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Abstract: Several adaptive algorithms for robust echo cancellation use nonlinear reference and/or
error functions. Most of them require time-variant threshold estimators, e.g., noise level estimators or
double-talk detectors, since their nonlinearities have to be adjusted in response to changes in near-end
noise or speech signal levels. We propose a new frequency domain adaptive algorithm: the gradient-
limited fast least-mean-squares (GL-FLMS), in which the coefficients are updated by using a nonlinear
function of the error scaled by the reference magnitude, i.e., the error-to-reference ratio (ERR). When
the acoustic coupling level between loudspeaker and microphone is bounded, the ERR is also bounded
in the case of single-talk, but may increase during double-talk. The GL-FLMS limits unexpected
increases in the ERR with fixed thresholds and prevents divergence of the coefficients, while not
neglecting updates to adjust when a large reference signal introduces a large error during single-talk.
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1. INTRODUCTION

Adaptive filters have been successfully applied to

acoustic echo cancellation. In the field, the adaptation must

be robust against double-talk, i.e., the situation where the

near- and far-end speakers are talking simultaneously.

Several ways to fulfill this requirement have been pro-

posed.

In the two echo path model [1] and duo-filter control

system [2], an adaptive background filter is used with a

fixed foreground filter. This approach works well, but the

dual filter structure increases the computational cost by

about 50% and necessitates control of the transfer of

coefficients. This structure is also incapable of handling

echo path changes during double-talk. A three-port echo

canceller configuration for the network echo canceller has

been proposed, which can make an adaptation during

double-talk [3]. It, however, exploits the signals from the

two-wire circuit in addition to the four-wire circuit signals.

This is not suitable for the acoustic echo cancellation case.

Another solution is to use a double-talk detector (DTD)

and freeze updating of the adaptive filter [4–7]. In this case,

however, conventional adaptive algorithms, such as the

normalized least-mean-squares (NLMS), cannot adapt to

echo path changes that occur while double-talk is in

progress.

Certain adaptive algorithms in which the coefficients

are updated with nonlinear functions of the reference

input and/or error signals [8,9] have robust properties. For

example, error nonlinearities have been used to achieve

robustness against double-talk [10–12]. In [10], the error

signal limited by an infinite clipper is used for the

adaptation. It is also advised in [10] that the adaptation

should be frozen whenever the reference input level is less

than a predetermined level above the microphone signal,

which indicates double-talk. In the other algorithms of this

type [11,12], a variable scale factor is introduced to the

error nonlinearity. Although a DTD is still required to

control the scale factor, the adaptation is not completely

frozen during double-talk. Variable step-size control

approaches [13,14] can also be regarded as nonlinear

approaches. In [13], as a variant of the NLMS algorithm,

the step-size is controlled by using a nonlinear function of

the reference power level. A noise level estimator controls

the nonlinearity threshold. The fuzzy step-size control in

[14] can be understood as nonlinear usage of the reference

and error signals. The fuzzy rule is based on a norm

estimation of precursor coefficients added to the adaptive

filter and a single-talk detection.

In this paper, we focus on frequency domain echo�e-mail: shimauchi.suehiro@lab.ntt.co.jp
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cancellers which simply have a single-tap adaptive filter in

each frequency bin. Frequency domain adaptive filters have

two primary advantages compared to the time domain

implementations [15]. One is lower computational com-

plexity due to the efficiency of block processing in

connection with the discrete Fourier transform (DFT).

The other is fast convergence, especially for colored input

signals such as speech, since individual control can be

applied to the step-sizes for adaptation in each of the

frequency bins according to the input signal spectrum. Our

aim in this paper is to propose a new robust frequency

domain algorithm that maintains these advantages. The

robustness of the proposed algorithm is based on a

nonlinear function that provides scaling of the reference

and error signal levels. This algorithm achieves good

performance without time-variant threshold estimators.

Although only one [11] is addressed to the frequency

domain among the above conventional algorithms [10–14],

some of the others can also be made applicable. However,

none of them inherently have signal level scalability, so

their robustness is only achieved at the cost of peripheral

estimators or detectors. The proposed adaptive filter

configuration is based on overlap-save sectioning with

the DFT [15]. There are two kinds of basic algorithms for

this, i.e., gradient constrained [16] and unconstrained [17]

versions. We mainly concentrate on the unconstrained

version, since this is less computationally complex and can

converge to the Wiener solution when certain conditions

are fulfilled: e.g., the length of the unknown system is less

than half of the DFT block size [15,17]. The configuration

inherently causes a delay equivalent to half of the DFT

block size. However, it can still be useful in applications

which allow some delay for the response, such as echo

cancellation for speech recognition [18].

