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Abstract: A new method of feedback control of sound fields that minimizes the total acoustic energy
in a sound field of any shape excited by an unknown disturbance is presented. The proposed method is
based on the finite element method and H1 control theory, and achieves both robust performance and
high stability. The structure of the acoustic plant is formulated such that the H1 norm of the system
transfer function expresses the total acoustic energy in the sound field. Computer simulations verify
that the damping of a sound field can be increased without leading to instabilities of the closed loop
system. It is also verified that the resonant peaks in the frequency spectrum of the total acoustic energy
can be attenuated in the low-frequency range involved in the nominal model of the plant without
exciting the residual mode dynamics in the high-frequency range. The control performance can be
tuned by adjusting the weighting factor. Using this method, it is possible to dynamically alter the
characteristics of a sound field.
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1. INTRODUCTION

Active control of sound fields, which involves the use

of electro-acoustic transducers to drive the output of an

acoustic plant to a desired output, is useful in low-

frequency applications because passive methods such as

installing sound absorbers are not effective at low

frequencies. The technology of active control of sound

fields has been developed and studied by a number of

researchers, primarily involving the use of methods based

on inverse filtering of the transfer functions from sound

sources to receiving points in a sound field and simulating

the desired transfer functions as strictly as possible.

However, in addition to dealing with the transfer functions

from sound sources to receiving points, it is necessary to

regard a full sound field as a plant and to develop a method

to alter plant dynamics.

The full sound field can be treated as a plant by

expressing a sound field mathematically with a wave

equation. Nelson et al. developed feedforward control of

sound fields using frequency response functions based on

modal analysis of a wave equation so as to minimize the

total acoustic potential energy in an enclosure [1–3]. Ise et

al. formulated a control method that accounted for actuator

dynamics using the boundary element method for the same

control objective [4]. However, both of these control

methods require the reference signal of the primary source

to be available and the sound field to be harmonic. Thus,

the effectiveness of such control cannot be guaranteed

when the primary source cannot be measured or is

uncorrelated. In addition to this, these methods are not

intended to alter plant dynamics.

The dynamics between a sound source and a receiving

point in a sound field are significantly affected by the poles

of the transfer function between them. By introducing a

feedback loop into the plant under study, the poles of the

transfer function can be controlled, thereby controlling the

modal response of the plant. Clark et al. proposed a

feedback control system based on direct rate feedback

control for control of the modal damping ratio of acoustic

modes [5]. In their system, the sound pressure at a

microphone collocated with a loudspeaker is fed back

through the electro-acoustic transducer. Using mode

theory, they described the stability of the sound field into

which their control system was introduced and reported the

simulation results for globally damping the acoustic

response of an enclosure.

Several studies on the application of modern control

theory based on the state-space method for active control of

sound fields have been published. Dohner et al. [6] and Bai
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et al. [7] developed active noise control systems using

linear quadratic optimal control. In their system, the full

sound field was regarded as a plant, however it was

assumed that the modal parameters for describing the

sound field in state space were known theoretically or

experimentally. Dohner et al. also derived a method that

was not based on mode theory for constructing a state

equation for a sound field but accounted for every mode

[8]. However, their analysis was applied to a one-

dimensional problem for simplicity.

In a previous paper [9], we derived a state-space

description of a sound field from an inhomogeneous wave

equation using the finite element method (FEM). This

allows the sound field to be treated without relying on any

kind of shape that may have unknown modal parameters,

and alleviates the need to identify the modal parameters of

the sound field experimentally. We investigated control of

the poles of the transfer function in the sound field using

state feedback control based on the linear quadratic

Gaussian (LQG) for suppression of reverberation in a

room, and demonstrated that the control method was used

effectively to globally damp the acoustic response of a

room.

