive mixing model. Mixed signal at each

microphone was obtained by adding the convolved speech

signals re f11, re f12, re f21, re f22 according to Eq. (4). These

convolved speech signals are obtained by convolving seed

speech with room impulse response, recorded under

different acoustic conditions, characterized by a different

Reverberation Time (RT), e.g., RT ¼ 0ms, RT ¼ 150ms

and RT ¼ 300ms. The speech signals re f11, re f12, re f21,

and re f22, reaching each microphone from each speaker,

are used as the reference signals. First TFSS of the mixed

speech data were generated by the STFT analysis. For the

STFT analysis hanning window of 20ms with shift size 10

ms, and DFT size of 512 and 1,024 were used. The TFSS of

data in each frequency bin is whitened in accordance with

Eq. (7) before being fed into iterative ICA loop.

5.2. Separation Results

In the first phase of the experiment, ICA algorithm was

initialized with the random values of the separation matrix

in each frequency bin and then fixed-point FDICA algo-

rithm was used to compute the separation matrix for

RT ¼ 0ms, RT ¼ 150ms and RT ¼ 300ms data. The

stopping criterion � was fixed at 0.001. Using directivity-

pattern-based methods, DOAs of the sources were esti-

mated [15,25]. In order to evaluate the performance of the

algorithm with NBF based initialization, the initial value of

Wð f Þ is generated for every frequency bin using the

estimated DOA in Eq. (18). Using these initial values in

each frequency bin, ICA was performed. The separation

performances for the cases of NBF-based initial values and

random initial values of the separation vector have been

studied under different acoustic conditions. The NRR

results are shown in Fig. 4. The performance of the

algorithm dramatically degrades with increasing RT in the

both cases. In order to study the effect of different DFT size

and frame shift sizes, further experiments were performed

with random and NBF based initialization. The analysis

frame size was fixed at 20ms, which contains 160 samples

of data at a sampling frequency of 8,000Hz, and the frame

shift size has been varied from 10% to 80% of the analysis

frame size. The results of achieved NRR and consumed

computation power (number of iterations consumed for

fixed �) are shown in the Fig. 5. The obvious benefit of the

NBF based initialization over random value based initial-

ization is rapid convergence. Since the algorithm separates

the signals independently in each frequency bin, the

separation performance in each frequency bin is important.

Fig. 4 NRR for different RT using random initialization
and NBF based initialization of the algorithm.
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Fig. 5 NRR and no. of iterations for different values of
frame shift size. RND(NBF) indicates random (NBF
based) initialization of the algorithm, RT ¼ 150ms.
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In Figs. 11 and 12 SNRR, in Fig. 13 SCRF and in Fig. 14

average number of consumed iterations for different

speaker combinations are shown. It is evident that the

algorithm does not show similar performance in each

frequency bin, factors responsible for this may be the

difference in nature of data, as while the other experimental

conditions are same, in different frequency bins. Among

the other statistics of the TFSS Gaussianity of the TFSS of

mixed data is important for its proper working. This is

discussed next along with more experimental results.

5.3. CLT Obeyance Test

The validity of the CLT in the TFSS of any frequency

bin can be checked by verifying the relation given in

Eqs. (22) and (23) for the Gaussianity test. That test was

performed for the six combination of the mixed speech data

for different DFT sizes and reverberation times. Results are

shown in Fig. 6. It is interesting to note that the TFSS does

not follow the CLT in all frequency bins. The percentage of

CLT disobeying TFSS is almost independent of the DFT

size and there are no significant changes with the change in

reverberation time. However, for the higher values of RT a

significant difference in the percentage of CLT-failing sub-

bands has been found, as shown in Figs. 7 and 8, for both

microphones. This is indicative of the fact that the room

acoustics is also influential in the disobedience of CLT by

the TFSS. As the DFT size increases, the number of CLT-

disobeying bins do increase, however, they remain clus-

tered, shown in Fig. 9, due to increase in the frequency

resolution for higher DFT sizes. In order to explain this

interesting phenomenon we take into consideration the

contribution of each signal source in the mixing process, as

it is evident from Eq. (5) that TFSS in each frequency bin

is a superposition of spectral contribution from each mix-

ing source and this is the cause of Gaussianization. For this

the spectral content of the mixed signal and reference

signals were examined in the CLT-disobeying frequency

bins and in the nearest CLT-obeying frequency bins. In

order to measure the spectral contribution, plots of the

magnitude of the spectral contribution from each of the

reference signals and the mixed signal were examined, and

one of such plots is shown in the Fig. 10. In that figure, the

temporal contributions of each source in the given

frequency sub-band are shown.

