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Abstract: In this article a new method for fundamental frequency estimation from the noisy
spectrum of a speech signal is introduced. The fundamental frequency is one of the most essential
characteristics for speech recognition, speech coding and so on. The proposed method uses the MUSIC
algorithm, which is an eigen-based subspace decomposition method.
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1. INTRODUCTION

The fundamental frequency of speech signals is an

essential feature of human voice [1]. Its estimation is very

important in various speech processing systems, especially

in speaker recognizers, speech instruction systems for

hearing impaired children, and analysis by synthesis speech

coders. We know a lot of algorithms for estimating the

fundamental frequency. However, the accurate estimation

method of the fundamental frequency has not been

established yet. Many engineers have been studying new

methods.

In this paper, we describe a new and analytic method to

accurately estimate the fundamental frequency of noisy

speech signals. The proposed method uses the MUSIC

(MUltiple SIgnal Classification) algorithm [2–7], which

was proposed by Schmidt [8]. The MUSIC algorithm

exploits the noise subspace to estimate the unknown

parameters of the random process. This algorithm can

estimate the frequencies of complex sinusoids corrupted

with additive white noise. Andrews et al. [9] have already

proposed the fundamental frequency determination method

using the MUSIC algorithm. They increase the funda-

mental frequency determination capability at low signal to

noise ratios by applying the singular value decomposition

(SVD) to speech enhancement. On the other hand, our

method can reduce greatly the number of eigenvalues to be

calculated in order to use the band-limited MUSIC

spectrum and shorten calculation time for estimating

fundamental frequencies.

This paper is organized as follows. The principle of the

MUSIC algorithm is reviewed in Section 2. In Section 3 we

present an analytic method for the fundamental frequency

estimation and illustrate estimation results. In Section 4 we

end with the conclusion.

2. MUSIC ALGORITHM [2–7]

The MUSIC algorithm is an eigen-based subspace

decomposition method for estimation of the frequencies of

complex sinusoids observed in additive white noise.

Consider a noisy signal vector y composed of P real

sinusoids modeled as

y ¼ Saþ n ð1Þ

where

a ¼ ½X1 X2 � � � XP�T ð2Þ

S ¼ ½s1 s2 � � � sP� ð3Þ

sk ¼ ½1 e j2�fk � � � e j2�ðN�1Þ fk �T : ð4Þ

N is the number of samples, fk is the frequency of the k-th

complex sinusoid, Xk is the complex amplitude of k-th

sinusoid and n is a zero mean Gaussian white noise vector

with variance �n
2.

The autocorrelation matrix of the noisy signal y can be

written as

Ryy ¼ E½yyH�
¼ Rxx þRnn

¼ SASH þ �n
2I

ð5Þ

where E denotes the expectation, H denotes the Hermitian
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transpose and A ¼ E½aaH� is the diagonal matrix. In

addition, Rxx ¼ SASH and Rnn ¼ �n
2I are the autocorre-

lation matrices of the signal and noise processes as

Rxx ¼
XN

k¼1
�kvkv

H
k ð6Þ

Rnn ¼ �n
2
XN

k¼1
vkv

H
k : ð7Þ

where �k and vk are the eigenvalues and eigenvectors of the

matrix Rxx respectively. The autocorrelation matrix of the

noisy signal may be expressed as

Ryy ¼
XN

k¼1
�kvkv

H
k þ �n

2
XN

k¼1
vkv

H
k

¼
XN

k¼1
�kvkv

H
k

ð8Þ

where �k ¼ �k þ �n
2 are the eigenvalues of the matrix

Ryy. All the eigenvalues are the real numbers and satisfy

�1 	 �2 	 � � � 	 �P > �Pþ1 ¼ � � � ¼ �N ¼ �n
2: ð9Þ

Then, the MUSIC spectrum is defined as

PMUSICXX ð f Þ ¼
1

XN

k¼Pþ1
jsHð f Þvkj2

¼
1

sHð f ÞVVHsð f Þ
:

ð10Þ

where sð f Þ ¼ ½1 e j2� f � � � e j2�ðN�1Þ f �T is the complex
sinusoidal vector and V ¼ ½vPþ1 � � � vN� is the matrix
of eigenvectors of the noise subspace.

3. BAND-LIMITED SPECTRUM AND
FUNDAMENTAL FREQUENCY
ESTIMATES USING THE MUSIC

ALGORITHM

3.1. Band-Limited MUSIC Spectrum

In case of speech signals, the harmonic structure

appears more clearly in a low-frequency domain [1]. Then,

before describing the estimation method of fundamental

frequencies, we consider applying the MUSIC algorithm

only to the low-frequency components of a frequency

spectrum. Assume that the number of samples is 256 points

and the sampling frequency is 11.025 [kHz]. In considera-

tion of the existence range of fundamental frequencies,

only the frequency components below 1 [kHz] are used for

the MUSIC algorithm. Therefore, the frequency compo-

nents of a MUSIC spectrum are the set of those at

frequencies 43 [Hz], 86 [Hz], � � �, fk ¼ 11025=256k ½Hz�,
� � �, 991 [Hz] and 1 � k � 23ð¼ KÞ. The size of the

autocorrelation matrix Ryy is 256� 256 and its rank will

be less than or equal to K. Then, we have

�1 	 �2 	 � � � 	 �P 	 � � � 	 �K¼23 > �n
2;

�Kþ1 ¼ �Kþ2 ¼ � � � ¼ �N¼256 ¼ 0

XN

k¼Kþ1
sHð f Þvk ¼ 0

ð11Þ

and Eq. (10) can be written as

PMUSICXX ð f Þ ¼
1

XN

k¼Pþ1
jsHð f Þvkj2

¼
1

XK

k¼Pþ1
jsHð f Þvkj2

ð12Þ

where K < N and calculation time can be shortened

greatly.