However, when this control method is applied to a real

sound field and real-time feedback control is practically

carried out, an inevitable problem related to modeling

errors occurs. In general, a feedback controller is designed

for a nominal model of a plant. When this feedback

controller is introduced into the real plant, modeling errors

construct an extra closed loop, which may cause instabil-

ities of the whole closed loop system. Since this control

method uses FEM to model a sound field as a plant,

modeling errors are caused by several factors: 1) consider-

ing a sound field to be a linear time-invariant system; 2)

idealization of boundary conditions; 3) discritization of

space; 4) approximation of the exact solution by a trial

function that is a polynomial series; 5) numerical

calculation with a digital computer. These modeling errors

coexist between a real sound field and its nominal model.

In particular, the modeling error due to approximation of

the exact solution by a trial function is a fundamental

problem. Although a real sound field, which is a distributed

system, requires an infinite number of modes to completely

describe its behavior, FEM can express only a finite

number of low-frequency modes of the sound field

depending on the number of terms of the trial function.

Thus, the feedback controller of this method ignores the

high-frequency modes of the sound field. However, these

high-frequency modes behave as residual mode dynamics

because the sensor outputs are contaminated by the high-

frequency modes and the feedback control commands

excite the high-frequency modes. These are called

observation spillover and control spillover, respectively,

and must be taken into account in the design of the

feedback controller. This problem has been investigated in

the field of active control of vibrations in mechanically

flexible systems that are also distributed systems. Balas

showed that the combined effect of observation and control

spillover can result in instabilities of the closed loop

system, and also showed that while instabilities cannot

occur if the observation spillover is eliminated, the residual

modes excited by the control commands degrade the

control performance [10]. Thus, a design method that

calculates the optimal feedback controller in terms of both

performance and stability of the closed loop system is

needed.

In the present study, we apply H1 control theory to the

feedback control of sound fields. H1 control theory is an

effective scheme for designing feedback controllers that

accommodate both performance and stability in an optimal

and robust manner. We have developed a new active

control method that alters the dynamic characteristics of a

sound field with any shape while meeting the requirements

of robust performance and robust stability through a

combination of FEM and H1 control theory. For applica-

tion of the control method to minimizing the total acoustic

energy in a room, the structure of the acoustic plant is

formulated such that the H1 norm of the system transfer

function, which is used as the performance index of the H1
control problem, expresses the total acoustic energy in the

sound field. This study tries to overcome instabilities of the

closed loop system or degradation of the control perfor-

mance, especially due to residual mode dynamics. In

general, a real system involves all kinds of modeling errors,

which cannot be divided clearly. Thus, as a preliminary

study, the theoretical formulation of the proposed control

method is confirmed by computer simulations, in which a

real sound field is simulated by a theoretical solution of the

inhomogeneous wave equation. According to this, one can

clearly discuss the effect of residual mode dynamics on the

proposed control system. The effects of other modeling

errors and experimental verification are needed for future

work.

2. H1 CONTROL THEORY

In this section, a brief review of H1 control theory is

given. The details of the theory can be found in the

literature [11–13]. Here, the standard H1 control problem

and its solution are summarized, and two typical control

problems that can be solved by H1 control theory and can

be related to problems of feedback control of sound fields

are described.

2.1. Standard H1 Control Problem and Its Solution

In H1 control theory, all control structures are

described using a generalized control framework as shown
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in Fig. 1. The framework is constructed by a generalized

plant GðsÞ and a feedback controller KðsÞ. �ðsÞ is the

transfer function from the disturbance WðsÞ to the

controlled variable ZðsÞ, thus,
ZðsÞ ¼ �ðsÞWðsÞ: ð1Þ

The rationale of H1 control is to minimize the H1 norm of

�ðsÞ by carrying out appropriate feedback control

UðsÞ ¼ KðsÞYðsÞ, thereby minimizing ZðsÞ. UðsÞ and YðsÞ
are the control input to the plant and the measured output

from the plant, respectively. As it is difficult to find an

optimal feedback controller KðsÞ, a suboptimal feedback

controller KðsÞ is used that makes �ðsÞ asymptotically

stable and that satisfies

k�ðsÞk1 < �; ð2Þ

where � is a given positive number. Finding such KðsÞ is
called the standard H1 control problem and can be

analytically solved using various H1 algorithms developed

by researchers of automatic control.

