
Principles of sound production in wind instruments

Seiji Adachi�

ATR Human Information Science Laboratories,
Keihanna Science City, Kyoto, 619–0288 Japan

Abstract: This paper presents an outline of the sound production mechanisms in wind instruments
and reviews recent progress in the research on different types of wind instruments, i.e., reed
woodwinds, brass, and air-jet driven instruments. Until recently, sound production has been explained
by models composed of lumped elements, each of which is often assumed to have only a few degrees
of freedom. Although these models have achieved great success in understanding the fundamental
properties of the instruments, recent experiments using elaborate methods of measurement, such as
visualization, have revealed phenomena that cannot be explained by such models. To advance our
understanding, more minute models with a large degree of freedom should be constructed as
necessary. The following three different phenomena may be involved in sound production: mechanical
oscillation of the reed, fluid dynamics of the airflow, and acoustic resonance of the instrument. Among
them, our understanding of fluid dynamics is the most primitive, although it plays a crucial role in
linking the sound generator with the acoustic resonator of the instrument. Recent research has also
implied that a rigorous treatment of fluid dynamics is necessary for a thorough understanding of the
principles of sound production in wind instruments.
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1. INTRODUCTION

The sounding of wind instruments is a self-excited

oscillation. The sound production system comprises the

two major elements shown in Fig. 1. One is the sound

generator, which includes the dynamics of reed vibration

and air flowing through a reed aperture for reed woodwind

instruments and brass instruments, or of an air jet deflected

by sound for air-jet driven instruments. The other element

is the sound resonator, that is, the air-column resonance of

the instruments. These two elements interact with each

other. In a reed woodwind instrument, a flow modulated by

the reed in the generator enters the resonator and excites an

oscillation of the air column. As a response, the resonator

generates sound pressure at the entrance. This pressure acts

as an external force on the reed and influences the

oscillation. In this manner, the sound production system

forms a feedback loop. If the loop gain becomes positive

and overcomes losses such as the acoustic radiation, the

system yields a self-excited oscillation or sounding. The

energy maintaining the oscillation is provided by the air

from the player’s respiratory system.

The generator shows nonlinear behavior because it

contains mechanical oscillation of the reed that may

include collision and fluid dynamics that is innately

nonlinear. On the other hand, the resonator is very nearly

linear except for special cases such as fortissimo played on

the trombone [1]. It is nonlinearity that determines the

characteristics of the generated sound such as the sound

pressure level and harmonic structure.

McIntyre, Schumacher and Woodhouse proposed the

simplest physical model where not only the sounding of

wind instruments but also that of bowed string instruments

can be treated in a unified manner [2]. In the first half of

this paper, the principles of sound production in wind

instruments are outlined by following their model. In the

last half, recent progress in research on sound production is

reviewed. Consequently, it becomes clear that both

experimental and theoretical examinations of fluid dynam-

ics are necessary to further investigate the sounding

principles.

2. MCINTYRE-SCHUMACHER-
WOODHOUSE MODEL

2.1. Generator

Complex phenomena related to reed vibration and the

surrounding air occur in a clarinet mouthpiece. When the

sounding is treated as a lumped system, however, it is

sufficient to know the generator function U ¼ FðpÞ, which
shows the volume flow rate UðtÞ at which the air flows into�e-mail: sadachi@atr.jp
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the instrument for pressure pðtÞ generated at the mouth-

piece.

Figure 2 depicts a schematic diagram of a clarinet

mouthpiece. When the blowing pressure is p0, a pressure

difference p0–pðtÞ occurs at the reed aperture, which results

in generating an airflow through it. The pressure difference

also changes the area of the reed aperture.

To model the generator function in the simplest way,

the following assumptions are made: (1) The reed is a

linear spring, and the area of the reed aperture is propor-

tional to the pressure difference. (2) The airflow through

the aperture is governed by Bernoulli’s law. We then have

U ¼ FðpÞ ¼ AðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0 � pÞ

�

s

¼ bx0
p� p0 þ pc

pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0 � pÞ

�

s
; ð1Þ

where AðpÞ is the area of the aperture, and pc is the pressure
difference needed for the complete closure of the reed. The

modeled generator function is illustrated by the thick line

in Fig. 3. When the mouthpiece pressure p is equal to the

blowing pressure p0, flow velocity vanishes and the volume

flow rate becomes zero. As p is decreased, flow velocity

increases with a rate proportional to the square root of the

pressure decrease in accordance with Bernoulli’s law.

