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1. Introduction
Almost all LVCSR (Large Vocabulary Continuous

Speech Recognition) systems have several parameters, such
as the language model weight and insertion penalty. In many
cases, these parameters are determined empirically or through
preliminary recognition tests. There have been a few efforts to
treat these parameters theoretically [1,2], but the optimum
parameter still cannot be determined automatically. To
optimize these parameters through experiments, we must
carry out recognition tests for all points in the parameter
space, which is quite time-consuming. N-best-rescoring-based
optimization is often employed to expedite the optimization
process, but it still takes considerable time when the number
of n-best candidates is large.

We describe a new idea for preselecting n-best candidates
to make n-best-based parameter optimization faster. Although
it is a very simple idea, the method enables the number of n-
best candidates to be reduced by more than 90% and makes
the optimization process about 9–28 times faster.

2. N-best-candidate-based parameter optimization
When recognized candidates are obtained from a speech

recognizer, they are evaluated using their scores. Usually a
candidate has an acoustic score xA and a linguistic score xL.
They are often logarithms of probabilities PðxjwÞ and PðwÞ,
respectively where x is the acoustic signal and w is a
corresponding word sequence.

To compare candidates using a one-dimensional measure,
a total score is calculated from acoustic and linguistic scores.
The number of words in a candidate sentence is also often
taken into account. The most popular way of combining the
scores is linear combination:

x ¼ a1xA þ a2xL þ a3nw; ð1Þ

where nw is the number of words in a candidate. For compar-
ison, only the relative magnitude of the score is significant.
Therefore, assuming a1 to be positive, the following score can
be used:

x ¼ xA þ
a2

a1
xL þ

a3

a1
nw ð2Þ

¼ xA þ wLxL þ wInw; ð3Þ

where wL and wI are called the language model weight and
the word insertion penalty, respectively. The optimization of
the parameters is the process of determining wL and wI that
give the lowest word error rate.

The language model weight and insertion penalty can be
optimized by carrying out recognition experiments for all
combinations of ðwL;wIÞ. However, doing ‘‘real’’ recognition
for all parameter combinations takes a very long time. To
make the optimization faster, word-graph-based optimization
[3] or n-best-candidate-based optimization [4] is often used.
First, calculate the word graph or n-best recognition result for
each utterance using arbitrary parameter values. Strictly
speaking, the quality of the candidates depends on the initial
parameter values used in the first decoding process. To make
the process more accurate, the generation of candidates can be
iterated [3]. However, the effect of the initial parameters can
be small if the number of candidates is sufficiently large. After
the word graphs or n-best candidates are obtained for all
utterances, parameters are optimized by rescoring the candi-
dates.

The n-best-based method can be formulated as follows.
Let us define the following symbols.

M number of utterances

xði; j;wL;wIÞ total score of j-th candidate of i-th

utterance for language model weight

wL and insertion penalty wI

xAði; jÞ acoustic score of j-th candidate of i-th

utterance

xLði; jÞ linguistic score of j-th candidate of i-th

utterance

nwði; jÞ number of words in j-th candidate of

i-th utterance

Eði; jÞ number of substituted/deleted/inserted

words of j-th candidate of i-th utterance

The typical optimization of parameters wL and wI is as
follows:
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xði; j;wL;wIÞ ¼ xAði; jÞ þ wLxLði; jÞ þwInwði; jÞ ð4Þ

~ooiðwL;wIÞ ¼ argmax
j

xði; j;wL;wIÞ ð5Þ

~wLwL; ~wIwI ¼ argmin
wL;wI

XM

i¼1

Eði; ~ooiðwL;wIÞÞ: ð6Þ

~ooiðwL;wIÞ is the optimum candidate of the i-th utterance under
parameter ðwL;wIÞ.

3. Preselection of n-best candidate
The optimum candidate among n-best candidates is

determined according to Eq. (5). Let us further consider the
determination process. For simplicity, the insertion penalty is
ignored in the discussion here. Therefore the optimization
process becomes

~ooiðwLÞ ¼ argmax
j

fxAði; jÞ þwLxLði; jÞg: ð7Þ

In this process, the total score,

xði; j;wLÞ ¼ xAði; jÞ þ wLxLði; jÞ; ð8Þ

is calculated and the candidate with the highest total score is
chosen as the final result. As Eq. (8) is linear, the calculation
of x can be regarded as the projection of points from the
ðxA; xLÞ-plane to the plane x ¼ xA þ wLxL. Figure 1 shows an
example of the projection. Choosing the candidate with
highest total score is equivalent to choosing the highest point
among the projected points.