In this paper, the state space approach to the H1
control problem developed by Sampei et al. [14] is

employed. The standard H1 control problem is solved

using a state-space description for a generalized plant GðsÞ
expressed as follows:

_xx ¼ Axþ B1wþ B2u

z ¼ C1xþD11wþD12u

y ¼ C2xþD21w

8><
>: : ð3Þ

By solving two Riccati equations derived from the above

equations, one can obtain a feedback controller KðsÞ
expressed as the following state-space description.

_xxc ¼ Acxc þ Bcy

u ¼ Ccxc

�
ð4Þ

2.2. Robust Stabilization Problem

Generally, it is difficult to model a plant accurately.

Modeling errors are inevitable when a plant is identified

either theoretically or experimentally. Perturbations of a

plant may also occur due to variations in physical

conditions such as temperature, humidity, and boundary

conditions. These bring about deviations of the real plant

from its nominal model called plant uncertainties, which

affect the stability of the closed loop system.

Figure 2 shows a closed loop system containing a plant

uncertainty. Here, PðsÞ is a nominal plant model, KðsÞ is a
feedback controller, T ðsÞ is the transfer function from

W1ðsÞ to UðsÞ, and �ðsÞ is an additive uncertainty. To

ensure stability of the closed loop system against this plant

uncertainty, the following robustness condition derived

from the small gain theorem must be satisfied.

kWaðsÞT ðsÞk1 < 1; ð5Þ

where WaðsÞ satisfies
�max½�ð j!Þ� 	 �max½Wað j!Þ�; 8! 2 R; ð6Þ

where �max½�� denotes the maximum singular value.

Finding KðsÞ that satisfies Eq. (5) is called the robust

stability problem. If the closed loop system shown in Fig. 2

is transformed into the system shown in Fig. 3 usingWaðsÞ,
the transfer function from W1ðsÞ to Z1ðsÞ is given by

Z1ðsÞ ¼ WaðsÞT ðsÞW1ðsÞ: ð7Þ

Thus, this problem can be treated as the standard H1
control problem, where �ðsÞ ¼ WaðsÞT ðsÞ and � ¼ 1.

2.3. Disturbance Attenuation Problem

Figure 4 shows a closed loop system excited by a

disturbance W2ðsÞ. SðsÞ is the transfer function from W2ðsÞ
to the output YðsÞ of the system. By minimizing the gain of

SðsÞ, the response of YðsÞ to W2ðsÞ can be reduced. Thus, if

the nominal performance condition expressed as

kW sðsÞSðsÞk1 < 1 ð8Þ

is satisfied under an appropriate weighting function WsðsÞ,

Fig. 1 Generalized control framework.
Fig. 2 Closed loop system with additive plant uncertainty.

Fig. 3 System configuration for robust stability problem.
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disturbance attenuation can be achieved. Finding KðsÞ that
satisfies Eq. (8) is called the disturbance attenuation

problem. If the closed loop system shown in Fig. 4 is

transformed into the system shown in Fig. 5 using WsðsÞ,
the transfer function from W2ðsÞ to Z2ðsÞ is given by

Z2ðsÞ ¼ W sðsÞSðsÞW2ðsÞ: ð9Þ

Thus, one can treat also this problem as the standard H1
control problem, where �ðsÞ ¼ WsðsÞSðsÞ and � ¼ 1.

2.4. Mixed Sensitivity Problem

In most cases the feedback controller is designed with

regard to both robustness and performance. If the condition

WaðsÞT ðsÞ
WsðsÞSðsÞ

� �����
����
1
< 1 ð10Þ

is satisfied, both the stability of the closed loop system

against a plant uncertainty and disturbance attenuation, i.e.,

robust performance, can be achieved. Finding KðsÞ that

satisfies Eq. (10) is called the mixed sensitivity problem.

Figure 6 shows the closed loop system, combining the

system shown in Fig. 3 and the system shown in Fig. 5. It

is easy to see that this problem can be solved as the

standard H1 control problem by treating this system as the

generalized control framework shown in Fig. 1.