It is evident from Fig. 10 that in the shown CLT-failing

frequency bin, the contribution from the first speaker is not

available at all instances, however, in the nearest CLT-

obeying frequency bin its temporal contribution is rela-

tively better. It is also evident from the shown histograms

of the temporal contributions that in the CLT obeying or

passing bins both sources make very rich contributions but

Fig. 6 CLT disobeying frequency bins for different
DFT size and RT at the first microphone. Shown values
are averaged for 6 combination of mixed speech signal.
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Fig. 7 CLT-disobeying bins at both microphones for
different DFT size and RT ¼ 0ms.
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in the CLT-disobeying bin either one makes a very rare

contribution or no contribution, which in accordance with

Eq. (5) results in a mixed signal with content from either

source or ill-mixed signal. The resulting TFSS, thus in

reality, represents a signal from a single source and thus

fails to comply with CLT. It is, therefore, concluded that

the sparseness in the spectrum has an important role in

relation to the CLT non-compliance by the TFSS. It is also

important to note that only spectral sparseness cannot be

considered to be the sole cause of CLT disobedience. The

role of other causes such as room acoustics, natural pauses

(this also results in spectral sparseness in the temporal

queue of TFSS) cannot be denied. Since TFSS is generated

by the STFT analysis it can be inferred that unless there are

no long pauses in the speech, it cannot contribute a large

number of dumb samples to the TFSS in any frequency bin.

In the presence of moderate reverberation, the pause

periods may be modified by the reflected speech. Such a

reflected speech signal increases correlation among the

samples of TFSS, and the spectral content of the signal

remains the same even under high reverberation. But if

there is any role of pauses in the CLT failure it will be

modified by the reverberation. However, such possibilities

are still unexplored and are left for further study. In order

to show the effect of the CLT disobedience by the TFSS on

the separation performance, spectral NRR and SCRF were

observed for different source combinations. Such results

for one of the source combinations are shown in Figs. 11–

14. It is evident from these figures that in the CLT-

disobeying frequency bins SNRR is low and SCRF is high.

This occurs because TFSSs in such frequency bins do not

comply with CLT.
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Fig. 11 SNRR with CLT disobeying frequency bins at
the second Mic. for RT ¼ 300ms.

Fig. 10 Role of spectral sparseness in CLT disobedience. Left side, in two columns, represents CLT failing bin at
f ¼ 687:50Hz and right side represents CLT failing bin at f ¼ 687:50Hz while same in the right is for nearest CLT
passing bin. Subplots in first two columns show temporal contribution and their histograms in the CLT failing bins for
mixed and individual speakes. SPK1 and SPK2 represent plots for spectral contributions from the first speaker and second
speaker, respectively. Similar things for nearest CLT passing bins are shown in the right two columns (Used speaker
combination is male-female).
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Almost similar results have been found for the other

CLT-obeying and disobeying frequency bins. Obviously,

CLT compliance is vital for ICA algorithm working under

the assumption of Gaussianization of the mixed data under

the CLT principle. As the cause, sparseness of spectrum of

speech signal, of CLT failure by speech is inherent so its

happening cannot be stopped. The only way is to use the

algorithms independent from such constraints, or combine

some other methods such as NBF having no such problem

in the CLT-failing frequency bins. However, this requires

the blind detection of CLT obeying and disobeying

frequency bins. As discussed in subsection 4.1, a threshold

value of SK or � can be determined for the blind detection

of CLT disobeying bins. The relation between CLT

disobeying bins and SK can be observed in the right-hand

side of Fig. 15.