Then, U also increases. As p is further decreased, the reed

is pushed toward the mouthpiece by a larger pressure

difference, and the reed begins to close. This results in a

decrease of U. When p is equal to or smaller than p0–pc,

the reed is closed completely, and U becomes zero.

2.2. Resonator

The resonator can be represented by the reflection

function rðtÞ, which is defined as an incoming pressure

wave that results from a pressure impulse injected into the

entrance of the instrument. In principle, rðtÞ has all of the
information about the resonance of the instrument. When

an outgoing pressure wave pþðtÞ is injected instead of the

impulse, the resulting incoming wave p�ðtÞ can be

calculated with the following convolution integral:

p�ðtÞ ¼ r � pþðtÞ: ð2Þ

Incidentally, mouthpiece pressure pðtÞ and volume flow

rate UðtÞ have a relation with p�ðtÞ as

p�ðtÞ ¼
1

2
½pðtÞ � Z0UðtÞ�; ð3Þ

where Z0 is the characteristic impedance of the plain wave

and is equal to Z0 ¼ �c=S with the air density �, the sound

velocity c, and the cross-sectional area at the entrance of

the instrument.

If the body of the clarinet can be regarded as a cylinder,

the reflection function rðtÞ is simply calculated with

appropriate assumptions as shown in Fig. 4, where 2T is

the time needed for sound to make a round trip between the

entrance and the exit of the instrument.

2.3. Self-Excited Oscillation

Mouthpiece pressure pðtÞ and volume flow rate UðtÞ at
present time t can be calculated with Eqs. (1) and (2). In

practice, (two times the) pressure reflection wave

radiation

flow

feedback

reed oscillation
flow dynamics

pipe
resonance

non-linear linear

energy
source Generator Resonator

Fig. 1 Block diagram of sounding in a wind instrument.
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Fig. 2 Schematic diagram of clarinet mouthpiece.
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Fig. 3 Modeled generator function of clarinet.
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Fig. 4 Reflection function of a cylinder.
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phðtÞ ¼
Z 1

0

rðsÞ½pðt � sÞ þ Z0Uðt � sÞ�ds ð4Þ

is first calculated from past data of p and U. The equations

pðtÞ ¼ Z0UðtÞ þ ph; ð5Þ

UðtÞ ¼ FðpðtÞÞ ð6Þ

are, then, simultaneously solved to obtain pðtÞ and UðtÞ.
Figure 3 also shows how to solve Eqs. (5) and (6)

graphically. Lines (corresponding to Eq. (5)) with a slope

of 1=Z0 and an intercept of ph are drawn there. Intersections

between the lines and the generator function specify the

solutions of pðtÞ and UðtÞ.
Generated pressure waveforms are illustrated in Fig. 5.

At the beginning of the oscillation, p and U are positive.

After the first reflection wave comes back to the mouth-

piece, ph becomes negative. p then becomes negative, and

U is decreased. After the wave makes another round trip,

ph turns to positive. This leads to a positive p and an

increase of U. During the repetition of these processes, the

oscillation amplitude grows.

In the stationary state, the line represented by Eq. (5)

scans the entire positive region of the generator function.

When p takes the maximum value, the air flows upstream

and U becomes negative. At the minimum value of p, the

reed is closed completely and U vanishes. During the

scanning, impulsive volume flows enter the instrument.

2.4. Energy Balance

By considering energy balance, we can understand the

reason why amplitudes of pðtÞ and UðtÞ grow at the

beginning of the oscillation. During dt, the air expelled

from the player’s mouth does work dW on the air column,

which becomes

dW ¼ Force� Distance ¼ pðtÞAðtÞdxðtÞ; ð7Þ

where dxðtÞ is the displacement of the edge of the air

column (acoustic displacement), and AðtÞ is the area of the

reed aperture. Dividing dW by dt yields work rate

_WWðtÞ ¼ pðtÞAðtÞ
dxðtÞ
dt

¼ pðtÞUðtÞ: ð8Þ

Although _WWðtÞ becomes positive or negative at each time t,

we consider total work during one oscillation periodR
(one period)

pðtÞUðtÞdt. If this quantity is positive, it means

that the air gives energy to the air column. Amplitudes of

pðtÞ and UðtÞ may then grow.