3. THE PROPOSED H1 CONTROL SYSTEM

3.1. State-Space Description of a Sound Field

In this section, to describe a sound field (i.e., a control

plant) in state space, a state equation for a sound field is

constructed using FEM.

The inhomogeneous wave equation related to velocity

potential � is expressed as follows:

r2��
1

c2
@2�

@t2
¼ �q; ð11Þ

where c is the speed of sound in the fluid and q is the

distribution of the strength of sound sources. Applying

FEM to the above equation with area 	 and boundary 
 ,

the following can be obtained [15,16].

M €��þD _��þK� ¼ fu; ð12Þ

with

Mij ¼
1

c2

ZZZ
	

NiNjdV

Dij ¼ ��
ZZ




1

z
NiNjdS

Kij ¼
ZZZ

	

gradNi � gradNjdV

fi ¼
ZZZ

	

qNidV

8>>>>>>>>>>><
>>>>>>>>>>>:

;

where � is a vector with components of velocity potential �

at each node, u is the strength of the sound source, � is the

density of the fluid, z is the normal acoustic impedance of

the boundary surface, and Ni is the interpolation function of

the i-th node. Equation (12) can be transformed into a state-

space description as follows:

_xxp ¼ Apxp þ Bww2 þ Bpu

ye ¼ Cexp

yp ¼ Cpxp þ w1

8><
>: ; ð13Þ

with

Ap ¼
0 I

�M�1K �M�1D

" #
; xp¼

�

_��

( )
;Bp¼

0

M�1 f

( )
;

Cp ¼ 0 0 � � � 0 � 0 � � � 0f g;

where I is the identity matrix. The formulation of Bw

depends on the kind of disturbance w2 that is considered. In

this paper, it is assumed that each state variable, i.e., each

component of xp, is independently excited by each

component of w2. Hence, Bw ¼ I. The above state

equation includes two output equations that generate the

controlled variable and the measured signal, respectively.

Cp of one of the output equations is formulated such that

the output yp of the system becomes the sound pressure

Fig. 5 System configuration for disturbance attenuation problem.

Fig. 6 System configuration for mixed sensitivity problem.

Fig. 4 Closed loop system excited by disturbance.
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p ¼ �@�=@t at a point in the sound field.

For a practical implementation of the feedback

controller, electro-acoustic transducers are required to

measure and excite a sound field. Thus, the dynamics of

the electro-acoustic transducers must be considered to

represent the dynamics of the acoustic plant more

accurately. This is accomplished by coupling the matrix

equation by FEM of the sound field with the equation of

motion of the electro-acoustic transducer. In a previous

paper, on the basis of this procedure, we presented a

method to model an acoustic plant including mechanism of

a loudspeaker [17]. Ignoring the dynamics of the electro-

acoustic transducers causes a modeling error, which was

referred to as the modeling error due to idealization of

boundary conditions in the literature [18]. Since this

modeling error is beyond the scope of this study, only a

state-space description of an acoustic plant not including

actuator and measurement dynamics will be discussed for

the simplicity.

3.2. Formulation for Minimization of Total Acoustic

Energy

Here, the matrix Ce of the other output equation is

formulated such that the controlled variable becomes the

total acoustic energy in the sound field. The weighting

functions WaðsÞ and WsðsÞ are also formulated for the

stability of the closed loop system against the plant

uncertainty, which cannot be modeled by FEM.

Using the state space variables xp in the state-space

description given by Eq. (13), the instantaneous total

acoustic energy in the sound field is expressed as follows:

E ¼
�

2

X
n

@�

@x

� �2

n

þ
@�

@y

� �2

n

( )
Vn þ

�

2c2

X
n

@�

@t

� �2

n

Vn

¼ �T �

2
K�þ _��T �

2
M _��

¼
�

_��

� �T
�

2
K 0

0
�

2
M

2
64

3
75 �

_��

� �

¼ xp
TRxp;

