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1. Introduction
Precisely locating endpoints of the speech signal under

noisy environments can remove the noisy segment and reduce
the recognition error rate in speech recognition. In this paper,
the probability density function of eigenvalues of embedded
time-delayed space of speech signal is first estimated, on
which space-energy-entropy is defined. Experimental results
show that this entropy is very useful in distinguishing the
speech segment from the non-speech parts. In this paper, a
new algorithm for endpoint detection is proposed based on the
space-energy-entropy.

2. Principal component analyses
The eigenspace of the noisy speech data can be divide into

two subspaces [1]. One is the signal-plus-noise subspace and
another is the noise subspace. The energy of the speech signal
mainly focuses on the signal-plus-noise subspace. The energy
of the random noise can be approximately considered to
distribute uniformly in the noise subspace.

Consider one frame of speech signal xðnÞ corrupted by an
additive stationary background noise. We obtained the
following M-dimensional vectors by embedding xðnÞ in the
space of the delayed coordinates:

yðnÞ ¼ ½xðnÞ; xðn� lagÞ; � � � ; xðn� ðM � 1Þ � lagÞ�T ð1Þ

where M is the embedding dimension, lag is the delay,
n ¼ ðM � 1Þ � lag,� � �, N � 1, N is the frame size. We assume
that the data set has zero mean and consider the following
orthogonal transformation:

yðnÞ ¼
XM
m¼1

smðnÞAm ð2Þ

The goal of PCA is to find the orthogonal eigenvectors {Am,
m ¼ 1,� � �, M} associated with real non-negative eigenvalues
[�1; � � � ; �M] of the covariance matrix C ¼ hyðnÞyðnÞTi. The
eigenvalues are ordered �1 � �2 � � � � � �m. The principal
components smðnÞ can be found by projecting the data vectors
onto each eigenvector:

smðnÞ ¼ yðnÞTAm m ¼ 1; � � � ;M ð3Þ

The eigenvalues equal to the variances of the principal
components and they also represent the energy’s magnitude of
each dimension of the eigenspace.

Figure 1 shows the waveform of the isolated Mandarin

digits ‘‘Wu’’and‘‘Ba’’ embedded in additional white Gaussian
noise. The SNR of the waveform is 5dB. The following
parameters have been chosen: 1) frame size N¼120 without
overlap. 2) Hamming window. Then one frame of noisy
speech signal is time-delayed embedded to get an
M�ðN�Mþ1Þ matrix X:

xð0Þ xð1Þ � � � xðN �MÞ
xð1Þ xð2Þ � � � M

M M O M

xðM � 1Þ xðMÞ � � � xðN � 1Þ

2
6664

3
7775 ð4Þ

Doing PCA on matrix X, a group of eiginvalues [�1; � � � ; �M]
are determined.

Figure 2 shows the magnitude of eigenvalue of the
different frames of the noisy speech signal in Fig. 1. We can
find that each eigenvalue’s magnitude is almost similar in the
frame of noise. It implies that the noise’s energy distributes
uniformly in the each dimension of the time-delayed embed-
ding space. But in the frame of the signal-plus-noise, the
eigenvalue’s magnitude of the first 10 dimensions is much
larger than that of the last 5 dimensions. So the first 10
dimensions can be considered as the signal-plus-noise sub-
space. The last 5 dimensions are primarily occupied by noise
and can be considered as the noise subspace.

3. Endpoint detection based on space-energy-entropy
The probability density function pi is defined as:

pi ¼ �i

,XM
i¼1

�i i ¼ 1; . . . ;M ð5Þ

where �i is the eiginvalue of the i dimension of the time-
delayed embedding space. pi is the proportion of contribution
of principal component si to speech signal and can be also
considered as the probability of speech signal’s energy
concentrating on the i dimension. The corresponding space-
energy-entropy Hk for the k frame is defined as:

Hk ¼ �
XM
i¼1

pi logpi ð6Þ

Figure 3 shows the space-energy-entropy of the waveform in
Fig. 1. Because the probability distribution of the speech’s
space-energy is different from that of the noise’s space-
energy, voiced space-energy-entropy is quite different from
non-voiced one. Based on this character, the endpoints can be
properly pointed out by comparing space-energy-entropy with�e-mail: xw7777@163.com
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the properly decision threshold.
Because the Eq. (5) computes the probability of speech

energy concentrating on one dimension, it only considers
energy-distribution within one frame but neglects the differ-
ence of energy among frames. It is obvious that voiced and
non-voiced segment can not be discriminated by space-
energy-entropy when the background noise i.e. a segment of
musical has the same energy-distribution in time-delayed
embedding space as the clean speech signal. The locations of
clean speech signal in Fig. 1 are remained and the background
noise is replaced by a segment of saxophone musical. Figure 4
shows the space-energy-entropy of this waveform. Then the
speech segment can not be distinguished from the non-speech
parts by the entropy. Considering the sum of speech plus noise
is always greater than energy of noise, we can revise Eq. (6)

by two ways. One is that via the equation
PM
i¼1

�i ¼ Ek Eq. (6)
can be rewritten as the following:

Hk ¼ �
XM
i¼1

�i=Ek � logð�i=EkÞ

¼ �Ek
�1

XM
i¼1

�i log �i �
XM
i¼1

�i logEk

 !