This paper is organized as follows. In Chap. 2, some

background information on the derivation of the algorithm

for frequency domain echo cancellers are given. In Chap. 3,

a new robust algorithm is presented and its interpretation

and modification are discussed. The simulation results are

demonstrated in Chap. 4. The conclusions are given in

Chap. 5.

2. FREQUENCY DOMAIN ECHO
CANCELLER

2.1. Configuration

The frequency domain echo canceller that we are

discussing is shown in Fig. 1. The reference signal xðnÞ
at a discrete time index n is from the far-end and is picked

up by the microphone after passing through the room

echo path, which has an impulse response modeled as

h ¼ ½h1; . . . ; hL�T, where L is the effective length and T

is the transpose. The total microphone signal yðnÞ is

expressed as

yðnÞ ¼ hTRxðnÞ þ sðnÞ þ aðnÞ; ð1Þ

where xðnÞ ¼ ½xðn� Lþ 1Þ; . . . ; xðnÞ�T, R is the matrix

that reverses the order of the elements of xðnÞ, and sðnÞ and
aðnÞ are, respectively, speech and ambient noise at the

near-end. In many actual situations, the impulse response h

can be assumed to be fixed or to vary slowly relative to the

convergence rate of the adaptive filter. The transformed

reference signal in l-th frequency bin at the k-th step, XkðlÞ,
is an element of the DFT of ½xTðkL� LÞ; xTðkLÞ�T, where
the index k is incremented every time n increases by L, and

l ¼ 0; . . . ; 2L� 1. The filter coefficient for k and l is ĤHkðlÞ.
The filter output is ŶYkðlÞ ¼ ĤHkðlÞXkðlÞ. The echo replica

ŷyðkLÞ corresponds to the last L elements of the inverse DFT

(IDFT) of ½ŶYkð0Þ; . . . ; ŶYkð2L� 1Þ�T. The error is eðkLÞ ¼
yðkLÞ � ŷyðkLÞ, where yðkLÞ ¼ ½yðkL� Lþ 1Þ; . . . ; yðkLÞ�T.
The transformed error EkðlÞ is an element of the DFT of

½zT; eTðkLÞ�T, where z is an L� 1 zero vector. We now

concentrate on the unconstrained case. We start by omitting

the gradient constraint in Fig. 1 and formulate the equation

for updating ĤHkðlÞ as follows:

ĤHkþ1ðlÞ ¼ ĤHkðlÞ þ � � gðjEkðlÞj; jXkðlÞjÞejð�Ekl��XklÞ; ð2Þ

where �Ekl and �Xkl denote phases of EkðlÞ and XkðlÞ
respectively, gðjEkðlÞj; jXkðlÞjÞ is an arbitrary function of

jEkðlÞj and jXkðlÞj, which we abbreviate as gð�Þ below, and �
is a step-size whose value depends on the full form of gð�Þ.

In the unconstrained fast (or frequency domain) LMS

(UFLMS) [17] case,

gðjEkðlÞj; jXkðlÞjÞ ¼ jEkðlÞj
jXkðlÞj
PkðlÞ

; ð3Þ

where PkðlÞ is the smoothed power of XkðlÞ as obtained by

using a smoothing factor �:
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Fig. 1 Frequency domain echo canceller.
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PkðlÞ ¼ ð1� �ÞPk�1ðlÞ þ �jXkðlÞj2: ð4Þ

2.2. Frequency Domain Sign-Sign Algorithm

Our purpose in this paper is to find a desirable gð�Þ that
provides both strong double-talk stability and fast con-

vergence. As an example of a robust algorithm, we review

the frequency domain sign-sign algorithm (FSSA) [19], for

which gð�Þ satisfies

gðjEkðlÞj; jXkðlÞjÞ ¼ 1: ð5Þ

While the time domain sign-sign algorithm (SSA) is known

to be computationally efficient, it converges very slowly

[8,9]. The FSSA achieves faster convergence, especially

for colored reference signals, since its adaptation is

independent of the frequency characteristic of the reference

signal’s level: jXkðlÞj. Since the FSSA only requires

estimation of the phase difference �Ekl � �Xkl, it is robust

against noise in the error signal as long as the phase

difference between the reference signal and the noise is

random. However, the FSSA has a similar property to the

SSA, in that its region of convergence is a ball around the

true solution with a radius proportional to the step-size �

[20]. This limits the accuracy of convergence.

