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1. Introduction
Blind source separation (BSS) is a technique for recover-

ing source signals solely from their mixtures [1]. Various
kinds of BSS methods have been proposed for separating
audio signals mixed in a reverberant condition. Frequency-
domain BSS, where independent component analysis (ICA)
[2,3] is performed separately in each frequency bin, has been
widely considered for its simplicity and efficiency [4–6].
However, most of the results were for separating only two
sources. This is mainly because the permutation problem of
frequency-domain BSS is difficult to solve when there are
many sources.

We have recently proposed a method for solving the
permutation problem [7], which is even effective for more
than two sources. However, just solving the permutation
problem does not provide good separation performance if
there are many sources. We need to solve another problem,
namely the circularity problem, which originates with the
circularity of discrete frequency representation [8]. This
problem has not been carefully considered because it is not
serious in a two-source case but it becomes serious as the
number of sources increases. By solving these two problems,
we succeeded in separating many sources from their con-
volutive mixtures in the frequency domain. This letter reports
the basic structure of the BSS method, and also experimental
results for the separation of up to four sources.

2. BSS for convolutive mixtures
Suppose that N source signals skðtÞ are mixed and

observed at M sensors

xjðtÞ ¼
XN

k¼1

X

l

hjkðlÞskðt � lÞ; ð1Þ

where hjkðlÞ represents the impulse response from source k to
sensor j. If we have enough sensors for the number of sources
(N � M), a set of FIR filters wijðlÞ of length L is typically used
to obtain the separated signals

yiðtÞ ¼
XM

j¼1

XL�1

l¼0
wijðlÞxjðt � lÞ: ð2Þ

ICA is a statistical tool for calculating the filters wijðlÞ without
any information on the mixing system hjkðlÞ and the sources
skðtÞ. We can classify BSS methods into two categories based
on how we apply ICA for convolutive mixtures.

The first is time-domain BSS, where ICA is applied
directly to the convolutive mixture model [9]. It provides
good separation once the algorithm converges, and is easy to
extend to more than two sources. However, ICA for
convolutive mixtures is not as simple as ICA for instantaneous
mixtures, and computationally expensive for long filters.

The other approach is frequency-domain BSS, where
complex-valued ICA for instantaneous mixtures is applied in
each frequency bin. The merit of this approach is that the ICA
algorithm can be performed separately at each frequency, and
the convergence of each ICA is fast. However, there are two
problems to be solved as discussed in the Introduction.

3. Frequency-domain BSS
This section explains the flow (Fig. 1) of frequency-

domain BSS, and also our methods for solving the two
problems. In this flow, time-domain filters wijðlÞ ¼ ½wðlÞ�ij of
length L are obtained by the inverse discrete Fourier transform
of frequency responses Wijð f Þ ¼ ½Wð f Þ�ij calculated by ICA
and the following several processes.

Time-domain signals xjðtÞ at sensors are first converted
into frequency-domain time-series signals Xjð f ; tÞ by short-
time Fourier transform (STFT), where t is now down-sampled
with the distance of the frame shift and f is sampled at L
discrete frequencies. Then, to obtain the frequency responses
Wijð f Þ, complex-valued ICA

Yð f ; tÞ ¼Wð f ÞXð f ; tÞ ð3Þ

is solved, where Xð f ; tÞ ¼ ½X1ð f ; tÞ; � � � ;XMð f ; tÞ�T, Yð f ; tÞ ¼
½Y1ð f ; tÞ; � � � ;YNð f ; tÞ�T and Wð f Þ is an N �M separation
matrix whose elements are Wijð f Þ. Any complex-valued ICA
algorithm can be used in this scheme. The ICA solution in
each frequency bin has permutation and scaling ambiguity:
even if we permute the rows of Wð f Þ or multiply a row by a
constant, it is still an ICA solution.

The permutation ambiguity should be fixed so that Yið f ; tÞ
at all frequencies corresponds to the same source siðtÞ. This is
the permutation problem of frequency-domain BSS. Our
method for the problem [7] is based on direction of arrival
(DOA) estimation [6] and the inter-frequency correlation of
output signal envelopes [5]. Since the DOA estimation
method proposed in [7] is applicable for more than two
sources, the method has become practical for more than two
sources.

The scaling ambiguity of an ICA solution should be taken
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care of not only in frequency-domain BSS but also in time-
domain BSS. The minimal distortion principle (MDP) [9]
resolves this ambiguity by making yiðtÞ as close toP

l hiiðlÞsiðt � lÞ as possible. The same principle can be
considered in the frequency domain [5], and can be realized
by a simple operation Wð f Þ  diag½W�1ð f Þ�Wð f Þ.

The second problem of frequency-domain BSS comes
from the circularity of discrete frequency representation. The
circularity refers to the fact that frequency responses Wijð f Þ
sampled at L points with an interval fs=L ( fs: sampling
frequency) represent a periodical time-domain filter whose
period is L=fs. If the required time-domain filter length is less
than L, the effect of the circularity is not so serious. However,
if the required length is more than L, the time-domain filters
have an overlap with another period, and may cause a problem
as shown in the upper half of Fig. 3. The required length is
generally not as long in a two-source case, but become longer
as the number of sources increases.