ð14Þ

where ð�Þn denotes the velocity potential in the n-th

element and Vn is the volume of the n-th element. R can be

decomposed as R ¼ LLT because R is a positive semi-

definite symmetric matrix. The formulation

Ce ¼ LT ð15Þ

sets the L2 norm of the other output ye of the system equal

to the square root of the time integral of the total acoustic

energy, as shown in the following.

kyek2 ¼
Z 1

0

ye
TðtÞyeðtÞdt

� �1=2

¼
Z 1

0

fCexpðtÞgTfCexpðtÞgdt
� �1=2

¼
Z 1

0

xp
TðtÞCe

TCexpðtÞdt
� �1=2

¼
Z 1

0

xp
TðtÞLLTxpðtÞdt

� �1=2

¼
Z 1

0

EðtÞdt
� �1=2

ð16Þ

On the other hand, if a system SðsÞ is stable and its initial

condition is 0, its H1 norm is expressed as follows:

kSðsÞk1 ¼ supf�max½Sð j!Þ� : ! 2 ½0;1Þg
¼ supfkyðsÞk2 : kwðsÞk2 ¼ 1g;

ð17Þ

where yðsÞ and wðsÞ are the output and input of SðsÞ [13].
Thus, the formulation Eq. (15) relates the H1 norm of the

transfer function from w2 to ye to the time integral of the

total acoustic energy in the sound field.

When a sound field is modeled as a plant using FEM,

the dynamics of the nominal model of the plant are not

accurate in the high-frequency range. In this range, the

wavelengths are not sufficiently long compared to the size

of the finite elements. Thus, WaðsÞ should be formulated

such that it expresses the plant uncertainty. For simplicity,

WaðsÞ is approximated as a high-pass filter expressed in

state space as follows:

_xxa ¼ Aaxa þ Bau

z1 ¼ Caxa þ Dau

�
: ð18Þ

As the mixed sensitivity problem is a trade-off between the

robust stabilization problem and the disturbance attenua-

tion problem, it is reasonable that W sðsÞ is chosen as a low-

pass filter:

_xxs ¼ Asxs þ Bsye

z2 ¼ 
Csxs

�
; ð19Þ

where a scalar gain 
 is introduced as the weighting factor

for tuning the control performance. The feedback controller

designed for the mixed sensitivity problem will try to

minimize both the output z1 of WaðsÞ and the output z2 of

WsðsÞ. z1 approximates the output of plant uncertainty

driven by the control command u. z2 represents the low-

pass filtered ye related to the total acoustic energy. Thus, if

the value of 
 increases, i.e., z2 is emphasized in the

minimization process, total acoustic energy will be

decreased. As such, the control performance will be tuned

conveniently using only this scalar parameter.

Equations (13), (18), and (19) are combined and

transformed into a state-space description for a generalized

plant GðsÞ expressed as follows:
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_xxa

_xxs

_xxp

8><
>:

9>=
>; ¼

Aa 0 0

0 As BsCe

0 0 Ap

2
64

3
75

xa

xs

xp

8><
>:

9>=
>;þ

0 0

0 0

0 Bw

2
64

3
75 w1

w2

� �
þ

Ba

0

Bp

8><
>:

9>=
>;u

z1

z2

� �
¼

Ca 0 0

0 
Cs 0

� � xa

xs

xp

8><
>:

9>=
>;þ

Da

0

� �
u

y ¼ f0 0 Cpg
xa

xs

xp

8><
>:

9>=
>;þ f1 0g

w1

w2

� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð20Þ

Figure 7 shows a block diagram of the acoustic system
including the above generalized plant and the feedback
controller KðsÞ. The control system can be arranged as
shown in Fig. 8. State-space description (20) allows us to
obtain KðsÞ for minimization of the total acoustic energy in
a room through the state space approach explained in the
previous section.

