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1. Introduction
In a solid material, two types of elastic waves exist:

longitudinal waves and shear waves. In numerical analysis,
absorbing boundaries are sometimes required to express the
unlimited space of the solid material. However, the absorbing
boundary must be coded in a sophisticated manner [1–3] to
account for the different acoustic characteristics of these two
types of waves, and it proves quite difficult to absorb both
waves perfectly at the same time.

The present author has been involved in evaluating the
effectiveness and potential utility of scalar and vector velocity
potentials in elastic wave fields [4,5]. The present report
introduces a new usage for the scalar and vector velocity
potentials in coding the absorbing boundary in a manner
suitable for the finite-difference time-domain (FDTD) analy-
sis of elastic wave fields. If a linear approximation is assumed
in a homogenous solid, the longitudinal and shear waves
propagate individually without interaction or mode conver-
sion. Thus, absorbing boundaries can be realized for both
longitudinal and shear waves simultaneously through the use
of two (scalar and vector) separate velocity potentials.

Randall also used potentials (not velocity potentials) in
defining the absorbing boundaries of elastic wave fields
appropriate for use in an FDTD formulation [2]. However, the
inclusion of a Laplacian in the constitutional equations for
Randall’s formulation at the points of the absorbing boundary,
amongst other factors, rendered the method not fully suitable
for the FDTD algorithm. Here, velocity potentials are treated
as scalar waves in definition of the absorbing boundary. The
calculation procedure is as follows: (1) Stress and particle
velocities are analyzed, excluding the absorbing boundaries.
(2) Velocity potentials are treated individually as scalar waves
and formulated by a leap-frog algorithm matched to the
FDTD formulation. These wave fields are set near the
absorbing boundaries and coded as absorbing boundary
conditions. (3) Particle velocities at the absorbing boundaries
are then calculated using the velocity potentials. The method
proposed here allows for easy and effective formulation of
arbitrary scalar wave formulations for absorbing boundary
conditions.

The method is applied in this report to formulation of the
absorbing boundary condition for a simple model as verifi-
cation of the method’s effectiveness.

2. Fundamental equations
For simplicity, a two-dimensional surface-strain problem

will be assumed. The fundamental constitutional equations for
solids in this system are expressed as follows.
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Equations (1) and (2) describe Hook’s law and Newton’s
second law, respectively [6]. Isotropic characteristic being
assumed, the conditions of c33 ¼ c11 and c55 ¼ ðc11 � c13Þ=2
are imposed on the stiffness constant matrix elements. In the
equations, � is mass density, _uu and _ww are particle velocities in
the x and z directions, T1 and T3 are normal stresses, and T5 is
shear stress. The relationships between the stress vector (Ti:
i ¼ 1; 3; 5) and stress tensor (Tjk: j, k ¼ x; z) are defined as
T1 ¼ Txx, T3 ¼ Tzz and T5 ¼ Txz [6].

The velocity potentials � and A are defined as follows.

_uu ¼ grad�þ rotA ð3Þ

where � is a scalar velocity potential and A ¼ ½’1; ’2; ’3� is a
vector velocity potential. In the two-dimensional case men-
tioned above, _uu and _ww are expressed as follows.
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From Eqs. (4) and (5), we obtain
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where _UU1 ¼ Z0 _uu1 and _UU3 ¼ Z0 _uu3, Z0 ¼
ffiffiffiffiffiffiffiffiffi
�c11
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cP; cS is the phase velocity of a longitudinal and shear wave,
respectively. From Eqs. (6) and (7) we derive the following.
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Here, _�� and _’’2 represent the time differential of a scalar
velocity potential and a vector velocity potential, respectively.

The wave equations of velocity potentials (6) and (7) will
be used to define the absorbing boundary. The ability to relate
the calculation results for the velocity potentials to the values
of the elastic variables is important for formulating equations
suitable for FDTD analysis. Thus, the wave equations (6) and
(7) are broken down here into the following six constitutional
equations.

�
@i�x

@t
¼ �

@ _��

@x

�
@i�z

@t
¼ �

@ _��

@z

1

c11

@ _��

@t
¼ �

@i�x

@x
þ

@i�z

@z

� �
ð11Þ

�
@i’z

@t
¼ �

@ _’’2

@x

�
@i’x

@t
¼ �

@ _’’2

@z

1

c55

@ _’’2

@t
¼ �

@i’z

@x
þ

@i’x

@z

� � ð12Þ

where i�i and i’j (i; j ¼ x; z) are expediently adopted
variables.