3. NEW ROBUST ALGORITHM

3.1. Scalable Nonlinearities

For robust adaptation, error estimation is important, i.e,

to what extent are the near-end signals included in the error

signal? The error-to-reference ratio (ERR) is useful as a

means for estimating the influence of the near-end signals

in the error. In the single-talk case for the far-end talker, the

ERR does not exceed the acoustic coupling level (ACL)

between the loudspeaker and the microphone, unless the

adaptive filter diverges. In the double-talk case, the ERR

has a wide distribution around the ratio between the

averaged levels of the far- and near-end signals as the

mean. The ERR distributions will be different in the single-

and double-talk cases. It is thus reasonable to limit the ERR

to the level expected during single-talk. Taking this into

account, we define gð�Þ for a new robust version of the

UFLMS as

gðjEkðlÞj; jXkðlÞjÞ ¼  S1

jEkðlÞj
jXkðlÞj

� �
jXkðlÞj2

PkðlÞ
; ð6Þ

where  bðaÞ ¼ minfa; bg, which is known as the Huber

function [21], and S1 is the threshold of the limiter. S1 can

be determined from the ACL and the fact that the near- and

far-end signals are balanced on average. We can choose a

fixed S1 to suit the specifications of the system in which the

algorithm is to be implemented.

In similar previous works [11,12], a nonlinearity is

applied to the error scaled by a delicately tuned scaling

variable. In contrast to this, our approach in Eq. (6) uses

the nonlinearity of the ERR, which provides scalability for

the relationship between the error and reference signal

levels.

3.2. Gradient-Limited FLMS Algorithm

An alternative to Eq. (6) is given below:

gðjEkðlÞj; jXkðlÞjÞ ¼  S1 jEkðlÞj
jXkðlÞj
PkðlÞ

� �
: ð7Þ

Equation (7) is a gradient-limited version of Eq. (3). We

call the algorithm with Eq. (7) the gradient-limited FLMS

(GL-FLMS). If jEkðlÞj � jXkðlÞj=PkðlÞ > S1, this corresponds

to the FSSA, which uses Eq. (5). The stability of the GL-

FLMS is ensured by choosing � from within the bounds of

stability for the UFLMS. There is no essential difference

between Eqs. (6) and (7): if PkðlÞ ¼ jXkðlÞj2ð� ¼ 1Þ, Eq. (7)
is identical to Eq. (6). So, in the discussion below, we take

Eq. (7) as the simpler case.

3.3. Interpretation and Improvement

The threshold S1 of the GL-FLMS corresponds to the

slope of the boundary between regions in the reference-

error plane, which is shown in Fig. 2(a). The region Ra is

for when far-end single-talk is expected and the filter is

thus updated by the UFLMS. The region Rb is for when

double-talk is expected and the filter is thus updated by the

FSSA. Though echo path changes may be covered by

the region Rb, the FSSA can still adapt to these without

serious loss of convergence rate. For contrast, the form of

segmentation used in several conventional approaches

[11–13] is shown in Fig. 2(b). The regions are separated

by time-variant boundaries that are perpendicular to the

reference or error axes. Defining the double-talk region

requires adequate and frequent boundary control.

If the maximum of the ACL is known or we can expect

it to be bounded by a maximum level S2, the region Rb in

Fig. 2(a) can be separated into Rb1 and Rb2, as in

Fig. 2(c). In the region Rb2, near-end single-talk is

expected, while double-talk is expected in the region

Rb1. Thus, by more strongly limiting the amount of

updating in Rb2, the accuracy of convergence can be

improved. An improved variant of the GL-FLMS is thus

gðjEkðlÞj; jXkðlÞjÞ

¼  S1 jEkðlÞj
jXkðlÞj
PkðlÞ

� �
 1

S2

PkðlÞ
jEkðlÞjjXkðlÞj

� �
S2; ð8Þ

¼

jEkðlÞj
jXkðlÞj
PkðlÞ

(in region Ra),

S1 (in region Rb1),

S1S2
PkðnÞ

jEkðlÞjjXkðlÞj
(in region Rb2).