4. NUMERICAL STUDIES ON THE
PROPOSED CONTROL METHOD

4.1. Conditions for Calculation

A computer simulation was performed to demonstrate

the active minimization of the total acoustic energy in an

enclosure. A lightly damped, two-dimensional model of a

rectangular enclosure as illustrated in Fig. 9 was selected

for the simulation. The primary and control sources were

modeled as piston sources having uniform velocity

distributions over their surfaces. The finite elements used

to discretize the sound field were first-order, two-dimen-

sional, isoparametric triangles. There were 960 such

elements, assembled in 525 degrees of freedom. For

calculating the damping matrix D, it was assumed that

the matrix could be transformed into a diagonal matrix

using the undamped modal matrix, and damping ratios of

0.01 were assumed for all modes. The state equation for the

sound field was then constructed by the method described

in section 3.1. Since the high-order modes calculated by

FEM are not accurate, the order of the state equation was

reduced by modal reduction of the equation of motion of

the multi-degree-of-freedom system expressed as Eq. (12).

The initial coordinates of the 525 degrees were transformed

into the modal coordinates of 7 degrees by

xp
0 ¼

�

_��

( )
¼

�T 0

0 �T

" #
�

_��

( )
¼

�T 0

0 �T

" #
xp;

ð21Þ

where � is the undamped modal matrix containing only the

7 lowest eigenvectors without the rigid-body mode and � is

a vector with components of the amplitude of each mode.

The natural frequency of the 7th mode, which is the highest

Fig. 7 Block diagram of acoustic system with feedback controller.

Fig. 8 Arrangement of sound field control system.

Fig. 9 Two-dimensional model of rectangular enclosure
for computer simulations.
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mode involved in the nominal model of the plant, is about

316Hz. Thus, the weighting function WaðsÞ used for the

design of the feedback controller was chosen as a 3rd-order

Chebyshev high-pass filter with a cut-off frequency of

380Hz and an allowable passband ripple of 0.5 dB. The

other weighting function W sðsÞ was chosen as a 2nd-order

Butterworth low-pass filter with a cut-off frequency of

500Hz.

In order to simulate the application of the present

control method to a real sound field, a theoretical solution

of the inhomogeneous wave equation (11) based on mode

theory was adopted to express the dynamics of the real

sound field. A state-space description of the sound field

based on mode theory was constructed through the

procedure given in the appendix. The highest mode

involved in this state-space description is the 51st mode;

the natural frequency of this mode is about 995Hz.

Coupling this state-space description simulating the real

physical system with the state-space description of the

designed feedback controller, the total acoustic energy in

the sound field (also given in the appendix) was calculated.

To assess the effectiveness of the proposed control method,

feedback control by LQG was also performed on the

theoretical basis presented in the previous paper [9].

4.2. Results and Discussion

Figure 10 shows the transient responses of the total

acoustic energy in the sound field when the primary source

is driven by the unit impulse function, for variations in the

weighting factor 
. It is demonstrated that, as 
 increases,

the energy decays faster. The proposed active control of

sound fields is classified into the control referred to as self-

improvement via a minor loop, which has the functionality

to change only the pole placement of the acoustic system.

The real parts of the poles of the transfer function of the

system dictate the rate at which the energy leaves the

system. Thus, performing this control, formulated for the

minimization of the total acoustic energy in an enclosure,

the real parts of the poles of the transfer function are

modified such that damping is increased. This indicates that

the proposed control method can be used to actively tune

the transient characteristics of a sound field, i.e., the

reverberation time.

Figures 11–13 show the frequency spectrums of the

total acoustic energy in the sound field for variations in the

weighting factor 
. Introducing the proposed control

scheme, the energy is attenuated in the vicinity of the

resonant frequencies below the natural frequency of the 7th

mode. As 
 increases, the levels of attenuation are

increased. The maximum reduction in the total acoustic

energy is approximately 13 dB at the resonant frequency of

the 1st mode. The most significant result is that in the

frequency range above the natural frequency of the 8th

mode, which is not involved in the nominal model of the

plant, this control does not change the energy level. This

result is difficult to obtain by ordinary control methods

based on LQG, as shown in Fig. 14, where the energy of

Fig. 10 Transient responses of total acoustic energy in
sound field to unit impulse function for variations in
weighting factor 
 of H1 control.

Fig. 11 Frequency spectrums of total acoustic energy in
sound field with and without H1 control (
 ¼ 0:001).