Figure 1 shows the FFT and MUSIC spectra for a

Japanese female vowel /a/. Figure 2 shows the eigenvalues

�k. It is seen that the MUSIC spectrum has sharp peaks and

the influence of band-limitation appears in a high-

frequency domain more than 1 [kHz]. On the other hand,

the calculation time has been shortened to about 1/7 of

those in case of no band-limitation. Hence we can expect

the realization of a fundamental frequency estimation

method, which is not affected easily by additive noise and

reduces the calculation time, by using the band-limited

MUSIC spectrum.

In Fig. 2, K is set to 23 and the value of P is set up so

that the set of eigenvalues f�k; k ¼ Pþ 1; � � � ;Kg corre-
sponding to the eigenvectors fvPþ1; � � � ; vKg used to

estimate the spectrum satisfy �1=10 > �k 	 �K . If the

number of sinusoids contained in speech signals is known,

we can set up the value of P. However, P is unknown in

general. If P is too large, the number of harmonics

contained in the spectrum will increase and come to be

affected easily by the noise. Oppositely, if it is too small,

the cepstrum will become smooth and the estimation error
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(a) Speech signal. (b) FFT spectrum. (c) MUSIC spectrum.

Fig. 1 Analysis results for a Japanese female vowel /a/.
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of fundamental frequencies will increase. From experi-

mental results, we use the set of eigenvalues f�k;�1=10 >

�k 	 �Kg as mentioned above. In Fig. 2 the horizontal

dotted line indicates the magnitude of the eigenvalue

�1=10 and P is set to 8.

3.2. Estimation Algorithm of Fundamental Frequency
and Experimental Results

Figure 3 shows a MATLAB program for fundamental

frequency estimation using the MUSIC algorithm. In this

figure, a MATLAB function ‘‘eigs’’ computes only a few

selected eigenvalues and eigenvectors. The proposed

method estimates the fundamental frequency of speech

signals by taking the FFT of the logarithm of the band-

limited MUSIC spectrum like the cepstral method.

The analysis procedure is summarized as follows:

(1) The analyzed speech signal is sampled by

11.025 [kHz] and a 256-point Hamming window is

applied.

(2) The autocorrelation matrix Ryy of the speech signal is

computed from its power spectrum obtained by the

FFT. We use only the frequency components below

1 [kHz] in consideration of the existence range of

fundamental frequencies.

(3) The eigenvalues and eigenvectors of Ryy are com-

puted using a MATLAB function ‘‘eigs’’. Each

number of eigenvalues and eigenvectors is set to

K ¼ 23.

(4) The MUSIC algorithm computes a band-limited

spectrum for the speech signal. The set of eigenvalues

f�kg, which span the noise subspace and are used for
spectral estimation, are chosen so as to satisfy

�1=10 > �k 	 �K .

(5) The FFT is applied to the logarithmic power spectrum
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Fig. 2 Eigenvalues for a Japanese female vowel /a/.

% Fundamental Frequency Estimation Using MUSIC Algorithm
function main
clear
% File Name
FNAME='hirai_aiueo';
% Length of Data
N=256;
NN=fix(N/2);
% Sampling Frequency
FS=11025;
% Cut-off Frequency
FC=1000;
CN=fix(N*FC/FS);
% Start Point
NS=6500;
% Time Vector
t=(0:N-1)*1000/FS;
% Input of Speech Signal
voice=wavread(FNAME);
signal=voice(NS+1:NS+N);
% Hamming Window
signal=signal.*hamming(N);
% MUSIC Algorithm
musicsignal=func_music(signal,N,CN,FS);
tmp=max(musicsignal);
musicsignal=20*log10(musicsignal/tmp);
% DFT of MUSIC Spectrum
fftmusicsignal=musicsignal-min(musicsignal);
fftmusicsignal(1)=0;
fftmusicsignal=real(fft(fftmusicsignal,N));
fftmusicsignal=fftmusicsignal(1:NN);
% Fundamental Frequency Estimation
for k=1:NN-1

if fftmusicsignal(k)<0
break

end
end
maxnum=k;
for k=maxnum+1:NN

if fftmusicsignal(k)>fftmusicsignal(maxnum)
maxnum=k;

end
end
tmp=fftmusicsignal(maxnum-1:maxnum+1);
maxnum=maxnum-1+(tmp(1)-tmp(3))/(2*(tmp(1)-2*tmp(2)+tmp(3)));
pitchfftmusicsignal=FS/maxnum

