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1. Introduction

Structural intensity is defined as a vectorial quantity
which represents the mechanical power flow of vibrating
elastic structures. Distribution of structural intensity exhibits
propagation paths of vibration power, and thus it can be an
effective tool for vibration and noise reduction. Many studies
on structural intensity concerning measurement [1,2] and its
characteristics and precision [3-5] have been conducted.
Some problems, however, have prevented the measurement of
structural intensity from being practically applied. The
majority of research to date on the measurement of structural
intensity has been conducted using the finite difference
method. The formula of structural intensity consists of higher
order derivatives of space, and thus, error inevitably arises
from the finite difference method. Moreover, a huge number
of measurement points should be reduced for practical use.
Although other methods [6-8] have been presented, there are
still problems with regard to their accuracy or the number of
measurement points.

In this paper, SEM (Spectral Element Method) [9] is
applied to develop a new method for structural intensity
measurement. In SEM, shape function is made by exact
solution and therefore has an advantage in the interpolation of
a harmonically vibrating field. By combining SEM and actual
measurement, structural intensity distribution can be more
accurately obtained with a relatively small number of
measurement points. The validity of the proposed method is
examined by numerical simulations performed on a plate
structure under the assumption of far field.

2. Structural intensity

Structural intensity is defined as the vibrational power per
unit width of the central surface of a structure. For flat
structures such as a straight beam or plate, only flexural
motion is used to calculate structural intensity because this
motion surpasses other modes of deformation. In this paper,
our interest is focused on a uniform flat plate. First, density of
structural intensity i is defined at every point of the volume as
a three-dimensional vector:
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where ¢ is a stress tensor and v is a velocity vector. This is a
Poynting vector in a linear elastic body [10]. Structural
intensity is a resultant of this vector over the cross section of
the structure. Therefore, structural intensity I is a two-
dimensional vector expressing a vibrational power at the
central surface:
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This expression is denoted in tensor form and its physical
component for a system with arbitrary coordinates is
necessary for practical use. Converted to the Cartesian
coordinate system, this is identical to Romano’s expression
[11]. In this paper, the expression of structural intensity in the
flexural mode for a plate [2] is employed. Practically, active
structural intensity is used to evaluate actual power flow.

3. Methodology
3.1. Spectral element for a plate

In our approach to obtain structural intensity vectors by
measurement, the SEM was applied to a plate structure. This
method was presented by Doyle [9] to compute the behavior
of beams and a plate by developing a spectrally formulated
finite element termed the spectral element. One of the
advantages of this method is that a vibrational field is easily
interpolated by the spectral element because its shape function
is derived using a wave solution. Therefore, wave propagation
between discontinuities can be predicted precisely. However,
for the sake of measurement, this advantage will be reduced
slightly, since, in our procedure, nodal variables of the
spectral element are obtained by measuring them and there
could be some frequency dependent limitation of element
size. Nevertheless, this approach is still useful since its shape
function can be directly derived from the wave solution with a
relatively smaller number of degrees of freedom in a system
equation.

The method begins with the equation of motion of a thin
plate for displacement w,

DV*W + phw = 0, 3)
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Fig.1 Plate element for measurement with size L.

where D is the plate-bending stiffness, p is the density and 7 is
the thickness. With the general solution w(x,y,f) =
wekX etk plot the following characteristic relation is obtained:

D(k; + ;) — pho’® =0, 4)

where k, and k, are wavenumbers in directions x and Yy,
respectively, and w is the angular frequency. Transforming the
wavenumbers into polar coordinates,

K= k)% + kﬁ, ke = *xcosf and k. = Fksinh, (5)

where « denotes the absolute value of the wavenumber in
polar coordinate and 6 means the azimuth angle of the direc-
tion of the wave propagation in k-space. Although Eq. (5)
has four roots, two real roots are employed because of the
assumption of far field. One can obtain the far field solution of
the plate by combining each term with arbitrary constants.
Setting a square region of size L on a plate (Fig. 1), the
displacement of the plate is expressed as

i, y) = A~ il ()
+Be*i(KCOSO(%+X)+KSin9 %—y))
+ Ce—i(t(cos@(%—x) +KSin6(%+y))

+ De—i(KCOSQ(%—X) +KSil’10(%—y))
=NC, (©6)

where N is the interpolation function of the plate and C is the
matrix of the constants. The SEM procedure is applied to
relate the coefficients of Eq. (6) to the displacements of the
region. In a measurement, these displacements of each grid
point are interpreted as nodal displacement of the element. Let
the displacement vector obtained by a measurement be g,
which can be expressed with C:

g=N.C=C=N;q, (7)

where N is the matrix constructed by substituting nodal
coordinates into N. Consequently, displacement of the plate is
expressed as

w(x,y) = NC = N(x,y,0)N; ' (0)q
= Ngq, ®)

where Nk is the interpolation function of the plate element
under the assumption of far field.
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3.2. Determination of argument 6

In the displacement function Eq. (8), angle 6 is a variable
which is still unknown. To determine it, the energy con-
servation is employed. If there is no dissipation or external
force, in a harmonic vibration, time-averaged strain energy
and kinetic energy should be identical even in the plate
element. The element’s strain energy Uy and kinetic energy
T are

1

Ur = EQK(Q)q, C))
1~

Tr= EiIM(G)iI, (10)

where ~ denotes the conjugate transposed matrix, K is the
stiffness matrix and M is the mass matrix of the element. Ur
and Ty are used to determine angle 6 because these are
functions of 6 and are identical to each other at the true 6.