Fig. 12 Frequency spectrums of total acoustic energy in
sound field with and without H1 control (
 ¼ 0:005).
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the residual modes is amplified with the control. In

addition, as mentioned previously, the proposed control

method does not require a reference signal for the primary

source to be supplied or the sound field to be harmonic. It

only alters the dynamics of the sound field into which the

control system introduced. Therefore, especially when a

noise source is not periodic or its position varies with time,

the present feedback control scheme based on H1 control

theory is highly applicable to the minimization of the total

acoustic energy in the sound field.

Although a small and regular shape enclosure was

selected for the plant in this study, the proposed control

method has ability to control three-dimensional domains

with arbitrary sizes and shapes theoretically. However, if a

sound field to be controlled is larger or has a more

complicated geometry, more amounts of numerical calcu-

lations are required to obtain the feedback controller. The

proposed control method uses FEM to identify a state

equation for a sound field. When FEM is applied to model

the dynamics of a sound field, the spatial scale of the sound

field and the frequency range are restricted by computer

performance such as memory capacity and processing

speed. To represent the dynamics of a sound field

accurately using FEM, the sound field under study must

be discretized using small elements compared to the

acoustic wavelength at the frequency of interest [19].

Thus, for a larger sound field or the higher-frequency

range, the number of degrees of freedom of the sound field

becomes larger. Recently, Otsuru et al. carried out an

analysis of the sound field in an auditorium having the

volume of about 12,000m3 in the frequency range lower

than 500Hz using FEM [20]. The resultant number of

degrees of freedom was about 7,000,000. It is clear that a

long processing time and large memory capacity are

needed to construct the state equation of such a sound field.

The number of acoustic modes to be controlled is also

restricted by computer performance. After modeling plant

dynamics, the feedback controller is obtained using the

solutions of two Riccati equations. When employing

Potter’s algorithm to solve the Riccati equations, the

eignvalue problems of Hamiltonian matrices need to be

solved [21]. The dimension of the Hamiltonian matrices is

2 times as large as the dimension of a state equation of a

generalized plant. Thus, if a state equation involves more

acoustic modes of a sound field, the order of computational

complexity and the memory requirements become larger.

In addition to this, since an eignvalue problem is generally

sensitive to numerical errors, double precision arithmetic is

required for the accuracy, causing that a computational

load becomes high. Besides these computational aspects,

the number of acoustic modes affects the practical

implementation of the feedback controller. When the

feedback controller is implemented on a DSP as an IIR

filter, the dimension of the feedback controller is restricted

by the processing speed of the DSP. The dimension of the

controller is equal to the dimension of a state equation of a

generalized plant. Thus, the performance of the DSP to be

used determines the maximum number of acoustic modes

that can be involved in a state equation.

According to these, the proposed control method

requires that compromises are reached between keeping

processing time to within acceptable limits, while including

enough degrees of freedom to give an accurate modeling

and including enough acoustic modes to give a broadband

effect. At the present time, if a personal computer system is

used to calculate the feedback controller, the proposed

control method is suitable for control of relatively small

sound fields such as automobile cabins and recording

studios at low frequencies. It is not intended for control of

large sound fields such as auditoriums and for control in the

frequency range with high modal density in a practical

application. An alternative method to model a sound field

in a wide frequency range with the small number of

Fig. 14 Frequency spectrums of total acoustic energy in
sound field with and without feedback control based on
LQG.

Fig. 13 Frequency spectrums of total acoustic energy in
sound field with and without H1 control (
 ¼ 0:025).
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degrees of freedom is expected to be developed in the field

of sound field analysis to reduce the computational load.

5. CONCLUSIONS

In an effort to realize robust feedback control of a

sound field of any shape, a method that links FEM with H1
control theory was proposed. The objective of control was

minimization of the total acoustic energy in a sound field

excited by unknown disturbances. The structure of the

acoustic plant was formulated such that the H1 norm of the

system transfer function expressed the total acoustic energy

in the sound field.