8>>>>><
>>>>>:

ð9Þ
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Basically, this approach is similar to that in a much earlier

method [10], where the adaptation is frozen when the ERR

is above a predetermined level. In fact, however, it is

difficult to strictly determine the ACL bound in the

acoustic echo cancellation case, although this may be

possible in the case of network echo cancellation. Thus,

Eq. (9) softly suppresses adaptation in Rb2 by using a term

that is inversely proportional to the ERR, so that some

adaptation takes place, even in response to unexpected

increases in the ACL.

From the above concept, a gradient constrained version

of the GL-FLMS, which corresponds to a robust version of

the FLMS [16], is also easily derived. In the next section,

we give comparative results of simulation on the perform-

ance of this version of the GL-FLMS.

4. SIMULATION

In this section, we give results of simulation that

demonstrate the effectiveness of the GL-FLMS. In partic-

ular, we compare its performance with the performance of

conventional frequency domain algorithms, and examine

dependence on the difference between the near- and far-end

signal levels and on the ACL. We also demonstrate the

good performance of the gradient constrained version of

the GL-FLMS.

4.1. Comparisons with Conventional Algorithms

We compared the GL-FLMS based on Eq. (8) with the

UFLMS based on Eq. (3) and with the two robust

frequency domain algorithms described below.

4.1.1. Conventional method I

When we apply one conventional approach [13] to (3),

we obtain

gðjEkðlÞj; jXkðlÞjÞ ¼ jEkðlÞj
PkðlÞjXkðlÞj
P2
kðlÞ þ P2

thðlÞ
; ð10Þ

where PthðlÞ is a time-variant threshold based on the

estimated noise level, which is updated if the error level is

above the filter’s output level.

4.1.2. Conventional method II

The other conventional approaches [11,12] correspond

to

gðjEkðlÞj; jXkðlÞjÞ ¼  k0ðlÞ
jEkðlÞj
sðlÞ

� �
sðlÞjXkðlÞj
PkðlÞ

; ð11Þ

where k0ðlÞ is a constant, and the scale factor sðlÞ is

controlled by a DTD.

4.1.3. Results

The conditions were as follows. The desired echo was

made by using a 1024-tap FIR filter to form an echo path

with the average ACL of 0 dB (Fig. 3). The sampling rate

was 16 kHz. A smoothing factor � of 0.8 was used in all

cases, after the choice in one pioneering work [17]. For the

GL-FLMS, S1 ¼ 0:5 and S2 ¼ 2. For conventional methods

I and II, the parameters were basically those used in the

original papers, although some, such as those for the

estimation of noise level, were rescaled to take the
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sampling rate, block size, or tap length into account.

Choosing step-sizes for comparable performance of the

algorithms is quite difficult. We chose them that led to the

same steady-state echo return loss enhancement (ERLE)

for a stationary signal input with averaged speech spec-

trum, where

ERLEðnÞ ¼ 10 log10

Pn
m¼n�M

½yðmÞ � sðmÞ � aðmÞ�2

Pn
m¼n�M

½eðmÞ � sðmÞ � aðmÞ�2
½dB�;

ð12Þ

and M is a large enough value for smoothing of the data

(see Fig. 4). White Gaussian noise was added to the echo

as ambient noise with an overall echo-to-noise ratio (ENR)

of 20 dB. The echo path was changed at 3 seconds. We thus

obtained � ¼ 0:2 for the UFLMS algorithm, � ¼ 0:23 for

conventional method I, � ¼ 0:2 for conventional method

II, and � ¼ 0:32 for the GL-FLMS algorithm.

The results for the speech signals were obtained in the

following way. The far- and near-end signals (Fig. 5) were

male and female speech, respectively. The average ENR

was 20 dB. To ensure a minimum stability for all

algorithms, the adaptation was frozen when the far-end

signal level was below 500 on the 16-bit PCM scale, i.e., at

least 12 dB lower than the average signal level. The echo

path was changed at 3 seconds. Figure 6 shows the results

for ERLE performance in the far-end single-talk case. We

can see that conventional method I and GL-FLMS were

more robust against ambient noise than UFLMS and

conventional method II. Figure 7 shows the results for

ERLE performance in the double-talk case. The GL-FLMS

was the most robust. For conventional method II, we

applied an ‘ideal’ DTD with advance detection of the near-

end speech. The other methods did not require the DTD.