Continued

function[musicsignal]=func_music(signal,N,CN,FS)
% FFT
fftsignal=abs(fft(signal));
% Autocorrelation Matrix
A=zeros(CN-1);
for k=2:CN

A(k-1,k-1)=(fftsignal(k)/N)*(fftsignal(k)/N);
S(1:N,k-1)=exp(j*2*pi*(0:N-1)*(k-1)/N).';

end
Ryy=S*A*S';
% Eigenvalues and Eigenvectors
[V,D]=eigs(Ryy,CN);
D=abs(D);
PARAM=max(max(D))*1e-1;
num=0;
for k=1:CN

if D(k,k)<PARAM
num=num+1;
Vf(1:N,num)=V(:,k);

end
end
% MUSIC Algorithm
for k=1:N

sf=exp(j*2*pi*(0:N-1)*(k-1)/N).';
musicsignal(k)=1/abs(sf'*Vf*Vf'*sf);

end

Fig. 3 Fundamental frequency estimation using the
MUSIC algorithm.
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and the fundamental frequency is estimated from the

peak location of the time-domain signal (i.e.,

cepstrum) obtained by its transformation using peak

picking [10].

Japanese male and female vowels, /a/ and /i/, are tested

in both noise free and noisy environments. In the

experiment, the additive noise is Gaussian. We compare

the proposed method with the cepstral method, which is

commonly used for estimating the fundamental frequen-

cies. In Figs. 4 and 5, the experimental results for the

Japanese male vowel /a/ and the Japanese female vowel /i/

are shown respectively. In each figure, (a) shows the

original speech signal, (b) the speech signal corrupted with

additive noise (SNR ¼ 0:63 [dB] and �0:19 [dB], respec-
tively), (c) FFT spectrum of the speech signal, (d) cepstrum

obtained by the FFT, (e) MUSIC spectrum and (f) cepstrum

by the MUSIC algorithm. In (c)–(f) of Figs. 4 and 5, the

solid lines denote the noise free environment and the dotted

lines denote the noisy environment, respectively.

In case of the cepstral method, the estimated funda-

mental frequencies of the Japanese male vowel /a/ are

116.1 [Hz] for the noise free speech and 136.1 [Hz] for the

noisy speech, respectively. In contrast, the fundamental

frequencies estimated by the MUSIC algorithm are

116.1 [Hz] for both cases. For the Japanese female vowel

/i/, the estimated fundamental frequencies by the cepstral

method are 220.5 [Hz] and 229.7 [Hz], respectively. The

fundamental frequencies by the MUSIC algorithm are

220.5 [Hz] for both cases.

Table 1 shows the average value of absolute error rates

for Japanese 5 vowels uttered by 5 male and 5 female

speakers in the noisy environment (SNR ¼ 0:69 [dB]). We

define the absolute error rate as

absolute error rate,
fM � fT

fT

����
����� 100%: ð13Þ

where fT and fM are true and estimated fundamental

frequencies, respectively. The true fundamental frequen-

cies were directly estimated from original speech wave-

forms. In this example, the average absolute error rate of

the cepstral method for male speakers is 14.2% and that of

the MUSIC algorithm is 2.2%. In addition, the average

absolute error rates for female speakers are 2.9% and 1.5%,

respectively. Though all the average values are large

because of the low SNR, Table 1 suggests that the

proposed method is superior to the conventional cepstral

method for estimating the approximately true fundamental

frequency.

4. CONCLUSION

We have proposed a new method to estimate the

(a) Original speech signal. (b) Noisy speech signal. (c) FFT spectrum. (d) Cepstrum

obtained by the FFT. (e) MUSIC spectrum. (f) Cepstrum by the MUSIC algorithm.
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Fig. 4 Analysis results for a Japanese male vowel /a/
(SNR ¼ 0:63 [dB]).

(a) Original speech signal. (b) Noisy speech signal. (c) FFT spectrum. (d) Cepstrum

obtained by the FFT. (e) MUSIC spectrum. (f) Cepstrum by the MUSIC algorithm.
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Fig. 5 Analysis results for a Japanese female vowel
/i/ (SNR ¼ �0:19 [dB]).

Table 1 Average value of absolute error rates of
estimated fundamental frequencies.

Male speakers (%)

/a/ /i/ /u/ /e/ /o/ Average

Cepstral method 22.5 40.7 3.6 2.5 1.8 14.2
MUSIC algorithm 0.5 3.9 2.2 3.9 0.5 2.2

Female speakers (%)

/a/ /i/ /u/ /e/ /o/ Average

Cepstral method 0.9 3.9 4.2 2.0 3.3 2.9
MUSIC algorithm 0.7 3.8 1.6 0.8 0.7 1.5

These numerical values represent the average value for each
vowel.
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fundamental frequency of noisy speech signals. Although

the MUSIC algorithm is used briskly in the field of mobile

communications, it seems that it is seldom used in the field

of speech analysis. This research is very fundamental as

application to speech signal processing of the MUSIC

algorithm. However, we confirm that the feature of the

method has been used efficiently.
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