The plot in the left-hand side represents variation of

kurtosis of GGD with � and the right-hand side shows CLT

failing bins (gray colored vertical lines in the background)

and a plot of SK computed using Eq. (20). It is evident that

SK is high for the CLT-disobeying bins and is relatively

low for the CLT-obeying bins. The dashed horizental lines

across the plots in Fig. 15 show different threshold values

for the different values of �. With the Gaussianization of

signal, the value of � shifts towards 2 while for single

unmixed speech it is less than 1. The results of blind and

true detection are shown in Fig. 16. The term ‘true-

detection’ represents the result obtained by the verifications

of the of conditions stated in Eqs. (22) and (23) which need

reference signals from each speaker. However, in the real

application, these reference signals are unavailable. Plots in

Fig. 16 show effect of different value of � on the detection
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Fig. 14 Average number of iteration taken for conver-
gence for RT ¼ 300ms (for male speakers).
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accuracy of the blind method. The plot marked (Blind-true)

represents the number of dissimilar frequency bins in the

detection, which has minimum value for the threshold

around � ¼ 0:6. Evidently, the blind method falsely detects

some bins as the CLT failing, while giving clean chit to a

number of frequency bins, which actually fail. However,

for the threshold around � ¼ 0:6, 70% to 80% of bins can

be correctly detected. As it is evident from Fig. 15 that the

slight change in � produces large change in SK, the slight

change in the threshold thus can significantly affect the

detection accuracy. An experiment to examine sub-band

based combination for null beamformer and fixed-point

FDICA was carried out. The combination strategy for the

ICA filter and the NBF filter is complex due to occurrence

of CLT-failure in different or same frequency bins at both

microphones. Thus there are several ways to combine NBF

with ICA. However, in our experiment we replaced the

ICA filter by that of NBF if CLT failure in any frequency

bin is occurring at either microphone. The separation

performance, averaged for six mixed signals, is shown in

the Fig. 17. It is evident from the figure that the combi-

nation shows a significant improvement in the NRR for

RT ¼ 0ms, and fails to improve for RT ¼ 150ms and

RT ¼ 300ms. The reason for this can be explained with the

help of Figs. 18 and 19. These figures show, the spectral

NRR under RT ¼ 0ms, RT ¼ 150ms and RT ¼ 300ms,

respectively, for ICA only, NBF only and their combi-

nations. It is evident from these figures that the NBF

has a better spectral separation performance under the

non-reverberant condition. The performance of NBF too

degrades as RT is increased. Under the high reverberation

condition, the spectral performance of the NBF is not better

than that of the ICA. The spectral performance of both

NBF and ICA follow the similar (not exactly same) trend

and the overall performance of NBF is worse than that of

the ICA. Thus if NBF has a poorer performance than ICA

and if the separation filters are exchanged in CLT-failing

bins their combination cannot give any improvement

instead it may further degrade the performance. Thus the

replacement of the ICA filter by the NBF filter results in

poor or unimproved performance. However, in some cases

it does improve and in other cases its performance was

found to be worse than that of ICA.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented in details a peculiar

phenomena of CLT disobedience by the TFSS signal,

picked up by a linear microphone array in the multiple

speaker environment. We have investigated its effect on the

blind separation of the speech signal by a fixed-point ICA

algorithm based on negentropy maximization. We explored

the performance of the algorithm and effect of CLT-failure

under different acoustic conditions. We have also presented

spectral sparseness of the speech signal as one of the

possible causes of noncompliance to CLT by the TFSS. We

also proposed a blind detection method for the CLT-
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Fig. 17 Overall NRR averaged for four combinations of
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disobeying frequency bins. As a solution to this problem, a

new algorithm using ICA and NBF has also been proposed,

however, this combination has been found to be effective

only in the low reverberation condition. We are further

interested in investigating CLT failure from different

perspectives and in finding some solution to the problem

arising due to this for the fixed-point FDICA algorithm for

the audio source separation in reverberant conditions.
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