Although other parameter choices might have led to better

performance for the conventional methods, note that the

GL-FLMS provided robust performance even though it was

assigned fixed parameters, that is, parameters adjusted by

neither the noise level estimator nor the DTD.

The computational complexity of the GL-FLMS is

similar to or rather less than that of the conventional

method II, since the GL-FLMS does not require peripheral
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threshold estimators. In either case, there is no serious

increase in complexity from the UFLMS.

4.2. Dependence of GL-FLMS Performance on Envi-

ronmental Conditions

The dependence of GL-FLMS performance on the

near- and far-end level balance and on the ACL were

examined. The conditions were the same as in Sect. 4.1,

except as specified below.

To evaluate the dependence on level balance, we tested

three combinations of levels, obtained by scaling the

signals in Fig. 5 as follows: (a) the far-end signal by þ6 dB

and the near-end signal by �6 dB, (b) the far-end signal by

�6 dB and the near-end signal by þ6 dB, and (c) the

original far- and near-end signals. Since the ambient noise

level was unchanged, the ERLE characteristics differed

with the ENR. So the mean squared error (MSE), as

calculated with the near-end speech excluded, was used to

compare the absolute residual echo levels.

MSEðnÞ ¼ 10 log10

Xn
m¼n�M

½eðmÞ � sðmÞ�2 ½dB�: ð13Þ

Figure 8 shows results obtained in the absence of the near-

end signal. This reflects the dependence on the reference

input level during single-talk. The residual echoes con-

verged on a similar steady-state level in all cases. Figure 9

shows results obtained in the double-talk case. Despite the

12-dB difference between levels at the two ends in cases

(a) and (b), the results did not deviate greatly from those

for case (c).

The dependence on ACL was evaluated by comparing

the performance for (a) average ACL = þ10 dB, (b)

average ACL = �10 dB, and (c) average ACL = 0 dB.

The far- and near-end signals of Fig. 5 were used again.

Figure 10 shows the MSEs obtained for the single-talk

case. The differences between Figs. 8 and 10, particularly

those seen in the steady-state, were due to the fixed

reference-level threshold for the freezing of adaptation for

all of the simulations in which we used real speech signals.

Figure 11 shows MSEs obtained in the double-talk case.

Once the residual echo had converged on the steady-state

level, the differences in ACL had no effect on the

robustness against double-talk.

4.3. Performance of the Gradient Constrained Ver-

sion

We also evaluated the gradient constrained version of

the GL-FLMS. We have not given a detailed description of
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the constrained GL-FLMS, because it can be easily derived

by following a gradient constraining scheme in the

literature [15,16]. The following algorithms were com-

pared: (a) the UFLMS, (b) the FLMS, which is really a

constrained version of the UFLMS, (c) the unconstrained

GL-FLMS, and (d) the constrained GL-FLMS. The step-

sizes were adjusted, in the same manner as above: � ¼
0:35 for the FLMS and � ¼ 0:5 for the constrained GL-

FLMS. The other conditions were the same as those used

in Sect. 4.1.

Figures 12 and 13 show the ERLEs in the single- and

double-talk cases, respectively. Some improvement was

obtained by using the constrained GL-FLMS, and the

constraint had no negative effect.

5. CONCLUSION

We have proposed the gradient-limited FLMS (GL-

FLMS) algorithm as a frequency domain algorithm that is

robust against double-talk. In the GL-FLMS, the sizes of

updates are nonlinearly controlled according to the ERR.

Unlike some conventional robust algorithms, the GL-

FLMS achieves its robustness with fixed thresholds

predetermined on the basis of the fact that the far- and

near-end signals will be balanced on average and of the

bounds on the ACL that would be expected in actual

situations. The algorithm’s effectiveness and the reason-

ableness of the underlying concepts were confirmed

through simulation. The GL-FLMS is not essentially

incompatible with approaches in which variable threshold

control is applied. Rather, it can be used as the basic

algorithm in conjunction with peripheral threshold estima-

tors. In other words, the GL-FLMS has potential for further

performance improvement through the use of reasonable

time-variant thresholds.
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