Computer simulations demonstrated that the damping

of the sound field can be increased without leading to

instabilities of the closed loop system, and that the control

performance can be tuned by changing the weighting

factor. It was also demonstrated that the resonant peaks in

the frequency spectrum of the total acoustic energy can be

attenuated in the low-frequency range involved in the

nominal model of the plant, while the residual plant

dynamics in the high-frequency range are not unnecessarily

excited.

This study discussed the plant uncertainty due to

residual mode dynamics. Further investigation of plant

uncertainties due to other factors such as boundary

conditions may provide more attractive results in a

practical control of a real sound field.
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APPENDIX: STATE-SPACE DESCRIPTION
OF A SOUND FIELD BASED ON MODE

THEORY

The proposed procedure for constructing a state

equation for a sound field based on the theoretical analysis

of the inhomogeneous wave equation (11) using mode

theory is as follows.

According to mode theory, the velocity potential � in

an enclosure can be expressed in modal coordinates such

that

� ¼
X1
n¼1

�nðtÞ nðx; y; zÞ; ðA�1Þ

where  nðx; y; zÞ and �nðtÞ are a characteristic function and

modal response of the n-th mode, respectively. For a

rectangular enclosure, the characteristic functions are given

by

 n ¼ "n cos
nx�x

Lx

� �
cos

ny�y

Ly

� �
cos

nz�z

Lz

� �
; ðA�2Þ

where nx, ny, and nz are integers, Lx, Ly, and Lz are the

dimensions of the enclosure. With the normalization

factors "n, the characteristic functions are normalized such
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that ZZZ
	

 n mdV ¼ LxLyLz�nm ¼ V�nm; ðA�3Þ

where V is the volume of the enclosure. Substituting Eq.

(A�1) into Eq. (11) and using the orthogonality of Eq.

(A�3), one can obtain

@2�n

@t2
þ !n

2�n ¼
c2

V

ZZZ
	

q ndV ; ðA�4Þ

with

!n
2 ¼ c2

nx�

Lx

� �2

þ
ny�

Ly

� �2

þ
nz�

Lz

� �2
( )

; ðA�5Þ

where !n is the natural angular frequency of the n-th mode.

Assuming that the enclosure is lightly damped and

introducing a modal damping ratio �n,

@2�n

@t2
þ 2�n!n

@�n

@t
þ !n

2�n ¼
c2

V

ZZZ
	

q ndV : ðA�6Þ

Equation (A�6) can be transformed into a state-space

description as follows:

_xxr ¼ Arxr þ Brpup þ Brsus

yr ¼ crxr

�
; ðA�7Þ

with

Ar ¼
0 I

� diag½!n
2� � diag½2�n!n�

" #
; xr ¼

�

_��

� �
;

Brp ¼
0

qp

( )
; qp ¼

c2

V

ZZZ
	p

 1dV

ZZZ
	p

 2dV � � �
ZZZ

	p

 NdV

( )T

;

Brs ¼
0

qs

� �
; qs ¼

c2

V

ZZZ
	s

 1dV

ZZZ
	s

 2dV � � �
ZZZ

	s

 NdV

� �T

;

cr ¼ � 0  1ðrÞ 2ðrÞ � � � NðrÞ
� �

;

where up and us are the strength of the primary source and
control source, � is a vector with components of �n, and	p

and 	s denote the area of the primary source and control
source. It is assumed that one can achieve a reasonably
accurate representation of the sound field with a finite value
of N though N ¼ 1 in theory. The output equation is
formulated such that the output yr of the system becomes
the sound pressure at a point r in the sound field.

Using the above state space variables xr, the instanta-

neous total acoustic energy in the sound field is expressed

as

E ¼
�V

2c2

XN
n¼1

!n
2�n

2 þ
�V

2c2

XN
n¼1

_��n
2

¼ �T
�V

2c2
diag½!n

2��þ _��T
�V

2c2
I _��

¼ xr
T

�V

2c2
diag½!n

2� 0

0
�V

2c2
I

2
664

3
775xr:

ðA�8Þ
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