4. Numerical analysis as a test case

With using a complete solution of plate including
near field, the proposed method is carried out to confirm
the validity of the procedure. This field is assumed to
be a steel plate with the following physical constants:
Young’s modulus = 2.1 x 10! [Pa], density = 7,860 kg/m3,
Poisson’s ratio 0.3 and thickness 0.001 [m].

As an example case, the true value of 0 is set at % and this
value is calculated from four nodal displacements by the
proposed method. The error between true value and computed
one is then considered with respect to both angle 6 and
structural intensity. Structural intensity is converted to the
absolute value of the vector and averaged at four points:

(59 (G GO (4

Figure 2 is the strain energy and the kinetic energy as a
function of 0 in the case that frequency is 100 Hz. This figure
depicts that strain energy crosses kinetic energy at the point
very close to the true 0 = 1.0472.
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Fig.2 Strain energy and kinetic energy as a function of
argument 6 for the case that frequency is 100 Hz and
element size is 0.03 [m].



T. OYA et al.: METHOD FOR STRUCTURAL INTENSITY MEASUREMENT

T T T T T T T
25 |-~ 100 Hz, H ! A
-G~ 300 Hz / /
S -~ 500 Hz
= 20f P .
Q /
£
o /
g 1.5+ Ill —
o ,’
=l 1
5 /
S
S 1ot ; i
=} 1
= i
=] 1
= !
Hoostk i
/
/
Rl II
0.0 1 i T I I
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Element size [m]

Fig.3 Error between the true 0 and the computed one.
Circles on the lines denote one-tenth, one-eighth, one-
sixth, one-fourth, one-third and one-half of the wave-

length.

7 T

-O- 100 Hz ;
-~ 300 Hz /
| |-©- 500 Hz i /

(=

w
T

Error of Structural Intensity [%]
N
T

w
T

| | |
0.10 0.12  0.14

| | | |

0.16

0.06  0.08

Element size [m]

2
0.00 0.02 0.04

Fig.4 Error between the true structural intenisty and the
computed one. Circles on the lines denote one-tenth,
one-eighth, one-sixth, one-fourth, one-third and one-

half of the wavelength.

Figure 3 shows that the errors between the true 6 and the
computed one are very small when the element size is smaller
than one third of the wavelength for each frequency.
However, error becomes large when the size is close to half

of wavelength.
Figure 4 describes that the errors of computed structural

intensity are within 2 or 3% and as the element size
approaches to a half of wavelength the error becomes large.
This result is resonable because of the influence of the error of
computed 6. These results show that the method provides
accurate measurement results so long as the element size is
shorter than one third of wavelength.

5. Simulation using the Finite Element Method
MSC.MARC is employed to model the cantilever steel

plate (2 [m] x 0.1 [m]) shown in Fig. 5. The number of

elements used is 1280 and the bilinear thin-shell element
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Fig.5 Cantilever plate with a load and fixed displacement.

2
7x10°

Wi

Input Power [

0
50 100 150 200 250

Frequency [Hz]

Fig. 6 Input power of the model structure.

(No. 139) is employed. An external load is applied in the
thickness direction with 1 [N] and the other side is fixed. A
numerical damping factor is given in 64 elements near the
fixed edge to generate power flow. Physical constants are
same as in the previous section. To consider far field, central
elements are used for evaluation. The size of the element for
measurement is 0.025 [m].

In this simulation, the exact values of 6 are not clear.
Thus, power evaluation is performed by comparing the input
power by the external load and the total power flow crossing
the center line of this model. Four elements are used in the
width direction and half of them are used for evaluation
because of symmetry at lower frequencies.

Figures 6 and 7 show the input power and the total power
of the model, respectively. Figure 8 depicts that the error
between the input power and the total power is very small.

Thus, computed 6 must be close to its exact value.

6. Conclusion
The new method for structural intensity measurement was

studied. The formulation was done by using the concept of
SEM. To determine the unknown variable, the energy
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7x10°” ; ; ; ; ; conservation relation of the element was employed. In the

B
z
£
E [1]
(2]
| | | | | (3]
50 100 150 200 250 300
Frequency [Hz]
(4]
Fig.7 Total power through the center line of the model structure.
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8 Errors between the input power and the total power. [11]

analysis using the complete solution of a plate, the unknown
value was successfully obtained. In the simulation using FEM,
a finite element model was used as a reference structure and
the proposed method worked well to compute the structural
intensity within a small error.
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