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1. Introduction

It is very important for the natural interfaces of machines
like self-moving robots to capture and recognize distant-
talking speech with high accuracy. However, background
noise and room reverberations seriously degrade the sound
capture quality in the real acoustic environments. A micro-
phone array is an ideal candidate for capturing distant-talking
speech. With a microphone array, a desired speech signal can
be acquired selectively by steering the directivity. Accord-
ingly, super-high directivity is necessary to reduce noise
signals.

To form directivity, delay-and-sum beamformers [1,2]
and adaptive beamformers [3,4] have been proposed as
conventional beamformers. A delay-and-sum beamformer
forms super-high directivity to the desired signal, and an
adaptive beamformer forms null directivity to the noise signal.
However, delay-and-sum beamformers have two serious
drawbacks: the performance is not good enough to capture
the desired signal without a sufficient number of transducers,
and performance degrades in highly reverberant rooms. On
the other hand, adaptive beamformers can form null
directivity with a small number of transducers. Furthermore,
they can form sharper directivity than delay-and-sum
beamformer. Consequently, adaptive beamformers are often
used for the front-end processing of ASR (Automatic Speech
Recognition) [5].

AMNOR (Adaptive Microphone-array for NOise Reduc-
tion) [4] is an adaptive beamformer proposed by Kaneda et al.
in 1986. AMNOR is an effective beamformer for capturing
and recognizing desired distant signals in noisy environments.
Also, it can be easily designed with an adaptive filter for noise
reduction in real environments, because it only allows small
distortion for capturing the desired distant signal.

However, if we knew the spectrum characteristics of
desired distant signals when designing the adaptive filter of
AMNOR, its performance could be further improved. The
conventional AMNOR is designed to suppress the spectrum
distortion of the desired distant signal on all frequency bands,
but in many cases, the purpose of signal capture is limited to
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speech capture. Therefore, in this paper we regard speech as
the desired distant signal and design AMNOR by using the
speech spectrum for distant-talking speech capture and
recognition.

2. AMNOR (Adaptive Microphone-array for NOise

Reduction)

Figure 1 shows a block diagram of the adaptive
beamformer. In Fig. 1, S(w) is the Fourier transform of the
desired signal and Y(w) is the Fourier transform of the output
signal. G,,(w) is the acoustic transfer function from the
desired sound source to the m-th microphone element and
H,(w) is the frequency response of the m-th filter. The
frequency response F(w) of the adaptive beamformer to the
desired signal is represented as

M

F(@) =Y Gu@)Hy(), (1)
m=1

where M is the number of microphone elements. The concept

of the adaptive beamformer is to minimize the output noise

energy while constraining F(w) to the desired frequency

response. AMNOR [4] has the constraint shown in Eq. (2):

D= f|1 — F(w)*dw < D. )

This constraint attains maximum noise reduction while
allowing a small distortion D in the frequency response to

Fig.1 Block diagram of adaptive beamformer.
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Fig.2 Overview of AMNOR.

the desired signal. In this paper, we focus on suitable control
of the admissible distortion D in the frequency response for
noisy speech recognition. Figure 2 shows a general overview
of AMNOR. In Fig. 2, each VFI, AF, and VF2 is a FIR filter
with M-input and 1-output. AF is the adaptive filter, and VF1
and VF2 are variable filters that have the same filter
coefficients as AF. A quasi-desired signal s'(k) is indispen-
sable for designing the adaptive filter of AMNOR because
AMNOR attains maximum noise reduction with a quasi-
desired signal and an environmental noise signal from the
environment. The quasi-desired signal s'(k) derives As;(k —
7;) from amplifier and time delay t,i = 1,...,M, which is
calculated subject to the known desired sound source’s DOA
(Direction Of Arrival). This situation assumes the simulation
where signal As’(k) arrives from the desired sound source with
known DOA to the microphone array. In addition, the
microphone only captures the noise signal wuy;(k),i=
1,...,M (not including the desired signal), and it is inputted
in the adaptive filter AF after adding it to quasi-desired signal
As;'(k — ;). AF controls the filter coefficients based on e(k)
as the following Eq. (3).

e(k) = As'(k — 7o) — y'(k), 3)

where 7 is the constant delay for cause and effect. es(k) is
calculated by using VF2 after designing the filter coefficients
by AF, and current distortion D is derived from Eq. (4).

D = |es(k)/A|>. 4)

By comparing current distortion D and admissible distortion
ﬁ, amplitude A is renewed with the amplifier until D < D.Tn
the above algorithm, AMNOR attains higher noise reduction
performance in real acoustic environments.

