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Abstract: Recent research on the acoustics of the piano are reviewed focusing on the topics which
were presented at the International Symposium on Musical Acoustics in Nara (ISMA2004) and the
International Conference on Acoustics in Kyoto (ICA2004) which were held in Japan from late March
to the beginning of April in 2004. The topics include the secondary partials in piano tones, string
excitation by the hammer, and the coupling between the strings, the bridge and the soundboard. The
existence of the secondary partials was known since late 1970s and called ‘phantom partials’ in a paper
published in 1997.
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1. INTRODUCTION

The International Symposium on Musical Acoustics in

Nara (ISMA2004) and the International Conference on

Acoustics in Kyoto (ICA2004) were held in Japan from late

March to early April in 2004. A purpose of this article is to

review recent studies on the acoustics of the piano focusing

on topics which were presented in these conferences.

Topics include the secondary partials in piano tones, string

excitation by the hammer, and the coupling between the

strings, the bridge and the soundboard. The existence of the

secondary partials was known since late 1970s and called

‘phantom partials’ in a paper published in 1997.

2. SECONDARY PARTIALS

It is well known that a frequency of an upper partial of

an ideal string is an integer multiple of its fundamental [1,2]:

f in ¼
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T

�A

s
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where n is the partial number, T is the tension, � is the

mass density, A is the section area of the string and L is the

speaking length. In the piano, the speaking length is the

distance between an agraffe (or bearing) to a bridge pin as

shown in Fig. 1. Equation (1) is based on the assumption

that a string is perfectly flexible. Practically, a real piano

string has elastic stiffness which resists to bending and the

frequencies of the partials increase. In this case, the

frequency of the n-th partial is given by

f en ¼ f in
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where B is a constant given by

B ¼
�2EI

TL2
ð3Þ

where E is the Young’s modulus, I is the area moment of

inertia given by

I ¼
�d4

64
ð4Þ

where d is the diameter of the string [3].

This deviation from the harmonics is called inharmo-

nicity and this characteristic has been known for a long

time and the description can be found in the historical

treatise by Rayleigh [4].

Another series of partials, however, was observed in

the piano tone since late 1970’s in which the degree of

inharmonicity is about a quarter of the normal inharmo-

nicity [5–8]. An example of the acoustical spectrum is

shown in Fig. 2. Though the investigation on this secon-

dary inharmonicity continued for considerable time, the

cause remained undetermined. In 1997, Conklin [9]

rediscovered this series of partials and named them

‘phantom partials’ in his paper.

Conklin wrote in his 1999 paper [10] that phantom

partials are those that appear at frequencies exactly

harmonic to normal inharmonic string partials, and at

frequencies equal to the sums of the frequencies of normal

inharmonic partials. He also paid attention to the tension

variation during vibration and tried to explain the mech-

anism of the phantom partials. He assumed the end force of

a string, FðtÞ, to be proportional to the square of the

displacement at the center, D.
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He pointed out that when two frequencies, !1 and !2

are put into the center displacement, harmonics and sum

and difference frequencies generated as shown in the

following equation:

FðtÞ ¼ kD2 ¼ kðA1 sin!1t þ A2 sin!2tÞ2

¼ a0 þ a1 cos 2!1t þ a2 cos 2!2t

þ a3 cosð!1 þ !2Þt þ a4 cosð!1 � !2Þt
ð5Þ

where k, Ai, and ai are constants.

For example, when the center displacement is forced to

vibrate at a frequency fn=2
e with n to be even, it is obvious

from Eq. (5) that FðtÞ has a frequency of 2fn=2. By

replacing n by n=2 in Eq. (2), we can obtain

FF
n � 2fn=2

e � f in 1þ
1

2

B

4
n2

� �
ð6Þ

showing that the degree of inharmonicity is about a quarter

of the normal one.

This model is too simplified and does not reflect the

actual loading condition of a piano string which is struck

by a hammer. He could not arrive at a governing equation

of a string to reproduce the secondary partials, either.

However, this paper attracted researchers to the tension of a

string.

As far as I know, a successful governing equation

for the transverse displacement which can reproduce

the secondary partials was first found in 2000 through

the investigation by several research groups in Japan.

Naganuma et al. [11,12,17] and Takasawa et al. [13,15,18]

examined several formulas to incorporate the effect of the

axial force of a string. Finally, it was made clear that the

secondary/phantom partials can be reproduced by adding a

term which represents local variation of tension along the

string. The derivation is summarized below.

When the tension T depends on the axial location x, the

differential equation for the transverse displacement v is

given by

�A
@2v

@t2
¼

@

@x
T
@v

@x

� �
� EI

@4v

@x4
ð7Þ

where the second term in the right hand side corresponds to

the elastic stiffness.