The above condition is satisfied if the oscillation phases

of pðtÞ and UðtÞ are nearly the same. As shown in Fig. 3, the

generator function has a positive slope near p ¼ 0. This

implies that UðtÞ oscillates with the same phase as pðtÞ as
long as the amplitude is small. Therefore, the oscillation

amplitude grows. The reason why the amplitude of pðtÞ is
saturated at p0 is that the oscillation energy of the air

column is lost due to negative U for p larger than p0.

2.5. Other Instruments

In brass instruments, the lips vibrate as a reed near the

eigen frequency. This indicates that the dynamics of the

lips should be considered. Therefore, the simplest model of

the brass instrument can be obtained as a minor extension

of the M-S-W model. Lip opening area AðtÞ then becomes

an independent variable in addition to pðtÞ and UðtÞ. These
are governed by Eqs. (1) and (2) and by an equation of the

lip motion.

In air-jet driven instruments, such as the flue organ

pipe, an air jet emerging from the flue exit, after traveling

through the pipe mouth and being deflected by the sound,

impinges on an edge (labium). A part of the airflow coming

into the pipe UjetðtÞ excites air-column oscillation acous-

tically. Let the acoustic displacement at the pipe mouth be

YðtÞ. An infinitesimal fluctuation on the jet caused by the

generated sound is propagated from the flue exit to the

edge. The time needed for the propagation is set to �. The

generator function for the air jet driven instrument then

becomes
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Fig. 5 Synthesized clarinet sound: Attack (left), Stationary state (right).
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UjetðtÞ ¼ FðYðt � �ÞÞ; ð9Þ

where F is a monotone increasing function such as the

hyperbolic tangent. Independent variables are UðtÞ, UjetðtÞ,
YðtÞ and pðtÞ in this case. These are governed by Eqs. (2)

and (9), S _YYðtÞ ¼ UðtÞ (S is the area of the pipe mouth), and

an equation for acoustic radiation from the pipe mouth.

3. RECENT PROGRESS

3.1. Reed Instruments

Schumacher developed a physical model of the clarinet

where the reed is regarded as a spring-mass system with

one degree of freedom, and a reflection function calculated

from the shape of an actual instrument is used [3]. This

model can generate synthesized sound very similar to the

actual one throughout the entire pitch range. More minute

modeling of the reed vibration, such as that using a bending

beam, has also been done [4,5]. Considering the resonance

of the player’s vocal tract, the former investigates the

influence of the vocal tract on the quality of the generated

sound. The latter successfully explains mechanisms of

shifting pitch by the position of holding the reed between

the lips and by the thickness of the reed.

In the double-reed instrument, pressure acting on the

reed pr is different from pressure at the entrance of the

instrument p, since the reed and the instrument are not

connected directly but via a narrow tube [6]. In the narrow

tube, both pressure loss and recovery occur: the former is

due to turbulence and the latter is to re-attachment of the

flow to the tube wall. Experimental and theoretical analysis

on this phenomenon has not been completed yet. Currently,

it is modeled with a parameter � in

pr � p ¼
1

2
��

U

Sr

� �2

; ð10Þ

which relates pr with p [7], where Sr is the cross-sectional

area of the narrow tube. Due to Eq. (10), the generator

function for the double-reed instrument differs from that

for the single-reed instrument shown in Fig. 3. Estimations

of the value of � have been attempted [7,8].

3.2. Brass Instruments

By changing the embouchure and the blowing pressure,

a brass player selects a resonance mode of the instrument to

be excited for generating sound. The dynamics of the lip

reed should, therefore, be appropriately modeled to under-

stand the sounding principle of a brass instrument. By

contrast with the reed of a woodwind instrument, Helm-

holtz inferred that the lips operated as a valve tending to

open with a decrease in mouthpiece pressure (outward-

striking model). Another possible modeling is that with a

valve oscillating perpendicularly to the airflow as the vocal

folds do (sideway-striking model). In this model, the lips

tend to close with a decrease in mouthpiece pressure

because they are driven by Bernoulli pressure in the lip

opening.