3. Suitable design of AMNOR based on average speech

spectrum

The conventional AMNOR uses a white Gaussian signal
that has flat frequency characteristics as a quasi-desired signal
in order to suppress the spectrum distortion of the desired
signal on all frequency bands. But in many cases, the purpose
of signal capture is limited to speech capture. Therefore, if we
knew the spectrum characteristics of desired distant signals in
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advance, it may be possible to improve the performance of
AMNOR by designing a suitable adaptive filter for the
environment. In this paper, we regard speech as the desired
distant signal and design AMNOR by using the speech
spectrum for distant talking speech capture and recognition.
First, we calculate the average speech spectrum weight by Eq.
(5).

1

L N
W) = > 3 SPiw;n), 5)

=1 n=1

where L represents the number of speech (words), N
represents the number of frames, SP;(w;n) represents the
Fourier transform of speech signed sp;(f), and W, (w)
represents the average speech spectrum weight. The quasi-
desired signal based on the average speech spectrum is
derived from weighting the white Gaussian spectrum with the
average speech spectrum weight W, (w). Figure 3 shows the
spectrum of white Gaussian as the quasi-desired spectrum for
the conventional AMNOR and the spectrum of average
speech weighted as quasi-desired spectrum for the proposed
AMNOR. Compared with the spectra in Fig. 3, the average
speech weighted spectrum is enhanced at lower frequencies.
We attempted to improve the ASR performance by using the
average speech spectrum weighted quasi-desired signal for
AMNOR, and this modified system was named S-AMNOR.
In addition, we also investigated whether the average
speech spectrum weight is normalized to keep the energy ratio
equivalent between vowels and consonants on each frame
when estimating Wy,(w) in Eq. (5). We further consider a new
spectrum weight defined by Eq. (6). This weight is capable to
balance the occurrence of vowel and consonant frames.

11 &1
W) =-—Y —Y 5P, (w;
@) =2 N, 2 SPu@m

c =1Vl p=

1

1 Ly Ni,
+-2 N ; SPy, (; n)>, (6)

V=1

where L, represents the number of vowels, L. represents the
number of consonants, N;, represents the number of vowel
frame on each speech (word), and N, represents the number
of consonant frame on each speech (word). The system using
this modified Wy, was named Normalized S-AMNOR.
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Fig.3 Spectrum of quasi-desired signal.
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4. Evaluation experiments
4.1. Experimental conditions

We evaluated the ASR performance in a real acoustic
room. Figure 4 shows the experimental environment, and
Table 1 shows the experimental condition. The desired distant
signal arrives from the front direction (90 degrees), and the
noise signal arrives from the right and left directions (40
degrees and 120 degrees, respectively). The distance between
the sound source and the microphone array is two meters. In
this situation, the ASR performance was evaluated by
variations in the admissible distortion D as Eq. (2). ASR

5.83m
e T »
t
1
Noise (120 degrees) .
1
- Target Speech !
g " M 2_ m_ .D:l (90 degrees) F
1
§ =
< 1
Q 40 ‘\\ 2 :
D \@ '
‘
Noise (40 degrees) :
1
1
: —l—\ :
S ¥

Fig.4 Experimental environment.

Table 1 Experimental conditions.

Recording conditions

Reverberation time
Microphone array

T[60] = 180 ms
Linear type 14 transducers,
2.83 cm spacing

Sampling frequency 12kHz (Quantization: 16 bit)

Experimental conditions for ASR

Frame length
HMM
Feature vector

32 ms (Frame interval: 8 ms)
Gaussian mixture density (3 states)
MEFCC (16 orders, 4 mixtures),
AMEFCC (16 orders, 4 mixtures),
Apower (1 order, 2 mixtures)

Average speech spectrum weight

Speech DB ATR speech DB SetA [6] and
ASJ continuous speech corpus [7]
Speech (L) 2,620 words x4 subjects and

150 sentenses x64 subjects
L.: 28,156 phonemes,

N,: 94,315 frames (= ) _N,)
L,: 23,440 phonemes,

N,: 107,085 frames (= )_Nj,)

Consonants (L., N.)

Vowels (L,,N,)

Test data (Open)

Desired speech signal Speech: 216 words x2 subjects
(1 female and 1 male)

Female speech, male speech

or white Gaussian noise

SNR 3dB

Noise signal

performance was also evaluated by the WRR (Word
Recognition Rate).
4.2. Experimental results for ASR performance

Figure 5 shows the ASR performance in the evaluation
environment. In this experiment, the sound source position is
known for designing the adaptation filter. In Fig. 5, (a) shows
the results in an environment of one desired speech [90
degrees DOA], (b) shows the results in an environment of one
desired speech [90 degrees DOA] and one noise (female
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(c) Environment of one desired speech and two noises
(female speech and white Gaussian noise).