If we decompose T into a constant tension T0 and

fluctuation �T caused by local elongation, the tension T

may be expressed by

T ¼ T0 þ�T ¼ T0 þ ð��ÞA ¼ T0 þ Eð�"ÞA ð8ÞFig. 1 Agraffes, bearing, bridge and hammers of the grand piano.

Fig. 2 Acoustical spectrum of B3 note. Peaks of the secondary/phantom partials are shown by .
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where �� is the increment of the axial stress due to the

local elongation of the string, �" is the axial strain of the

string which may be given by

�" ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
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Substituting Eq. (9) into Eq. (8) and combining with

(7) give
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The second term in the right hand side is generated by

the local elongation of the string. It is pointed out in [19]

that this term was employed by Lee in a 1957 paper [22].

The above mentioned investigation has been performed

by employing a one dimensional differential equation in

which the transverse displacement is the only unknown. A

different approach has been employed by the present author

in which spatial movement of a string is simulated by the

finite element method (FEM) based on the large deforma-

tion theory [14]. In the large deformation theory, an

undeformed configuration and a deformed configuration

are strictly distinguished. The momentum balance of a

body is preserved in the course of the deformation and the

changes of direction and amplitude of axial force due to

deformation are taken into account. This is not the case for

the small strain theory in which the equilibrium equation of

a body is solved with respect to the undeformed config-

uration. Using the method, it was shown that the secondary

partials appear in the spectrum of the velocity component

in the axial direction [20] as well as transverse direction

[16]. One of the characteristics of the secondary partials is

its dependency on the amplitude of loading. It is also

shown in the simulation that the secondary partials become

notable as the loading increases [20,21].

Though the generation mechanism of secondary/

phantom partials has been made clear, it is not certain

whether these partials contribute significantly to the

perceived quality of piano tones [10]. Bensa et al. wrote

in his ISMA2004 paper [23] that those partials contribute

to the ‘‘warmth’’ factor of the timbre, especially for low-

pitched notes. However, it is difficult to say that it is a well

accepted theory.

3. STRING EXCITATION BY HAMMER

Hammers are key components in the piano and they

have direct influence on a piano tone. Though it may sound

hard to believe at first, it is a common practice for piano

tuners to adjust the tone quality of a piano by needling the

hammer felt in a procedure called hammer voicing. The

change can be found clearly in the sound spectra [24].

Accordingly, how to deal with the dynamics of hammers is

one of the key issues in the construction of a physical

model for the piano. Firstly, a hammer is covered by one or

two layers of felt and the material property of the felt is

complicated. The relationship between the applied force

and the compression of the hammer felt shows hysteretic

behavior [25,27,31,32]. Furthermore, very complex process

occurs when a hammer strikes a string. The contact time

between a hammer and a string varies depending on the

hammer velocity. When the contact time exceeds the

round-trip time from the hammer to the agraffe, the

returning wave reaches the hammer at the striking point

and the hammer re-reflects the wave as a nonrigid support.

Therefore, there can be multiple reflections between

hammer and agraffe [26,28–30].

In the ISMA/ICA2004, these issues on hammer were

discussed in several papers.

Stulov [33] showed an analytical solution of a hammer

motion, in which a hammer is modeled by a point mass and

a linear elastic spring interacting with a long flexible string.

The condition in which no reflection wave is needed for a

hammer to rebound is discussed. He also performed

numerical simulation of the lowest ten notes in a grand

piano, in which a nonlinear spring model is employed. It

showed that a hammer leaves a string without the aid of a

reflected wave. In this model, the relationship between the

applied force F and the spring compression uðtÞ is given by

FðuðtÞÞ ¼ t up þ �
dðupÞ
dt

� �
ð11Þ

where k, � and p are constants, which are determined for

each hammer experimentally.

We note that the second term in the brackets is

responsible for the hysteretic behavior of FðuÞ. Stulov [34]

also used this model to evaluate the spectra of two

consecutive notes where the number of strings changes or

where strings are connected to different bridges. The effect

of the position of the striking point is also discussed.

Giordano et al. [35], on the other hand, evaluated the

hammer model shown in Eq. (11) based on the force-

compression relations obtained by their experiments. They

made an assertion that Eq. (11) could not reproduce the

experimental results satisfactorily and they proposed the

following function as an alternative which correlates their

experiments well.

FðuðtÞÞ ¼ k1 1þ
�

1þ exp �

Z t

0

uð�Þd�
� �

8>><
>>:

9>>=
>>;up ð12Þ

where k1, � and � are constants.