The two models provide different pitches of generated

sound. The reason is as follows. First, (1) the lips oscillate

near the eigen frequency. To maintain self-excited oscil-

lation, therefore, the external force should be in the same

direction of the velocity of lip oscillation. Second, (2) the

acoustic load of the instrument is inductive for a frequency

below a resonance frequency and capacitive for a fre-

quency above it. For the outward-striking valve to satisfy

condition (1), the mouthpiece pressure should take the

minimum value at the moment when the lips move toward

the mouthpiece with the maximum velocity. At this

moment, the lip opening area increases from its average

value, and the time-varying component of the volume flow

rate increases from zero. This phase difference between the

mouthpiece pressure and the volume flow, =�p� =�U ¼
�90�, can be achieved when the acoustic load is capacitive.

From (2), sound generated by the outward-striking model

has a fundamental frequency larger than a resonance

frequency fr. Similarly, sound generated by the sideway-

striking model has a fundamental frequency smaller than fr.

Which model simulates the actual lip vibration better?

From simultaneous measurement of the mouthpiece pres-

sure and the lip vibration with a strain gauge, Yoshikawa

showed that the outward-striking model is better for the

oscillation in the lower resonance modes, whereas the

sideway-striking model is better in the higher resonance

modes [9]. The same observations were made in strobo-

scopic measurement of lip vibration [10] and in a blowing

experiment with a Helmholtz resonator [11]. In a physical

modeling simulation [12], it was found that both of the one-

dimensional models generate sound frequencies fs far from

(above or below depending on the models) a resonance

frequency fr, so an actual performance would be totally out

of tune. This inconvenience was resolved by a two-

dimensional model [13] where the lip is represented by

one mass but has two degrees of freedom, for both outward

and sideway vibrations. This model generates fs, which is

not very far from fr, and also successfully replicates

Yoshikawa’s finding.

Toward a more minute model of the lip vibration,

measurement has been done by various methods recently.

One major trend is stroboscopic measurement of lip

vibration [14,15], where surface waves on the lip called

Rayleigh waves are observed. It is likely that the presence

of the Rayleigh wave results in larger spectral levels in the

higher frequency range. The other trend is artificial

blowing experiments. Ehara et al. [16] measured the two-

dimensional trajectory of an artificial lip. Another artificial

lip developed by Gilbert et al. [17] was made of latex tubes

filled with water and equipped with control devices for the
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water pressure, mechanical pressure on the mouthpiece and

blowing pressure. In an experiment with a similar

apparatus [18], it was found that the lip has more than

one eigen mode by driving the lips with external sound.

Vilain et al. [19] measured the lip vibration frequency and

minimum blowing pressure necessary to maintain oscil-

lation as functions of water pressure. They concluded that a

model having at least four degrees of freedom is needed for

consistency with their measurements.

As for computer simulation, self-excited oscillations

were successfully simulated with a two-dimensional finite

element model of the lip [20]. If this simulation is extended

to that in three dimension, A detailed comparison with the

measurement would be possible. For this extension, it

would probably be necessary to model the three-dimen-

sional airflow around the lips. To deal with the coupling

between mechanical oscillation of the lips and the airflow

in three dimensions, highly advanced methods in numerical

analysis would be required.

3.3. Air-Jet Driven Instruments

The model shown in section 2.5 generates sound at a

level at least 10 dB larger than the actual sound pressure

level. Fabre et al. [21] showed that this is because the

energy dissipation is ignored in vortex shedding at the edge

by the acoustic flow. Adopting this effect, Verge et al. [22]

proposed a model of the recorder. This model has another

improvement in that the air jet is considered to excite the

pipe acoustically as a dipole source. This model can

successfully replicate sound generated in the recorder.

Since the late 90’s, research in the air-jet driven instrument

has entered a phase of major change toward a rigorous

aerodynamic description.

Deflection of the jet by sound is the crucial part in the

sounding principle of the air-jet driven instrument. The

generator function in Eq. (9) can be easily obtained from a

jet deflection theory. Currently, the theory proposed by

Fletcher [23] is most widely accepted. This theory

successfully predicts fundamental properties of the instru-

ment such as overblowing behavior with a change in

blowing pressure [24,25], although it is constructed based

on many conceptual approximations.