Our approach to this problem involves smoothing the
frequency responses Wijð f Þ so that the corresponding time-
domain filter wijðlÞ fits length L and has a small amplitude
around the ends. This is carried out by windowing wijðlÞ�gðlÞ
with a window gðlÞ that tapers smoothly to zero at each end,
such as a Hanning window. With this operation, frequency
responses Wð f Þ obtained by ICA are smoothed. If a Hanning
window is used, the frequency responses are smoothed as
Wð f Þ  ½Wð f��f Þ þ 2Wð f Þ þWð fþ�f Þ�=4. The window-
ing successfully eliminates the spikes. However, it changes
the frequency response obtained by ICA and causes an error
that degrades the separation performance. Therefore, we
minimize the error by adjusting the scaling ambiguity of the
ICA solution before windowing. See [8] for the details of the
error and its minimization.

4. Experimental results
We performed experiments to separate speech signals in

an environment whose conditions are summarized in Fig. 2.
We tested cases of two, three and four sources whose
positions are indicated in Table 1. The sensors were arranged
linearly, and the number of sensors used was the same as the
number of sources.

The signal-to-interference ratio (SIR) and signal-to-dis-
tortion ratio (SDR) were calculated to evaluate how well the
sources are separated, and the degree to which the filter
operation distorts the signals, respectively. To calculate these
values for each output, a separated signal yiðtÞ is first
decomposed into a target signal

P
l uiiðlÞsiðt � lÞ and an

interference signal
P

k 6¼i
P

l uikðlÞskðt � lÞ, where uikðlÞ is the
impulse responses from a source skðtÞ to the separated signal
yiðtÞ defined as

uikðlÞ ¼
XM

j¼1

XL�1

�¼0
wijð�Þhjkðl� �Þ: ð4Þ

The SIR is defined as the power ratio of the target and the
interference. Then, the target signal is decomposed into a
scaled version of a reference riðtÞ and a distortion eiðtÞ. We
selected riðtÞ ¼

P
l hiiðlÞsiðt � lÞ as the reference following the

MDP [9]. Thus, the target signal is decomposed asP
l uiiðlÞsiðt � lÞ ¼ �i � riðtÞ þ eiðtÞ, where �i is a real-valued

scalar that minimizes the distortion eiðtÞ. The SDR is defined
as the power ratio of �i � riðtÞ and eiðtÞ.

Table 1 shows the result of batch processing for 7 second
observations. We see that the smoothing discussed in the
previous section improved the SIR and SDR in every setup,
especially with three and four sources. We used filters of
length L ¼ 2048 because this length performed the best under
the conditions. The ICA algorithm we used was FastICA [3]
followed by InfoMax combined with the natural gradient [2]
of 50 iterations to obtain further improvement. Good
separation was achieved with a practical execution time.

Figure 3 shows the impulse responses uikðlÞ when there
were three sources. Those on the left u11ðlÞ correspond to the
extraction of a target signal, and those on the right u13ðlÞ
correspond to the suppression of an interference signal. The
upper responses were obtained without considering the
circularity problem, and the lower ones obtained with
smoothing. We see that the smoothing effectively eliminates
the spikes caused by the circularity of the discrete Fourier
transform.

The BSS system was capable of operating in real time for
three sources when we used shorter filters L ¼ 1024 and
decreased the number of iterations to 35 in the natural

W( f )

X( f ,t)

y(t)x(t)

smoothingpermutation scalingICA

W( f )
STFT IDFT

w(l)
mixed signalss eparated signals

Fig. 1 Flow of frequency-domain BSS. 4cm

4cm 1.2m
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a 150°

b 110°
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d 30°Room size:
4.45 × 3.55 × 2.50 m

Reverberation time:
130 ms

Sampling rate :
8000 Hz

Fig. 2 Experimental conditions.

Table 1 Batch processing results.

#sources 2 3 4
position a b a b d a b c d

smoothing no yes no yes no yes

SIR (dB) 19.3 20.3 13.7 16.9 9.3 13.2

SDR (dB) 18.0 19.3 13.9 15.7 10.8 11.3

exec. time 9.9 s 18.7 s 28.3 s
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gradient. We used the same system structure as that used for
two sources described previously [10]. Figure 4 shows the SIR
for each source, where the source at position ‘‘d’’ started to
move to position ‘‘c’’ at a time of 15 seconds. Since the filter
coefficients were updated every 2 seconds, the system tracked
the movement and recovered the SIRs. We see that the SIR of
the moving source (‘‘d’’!‘‘c’’) is not degraded as much as the
other sources when it moves. An interpretation of this kind of
phenomenon is discussed in [10].

5. Conclusion
We have presented a frequency-domain BSS method that

is practically applicable for more than two sources by
overcoming the permutation and circularity problems. The
experimental results show the effectiveness and efficiency of
the BSS method. We also reported results for the separation of
six sources with a planar array of eight sensors [11].
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Fig. 4 Separation performance of real-time processing
for moving sources.
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Fig. 3 Impulse responses uikðlÞ obtained without con-
sidering the circularity problem (above) and with
smoothing (below).
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