Let us consider a polygon on the plane x ¼ xA þ wLxL,
that is, the smallest polygon which contains all the projected
points. As the projected points are on a tilted plane, it is
obvious that the highest point is on the edge of the polygon
(Fig. 2). Therefore, the candidates that can be chosen as the
final result must be on the edge of the polygon on the ðxA; xLÞ-
plane.

The above fact indicates that the number of n-best
candidates can be reduced to the number of points on the edge
of the polygon, because the candidates inside the polygon
(and not on the edge of the polygon) are never chosen as the
recognition result and they do not affect the optimization
process.

Considering that wL is positive, further reduction of the
number of candidates can be achieved. In Fig. 3, candidates
on the broken lines are never chosen if wL is positive.
Therefore, n-best candidates can be restricted to the points on
the path of the polygon between the uppermost point and the
rightmost point.

Considering the insertion penalty, we must determine a
polyhedron in ðxA; xL; nwÞ-space. N-best candidates are re-
duced to the number of points on the surface of the
polyhedron. However, it is not easy to determine the smallest
polyhedron that contains all points. As nw is discrete and does
not vary greatly among the candidates of one utterance, it will
be sufficient to preselect for each nw-word candidate.

In the later experiments, the algorithm shown in Fig. 4
was used for preselection. The algorithm has a computational
complexity of OðPVÞ, where P is the number of points and
V is the number of vertices of the polygon. Note that
preselection is executed only once before parameter optimi-
zation.

4. Experiment
An experiment was carried out to confirm the effect of

preselection. Experimental conditions are shown in Table 1.
In this experiment, N-best (N ¼ 5{1;000) candidates were
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Fig. 1 Calculating total score from acoustic and linguistic score.
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Fig. 2 The smallest polygon that contains all the projected points.
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Fig. 3 Valid candidates on the edge of the polygon.
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calculated from 100 utterances. The preselection method was
applied to the candidates. The number of total candidates in
the 100 utterances and the number of selected candidates are
shown in Fig. 5. When up to 1,000-best candidates were used,
58,159 candidates were generated and only 1,733 candidates
remained after preselection. Figure 6 shows the selection ratio
(number of selected candidates divided by total number of
candidates). From this result, it was found that the preselec-
tion method was more effective when the number of

candidates per utterance was large. When 1,000-best candi-
dates were used, the number of candidates was reduced by
97%. Figure 7 shows the CPU times taken for optimization
with or without preselection. The experiment was performed
on a PC with 1.8GHz PentiumIII� processor. The processing
time with preselection includes the time taken for preselec-
tion. The processing time was almost proportional to the
number of candidate. The optimization time with preselection
was about 9 times faster than that without preselection under
the 100-best condition, and 28 times faster under the 1,000-
best condition. Figure 8 shows the CPU time taken for

Fig. 4 An algorithm to determine the polygon.

Table 1 Experimental conditions.

Acoustic
model [5]

PTM 64 mixture, 3,000 states, gender-
independent

Language
model [5]

backoff bigram/trigram, 20 k vocabu-
lary, learned from 75 months’ worth of
issues of Mainichi Shimbun

Test data
100 sentences by 10 male speakers
(from ASJ-JNAS)

wL search space 0:0; 0:5; 1:0; 1:5; . . . ; 30:0

wI search space �30;�29; . . . ; 29; 30
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Fig. 5 Number of total candidates and preselected candidates.
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Fig. 6 Preselection ratio.
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Fig. 7 Optimization time with/without preselection.
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Fig. 8 Preselection and optimization times.
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preselection and the following optimization procedure. The
result indicates that the preselection procedure takes only
2.5% (at 100-best) to 18% (at 1,000-best) of the CPU time
compared with the optimization procedure.

5. Conclusion
An algorithm for preselection of n-best candidates is

proposed. The use of this algorithm makes the optimization
time 9–28 times faster without changing the optimization
result.
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