According to the linear stability analyses [26–28], an

infinitesimal disturbance on a jet of infinite length in an

inviscid fluid grows exponentially with the growth coef-

ficient � and is propagated with the phase velocity Vph. In

Fletcher’s theory, this property of the hypothetical jet is

applied to an actual jet emerging horizontally (in the x-

direction) from the flue slit. In addition, the following

assumptions are made: (1) The jet is superimposed on the

acoustic displacement YðtÞ that oscillates sinusoidally in

the pipe mouth. (2) However, the jet deflection displace-

ment �ðx; tÞ satisfies a boundary condition �ð0; tÞ ¼ 0 at the

flue exit. Then, �ðx; tÞ becomes

�ðx; tÞ ¼ YðtÞ½1� e�xe�i!x=Vph�; ð11Þ

where the first term in the brackets indicates that the jet

oscillates with YðtÞ, and the second term indicates that a

disturbance on the jet �YðtÞ at the flue exit x ¼ 0 grows

exponentially while the jet travels, as the linear stability

analysis suggests.

Several attempts have been made to understand the jet

deflection from an aerodynamic point of view [29,30].

Complex motion of a jet deflected by sound, which can not

be predicted by Eq. (11), has been revealed by measure-

ment of the deflection amplitude by hot-wire anemometry

[31] and visualization [32,33]. The effects of the flue

geometry [34] and the edge angle [35] on the stability of

the jet deflection have been investigated in flow visual-

ization experiments. Recently, an edgetone theory by

Holger et al. [36] has drawn attention as a means of

analyzing the jet deflection. In a recent experiment [37] on

flow visualization with the Schlieren technique, jet de-

flection amplitude was analyzed both with Fletcher’s and

Holger’s theories.

Numerical analysis of a jet with computational fluid

dynamics has become realistic recently. Consequently, a

two-dimensional simulation of a flue instrument [38] has

been developed to a three-dimensional one [39]. An edge-

tone simulation in three dimensions [40] would also be

promising for analyzing the jet deflection. On the other

hand, a two-dimensional simulation of a deflected jet [41]

has been done with reasonable accuracy as judged by

measurement of the jet under the same conditions.

4. CONCLUSIONS

The principles of sound production in wind instruments

were outlined using a simple physical model by McIntyre,

Schumacher and Woodhouse. Recent progress was sepa-

rately reviewed for each type of wind instrument. We

found that three different phenomena are involved in

sounding: mechanical oscillation of a reed, airflow dynam-

ics, and acoustic resonance of the instrument. Until

recently, these have been discussed in many cases with

lumped models with only a few degrees of freedom. Except

for acoustic resonance, multi-dimensional models with a

large degree of freedom would be needed to further

investigate the sound production mechanisms. Due to rapid

development of measurement techniques and computer

simulation, it has become easier to investigate and to

reconstruct the details of these phenomena in multiple

dimensions. However, it still takes physical insight to

understand the essence of sound production, as well as

clarity in aiming toward targets of what to explain and to

what extent.

Acoust. Sci. & Tech. 25, 6 (2004)

404



REFERENCES

[1] A. Hirschberg, J. Gilbert, R. Msallam and A. P. J. Wijnands,
‘‘Shock waves in trombones,’’ J. Acoust. Soc. Am., 99, 1754–
1758 (1996).

[2] M. E. McIntyre, R. T. Schumacher and J. Woodhouse, ‘‘On the
oscillations of musical instruments,’’ J. Acoust. Soc. Am., 74,
1325–1345 (1983).

[3] R. T. Schumacher, ‘‘Ab Initio Calculations of the Oscillations
of a Clarinet,’’ Acustica, 48, 71–85 (1981).

[4] S. D. Sommerfeldt and W. J. Strong, ‘‘Simulation of a player-
clarinet system,’’ J. Acoust. Soc. Am., 83, 1908–1918 (1988).

[5] I. Miyachi and Y. Takasawa, ‘‘A vibration analysis of clarinet
reed,’’ Tech. Rep. Musical Acoust. Acoust. Soc. Jpn., MA00-
17, pp. 3–10 (2000).

[6] A. P. J. Wijnands and A. Hirschberg, ‘‘Effect of a pipe neck
downstream of a double reed,’’ Proc. Int. Symp. Musical
Acoustics, Dourdan, France, pp. 149–152 (1995).

[7] C. Vergez, A. Almeida, R. Caussé and X. Rodet, ‘‘Toward a
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