¼ �Ek
�1

XM
i¼1

�i log �i � Ek logEk

 !
ð7Þ

, Ek � Hk � Ek logEk ¼ �
XM
i¼1

�i log �i

define : Hk
0 ¼ �

XM
i¼1

�i log �i ¼ Ek � Hk � Ek logEk

ð8Þ

Hk
0 can be viewed as space-energy-entropy Hk weighted with

energy.
The second method is that Eq. (6) can be modified as:

Hk ¼ �Ek
0 �

XM
i¼1

pi logpi ð9Þ

where Ek
0 ¼

PN
n¼1

x2ðnÞ denotes the energy of the k frame noisy

speech signal.
Figures 5(a) and 5(b) show the space-energy-entropy

respectively computed by Eqs. (8) and (9).Their contours of
waveform are almost the same. For decreasing the complexity
of computation, the first method is chosen in this paper.

4. Experiment results and discussion
4.1. Performance evaluation criteria and speech database

We use Weighted Accuracy [2] a evaluation parameter
which gives greater weight to the effect of word clipping than
to widening. The clean speech data used in the experiments
are the set of isolated Mandarin digits from 19 speakers. The
testing database has been created by adding different types of
background noises from the Noisex Database to the clean
speech data, at SNRs ranging from 5 dB to 15 dB. The time
duration of each group of test data is 15 s. The sampling
frequency is 8 kHz with 16 bits resolution. The frame size
N¼120 samples with non-overlapped Hamming windowing,
the embedding dimension is 15.

Wu Ba

frames

Fig. 1 Noisy signal (additive white Gaussian noise SNR=5 dB).

Fig. 2 Eigenvalues of time-delay embedding space.

space-
energy-
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Threshold
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start2end1 end2

entropy

Fig. 3 Space-energy-entropy (additive white Gaussian
noise also showed the detected beginning and ending
boundaries).

space-

frames

energy-
entropy

Fig. 4 Space-energy-entropy (additive saxophone muscial).
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The entropy must compare with some decision thresholds
to discriminate voice and non-voice. In this paper, two
thresholds are used. One is the voice-threshold and another is
non-voice threshold. More detail can refer to the algorithm 2
in paper [3]. In addition, A fast algorithm based on discrete
cosine transform is used to approximate Karhunen-Loeve
transform for the eigen decomposition of a N�N covariance
matrices,which reduces computation cost from OðN3Þ to N2

[4].
4.2. Compared with spectral-entropy

Spectral-entropy is calculated by the probability density
function for spectrum [5]. The energy and entropy are
integrated for endpoint detection in a noisy in-car environ-
ment [6]. There is correspondence between space-energy-
entropy and spectral-entropy. The former estimates the
energy-distribution on space by orthogonal transform while

the latter estimates the energy-distribution on spectral by
Fourier transform. Table 1 shows the results of endpoint
detection on testing database with space-energy-entropy and
spectral-entropy [6].

It can be noted from Table 1 that the Average Weighted
Accuracy of space-energy-entropy is as much as that of
spectral-entropy under white Gaussian noise. When the
background noise is aircraft cockpit noise or automobile
highway noise, the results of space-energy-entropy are better
than those of spectral-entropy and the average clipping frames
of the space-energy-entropy are smaller than those of spectral-
entropy., which is suitable fro automatic speech recognition.
4.3. Endpoint detection of actual noisy speech signal

Figure 6(a) is a segment of actual pilot’s voice in ultra
shortwave channel. The double arrowheads in Fig. 6(a) point
to the pilot’s voice and the others are the noise of the ultra

frames
(a)

frames
(b)

Fig. 5 (a) Space-energy-entropy by Method 1 (additive
axophone muscial). (b) Space-energy-entropy by
Method (additive axophone muscial).

Table 1 Average Weighted Accuracy of the test data by two methods.

Background WGN AIR HWY
noise

Method Space-energy- Spectral- Space-energy- Spectral- Space-energy- Spectral-
entropy entropy entropy entropy entropy entropy

Average 5 dB 35.8 34.4 19.9 39.3 19.9 52.7
clipping 10 dB 11.9 15.0 15.0 35.7 18.1 45.7
frames 15 dB 4.8 7.6 14.4 30.3 17.0 43.8

Average 5 dB 0.3 0.0 19.2 23.2 19.2 0.0
widening 10 dB 1.1 0.0 19.6 0.0 19.6 0.0
frames 15 dB 1.1 0.0 19.6 0.0 19.6 0.0

Average 5 dB 50.3 48.2 39.7 69.0 39.7 75.7
Weighted 10 dB 17.3 21.0 31.8 49.9 33.2 63.9
Accuracy 15 dB 7.3 10.6 30.9 42.5 31.6 61.2

frames
(a)

frames
(b)

frames
(c)

Fig. 6 (a) The actual pilot’s voice in ultra shortwave
channel. (b) Space-energy-entropy. (c) Detected pilot’s
voice.
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shortwave channel. Figure 6(b) shows the space-energy-
entropy of the waveform of Fig. 6(a). Figure 6(b) shows the
detected voice. It is obvious that using the space-energy-
entropy can discriminate the voice and non-voice effectively.

5. Conclusion
A space-energy-entropy-based algorithm for accurate and

robust speech endpoint detection is proposed in this paper.
Experimental results show that the embedded speech seg-
ments can be successfully extracted from utterance containing
a variety of background noise.
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