According to Eq. (12), the coefficient of up decreases

and approaches k1 as the compression of a hammer felt

accumulates.
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Other ISMA/ICA2004 papers which dealt with the

interaction between a hammer and a string was [36] and

[21]. In [36], the movement of a string is visualized based

on the hammer-string interaction model, in which a

hammer is expressed by a point mass with a nonlinear

spring. The relationship between the force FðuÞ and the

compression u is assumed to be

FðuÞ ¼ k1u
2 þ k2u

3 þ k3u
4 ð13Þ

where k1, k2 and k3 are constants.

In the presented calculation, only the last term is

employed. The deformation of a hammer shank is also

visualized in which the hammer head strikes a rigid string.

In [21], the FEM described in the previous section was

used to simulate the hammer-string interaction. A hammer

was modeled by a point mass with a spring and a dashpot

connected in parallel. A gap element was employed to

simulate the contact and detachment between the hammer

model and a string. It is shown that multiple reflections

between hammer and agraffe can be reproduced by the

method.

4. INTERACTION AMONG STRINGS,
BRIDGE AND SOUNDBOARD

A familiar characteristic of piano tones is double decay

or compound decay [37–42]. That is, the sound amplitude

decreases with two distinct rates, breaking from an original

fast decay called prompt-sound to a later slow decay called

after-sound. It is known that the movement of a piano

string is not restricted in a plane determined by the axis of

string and the direction of the applied force. It is considered

that this is a cause of the double decay. Another

mechanism which may contribute to this compound decay

is the coupling between unison strings. In the following,

these phenomena are discussed.

As for the experimental investigation of the spatial

movement of a string, Tanaka et al. measured the move-

ment of a E1 (the lowest E in the piano) string using a pair

of photo transistors [43,44]. In the ISMA/ICA2004, Mori

[46] also measured the movement of a E1 string using a

photonic displacement sensor and a pair of accelerometers.

According to his experiment, horizontal vibration begins

when the vertical wave generated by a hammer strike

reaches the bridge pin for the first time. It is estimated that

about 1/5 of the amplitude of vertical velocity is trans-

formed into horizontal velocity at bridge pin. The move-

ment of a string obtained by a high-speed camera and a

mirror was also reported for A]2 and A3 [14,21]. It is

shown that the decay of the vertical displacement is faster

than that of horizontal one.

Concerning the numerical investigation of the spatial

movement of a string, Naganuma et al. [47] proposed a

model in which a string moving in both vertical and

horizontal directions is mounted on a soundboard. They

employed an equivalent electrical circuit using a mobility

analogy in which force and velocity correspond to current

and voltage, respectively. In the model, the soundboard is

represented by a spring and a dashpot connected in series

and the movement of a string in each direction is modeled

by a mass connected to a spring and a dashpot. Coupling

between vertical movement and horizontal movement is

represented by an ideal transformer with a turns ratio of n.

By means of this model, the discrepancy between the

vertical frequency and the horizontal frequency which was

observed by Tanaka et al. [43,44] is explained.

Another numerical modeling for the coupling between

vertical movement and horizontal movement at bridge was

proposed in [21,45]. In this model, three parameters, a pair

of spring constants of orthogonally oriented springs, kI , kII ,

and the rotation angle, 	, are employed as shown in Fig. 3.

In this model, the direction of displacement does not

coincide with the direction of the imposed force, except for

two principle axes under the condition kI 6¼ kII , and

coupling between the vertical motion and horizon motion

occurs. This modeling can be used to connect a string and a

soundboard or as an equivalent support which includes the

effect of the soundboard. In [21], FEM analyses of a string

on an soundboard is also shown. The soundboard is a 1m-

by-1.5m rectangular plate with thickness of 10mm. It can

be seen that the motion of the soundboard is considerably

different from the motion of the string suggesting the

importance of including the soundboard into the simula-

tion.

5. FINAL REMARKS

Finally, I would like to add some words on goals of the

research on the piano acoustics. One of them may be to

construct a numerical model which can reproduce the

actual vibration and the wave propagation in and around a

piano based on the Newtonian mechanics and measured

material properties. If such a physical model were realized,

it would have an important meaning on the design of the

piano. Seen from this view point, it may be safe to say that

the extent of various factors which contribute to the tone of

the piano has become clear significantly through long-

u1

u2

θk /2

k /2
k /2

k /2

Fig. 3 Three-parameter modeling at a bridge pin.
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standing research. I believe, however, it is too early to

conclude that the generation mechanism of the piano sound

has been clarified qualitatively. In my view, we could

hardly say that we understand the piano tone unless we can

simulate the tone of the piano faithfully. In other words, it

may be said that there is no qualitative understanding

without quantitative understanding. Seen in this light, it

will take some time to understand the complicated physical

phenomena behind a piano tone.
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