3. FDTD formulation of elastic and velocity potential
equations
Figure 1 shows the lattice configurations of the FDTD

method for analyzing the elastic, scalar velocity potential and
vector velocity potential wave fields. The lattice regions of the
elastic and velocity potentials fields overlap.

Reformulating first equation of Eq. (1) by the FDTD
method gives
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where i and k indicate the number of numerical points in the
x- and z-directions, n is a time step, and �d and �t are the
spatial and temporal discrete lengths. The spatial lattice
interval is arranged as �x ¼ �z ¼ �d.

Similarly, first equation of Eq. (2) becomes
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The other differential equations of Eqs. (11) and (12) are
formulated in a similar manner. Using the FDTD formulation,
the stress and particle velocities can be calculated alternately
according to the time step �t.

Equations (8) and (9) are used to obtain velocity potentials
from particle velocities, with approximation by the center
finite difference. The equations in FDTD formulation are then
derived as follows.
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However, it is also necessary to have a formulation that
determines the particle velocities from the velocity potentials.
Appropriate relationships can be derived from Eqs. (4) and (5)
by applying the center finite difference approximation, as
follows.

Fig. 1 Variables at the crossing point of three lattice
networks. (1) Elastic stress and particle velocity field,
(2) scalar velocity potential field �, and (3) vector
velocity potential field ’2. Thin dotted lines indicate
discrete overlapping points.
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4. Calculation procedure, model and result
Figure 2 shows a calculation model for verification of the

proposed definition of an absorbing boundary in the FDTD
analysis of elastic fields. The elastic variables were calculated
for the entire the region except for particle velocity points at
the absorbing boundaries. The scalar and vector velocity
potentials were calculated in the shaded region of Fig. 2. The
scalar and vector velocity potentials on the dotted lines at x1
and z1 in Fig. 2 were calculated by Eqs. (15) and (16), and _UU1

and _UU3 on the absorbing boundaries were determined from
Eqs. (18) and (19).

A flow chart of the computational procedure is shown in
Fig. 3. The lattice figures beside the chart are discrete points
of the elastic, scalar velocity potential and vector velocity
potential fields around the point of z ¼ z1. The solid black and
open circles are calculation points.

A first-order approximation is applied on the absorbing
boundaries of the velocity potential fields _�� and _’’2. The
boundaries a-o and b-o are symmetrical, and a-c and c-b are
the absorbing boundaries. Stresses T1 and T3 at the center
point (0,0) and T5 at (1,1) are the input points in Fig. 3. The
waveform of the input signal is a single-period sinusoid.

Figure 4 shows the stress ðT1 þ T3Þ=2 at three time steps.
Wave propagation associated with the stress ðT1 þ T3Þ=2 is
know to be almost entirely longitudinal [4]. As shown in
Fig. 4, the longitudinal wave is well attenuated at the

absorbing boundaries. Figure 5 shows the case for propagation
of the T5 wave, which will be almost entirely shear. Despite
the distribution of stress T5 being more complicated than the
shear wave [4], as well as the low amplitude of T5 compared
to ðT1 þ T3Þ=2 and the many little waves that appear behind
the headmost T5 wave (S), the absorbing effect appears very
good. It is expected that use of a technique such as the
pseudo-maximum likelihood method [7] will allow the
absorbing effect to be further improved.

5. Conclusion
Velocity potentials were introduced for defining the

absorbing boundary in the numerical FDTD analysis of two-
dimensional elastic wave fields. In this method, velocity
potentials are treated as scalar waves individually and
formulated numerically by a leap-flog algorithm appropriate
to the FDTD method, and the absorbing boundary condition is
coded at the boundary of two scalar waves representing
longitudinal and shear waves. Thus, the method allows for
easy and effective formulation of arbitrary scalar wave
formulations for absorbing boundary conditions, and is readily
applicable to systems including both longitudinal and shear
waves.

Fig. 2 Simple analysis model for confirming the effec-
tiveness of the proposed definition of absorbing
boundaries.

Fig. 3 Flow chart of FDTD analysis for elastic wave
fields in solids with absorbing boundaries defined using
velocity potentials. Hatching parts of the chart show
calculations of the new technique.
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Through application to a simple model, the method was
confirmed to be effective for implementing an absorbing
boundary for elastic wave fields in FDTD analysis. The
method is currently being extended to three-dimensional
cases.
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Fig. 4 Propagation of stress ðT1 þ T3Þ=2 analyzed using
the calculation model in Fig. 2 at times steps of (a) 200,
(b) 250, and (c) 350.

Fig. 5 Propagation of stress T5 analyzed using the
calculation model in Fig. 2 at time steps of (a) 300,
(b) 450, and (c) 650.
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