Fig.5 ASR performance.
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speech [40 degrees DOA]), and (c) shows the results in an
environment of one desired speech [90 degrees DOA] and two
noises (female speech [40 degrees DOA] and white Gaussian
signal [120 degrees DOA]).

As a result of our evaluation experiments, we could
confirm that the average speech spectrum weighted AMNOR
(S-AMNOR) provides higher ASR performance than the
conventional AMNOR. The effectiveness of S-AMNOR is
also confirmed with large admissible distortion D. It also
showed the same tendency in the environment of one desired
speech [90 degrees DOA] and one noise (male speech [40
degrees DOA]) and in that of one desired speech [90 degrees
DOA] and one noise (white Gaussian noise [40 degrees
DOA]). In addition, we could confirm that the normalized
speech spectrum weighted AMNOR (Normalized S-AMNOR)
is more effective than the basic S-AMNOR. This is because
the adaptive filter of Normalized S-AMNOR has a more
greatly optimized energy balance between vowels and
consonants than that of S-AMNOR.

Figure 5(c) shows that the Normalized S-AMNOR with
large admissible distortion D may provide higher ASR
performace than that with small admissible distiortion D in
noisy environment. Therefore, we could guess that the
spectrum distortion of the desired signal may be supressed
even with large admissible distortion D, if we can aquire the
optimim quasi-desired signal in advance. As a result, ASR
performance improves with large admissible distortion D
because noise signal can be vastly reduced by Normalized S-
AMNOR with large admissible distortion D.

Next, we show the maximum ASR performance with the
optimum admissible distortion D in Fig. 6, which we
manually selected. In Fig. 6, we confirm that if we estimate
the optimum admissible distortion D in advance, ASR
performance improves by 5-10% with the normalized speech
spectrum weight in a noisy environment.

4.3. Experimental results for the spectrum characteristics
of designed adaptive filter

Figure 7 shows the spectrum characteristics of adaptive
filters. We investigated performance with the signal as a flat
spectrum characteristic and the designed adaptive filters. In
Fig. 7, (a) shows the input spectrum with a white Gaussian
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Fig.6 ASR performance with optimum admissible
distortion D.

326

Acoust. Sci. & Tech. 23, 6 (2002)

X}

=}
X}
=

o
S

00

80

©
o

N
S

IS

(=}

log magnitude response [dB]
D
o

log magnitude response [dB]
(o2}
(=}

N
=}

N

=3

o
o

1

o
o

1 6

2 3 4
frequency [kHz]

(b) Conventional AMNOR

2 3 4
frequency [kHz]

(a) Input spectrum

X}
=}

o
=)
d
o n
S o

©
=}
©
=}

60

@
=}

IS
=)
ES
(=)

N
=}

log magnitude response [dB]
n
o

log magnitude response [dB]

o

%

o
o

1 6

2 3 4 2 3 4
frequency [kHz] frequency [kHz]

(c) S-AMNOSR (d) Normalized S-AMNOSR
Fig.7 Spectrum characteristics of adaptive filter based

on average speech spectrum weight when admissible
distortion D = 0.1.

signal as the flat spectrum characteristic, (b) shows the output
spectrum with an adaptive filter based on the conventional
AMNOR, (c) shows the output spectrum with an adaptive
filter based on the average speech spectrum weight (S-
AMNOR), and (d) shows the output spectrum with an
adaptive filter based on the normalized average speech
spectrum weight (Normalized S-AMNOR). By comparing
the results from Figs. 7(b) and 7(d), we could confirm that the
adaptive filter based on the normalized average speech
spectrum weight (Normalized S-AMNOR) shows almost no
distortion on any frequency band although the adaptive filter
based on the white Gaussian (Conventional AMNOR) shows
severe distortion in the lower frequency bands which are
indispensable for speech recognition. In addition, we could
also confirm, by comparing the results using Figs. (c), and (d),
that normalization of the average speech spectrum (Normal-
ized S-AMNOR) improves the signal capturing performance.
In the above evaluation experiments, we confirmed that
AMNOR based on the normalized average speech spectrum
weight (Normalized S-AMNOR) is more effective than the
conventional AMNOR for noisy speech recognition.

5. Conclusions

In this paper, we proposed a method to improve ASR
performance by AMNOR (Adaptive Microphone-array for
NOise Reduction) with the average speech spectrum weight in
noisy environments. As a result of evaluation experiments in
real acoustic environments, we confirmed that ASR perfor-
mance is improved by using the normalized average speech
spectrum weighted AMNOR (Normalized S-AMNOR). In the
future, we will improve ASR performance by integrating the
proposed AMNOR with talker localization [8] and auto-
matically estimating the optimum admissible distortion D for
ASR in noisy environments.
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