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Abstract: This paper numerically analyzes the sound pressure on an object in an ultrasonic cleaning
vessel by considering the dissipation of cavitation bubbles. To clarify the effect of ultrasonic
attenuation on the number of cavitation bubbles, the cavitation intensity on a brass object is measured
experimentally by changing the quantity of water. Then, the analyzed sound pressure results are
compared with the measured cavitation intensity results. The energy dissipation by the oscillation of
bubbles is estimated by the irreversible process of heat and mass transfer. The calculation is carried out
for the natural oscillation and forced oscillation of cavitation bubbles. It is found that the dissipation of
thermal conduction results from the radial oscillation of bubbles by ultrasound. The sound pressure
calculated by this dissipation agrees with the cavitation intensity profile estimated using experimental
results from the erosion loss of aluminum foil. As the quantity of the water in the cleaning vessel is
increased, the sound pressure becomes lower. This is because the amount of energy dissipation of the
ultrasonic wave increases proportionally to the number of bubbles. However, when the standing wave
causes resonance between the ultrasonic generator and the block, the effect of the sound pressure on
the bottom of the block is not disturbed by the water volume.

Keywords: Ultrasonic, Cavitation bubble, Forced oscillation, BEM, Thermal diffusion, Energy
dissipation

PACS number: 43.35.Ei

1. INTRODUCTION

By applying ultrasonic vibration to liquid, pressure

fluctuation of a few atmospheres is easily caused, and as a

result, cavitation bubbles are generated. The impulsive

forces induced by the creation and collapse of these

cavitation bubbles are utilized to clean various materials, as

evidenced today by the widely used ultrasonic cleaners. In

order to forecast accurate cleaning effects, it is necessary to

obtain the sound pressure profiles of the cleaning liquid and

surface of the object to be cleaned.

The authors have studied heat transfer enhancement by

ultrasonic vibration and have clarified that moving

cavitation bubbles agitate the thermal boundary layer on

the heating surface and increase the heat transfer coefficient

[1,2]. Ultrasonic cleaning and heat transfer enhancement

are analogous phenomena in the sense that both utilize the

effect of cavitation. We suppose that a large cleaning effect

is obtained with a strong cavitation intensity. We also

suppose that this cavitation intensity becomes largest at the

point where the amplitude of the sound pressure is highest.

To predict the effects of ultrasonic cleanering on various

species of objects, it is necessary to accurately estimate the

dissipation of cavitation bubbles in the cleaning vessel

being employed because the sound pressure is governed by

the attenuation of ultrasonic vibration.

The present study suggests a method to estimate an

effect of cleaning theoretically, by analyzing the surface

sound pressure on a block in a cleaning vessel while taking

account of the dissipation of cavitation bubbles. Further-

more, the cavitation intensity on the block surface is

measured while varying the quantity of water filling the

cleaning vessel to clarify the effects of ultrasonic

attenuation on the number of cavitation bubbles. The

analyzed sound pressure results are compared with the

measured cavitation intensity results.

2. SOUND ANALYSIS

The experimental apparatus is composed of a rectan-
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gular block (to be cleaned) and an ultrasonic generator

fixed to the bottom of the cleaning vessel as shown in

Fig. 1. The outer dimensions of the block are 105 mm

(width) � 105 mm (depth) � 190 mm (height), and brass

is used as the specimen. The block is immersed in fluid

with intentional shifting from the center. The main reason

for this is to be able to investigate the state of the sound

field for practical application in detail. The cleaning vessel

is made of double-walled acrylic resin plates having

dimensions of 370 mm (width) � 340 mm (depth) �
380 mm (height) for the inner frame, and it can maintain a

constant water temperature. Later experiments used this

cleaning vessel to measure cavitation intensity values.

A standard ultrasonic cleaner unit with an output

electric power of 300–600 W variable is used as the

ultrasonic generator and placed at the bottom part of the

cleaning vessel. This generator unit is constructed with

thirteen transducers having a resonant frequency of

40 kHz, and it can generate high intensity ultrasonic

vibration all over the cleaning vessel.

This apparatus is simulated by a two-dimensional

cleaning vessel as shown in Fig. 2. On the occasion of an

analysis, the dimensionless variables of the x, y coordinates

and sound pressure p are defined by using wavelength �

and the normal direction velocity of the vibrating plane of

the generator �n.
x

�
! x;

y

�
! y; k� ! kð¼ 2�Þ;

p

2��c�n

! p ð1Þ

Here, k is the wave number, � is the density of the medium

and c is the sound velocity. The boundary conditions are as

follows: the velocity on the vibrating plane is fixed, the

pressure on the acrylic wall is assumed to be zero as it is

equal to the atmospheric pressure at the outer wall of the

cleaning vessel, and the velocity on the brass block is

assumed to be zero as a rigid body.

The Helmholtz equation governing this field has to be

solved to obtain information regarding the standing wave

field.

ðr2 þ k2ÞpðrÞ ¼ 0 ð2Þ

Since the sound field in the cleaning vessel is formed by

forced oscillation by the addition of ultrasonic energy, the

attenuation term has to be considered to estimate the finite

amplitude of the sound pressure. Accordingly, the analysis

of the sound field is performed by making the wave number

k a complex expression [3]. When the cleaning vessel

contains cavitation bubbles, it is almost impossible to

evaluate the attenuation term because of the bubble

oscillation. In the cleaning vessel, however, almost no

ultrasonic vibration attenuation is conceivable due to the

existence of the standing wave and the nearly 90� phase

difference between velocity � and pressure p. Accordingly,

the analysis is practiced by giving k in Eq. (2) as a real

number, and by estimating the attenuation later from the

equation of motion of the cavitation bubbles. Finally, the

sound pressure is calculated by connecting both solutions.

Equation (2) can be analyzed by the boundary element

method, which results in the following boundary integral

equation by means of Green’s function [4].

pðrÞ ¼
Z
S

fGðrjr0Þ grad pðr0Þ � pðr0Þ grad0 Gðrjr0Þg � n0dS0:

ð3Þ
The term G represents Green’s function. Here, the prime

denotes a point on the surface element dS0, and therefore, n0

is a normal unit vector to dS0, r0 is a position vector to dS0,

and grad0 Gðrjr0Þ is the space differential of Gðrjr0Þ with
respect to r0. A basic solution of Green’s function in two-

dimensional analysis is given by the zero-order Hankel

function.

Gðrjr0Þ ¼
i

4
Hð1Þ

0 ðkjr� r0jÞ

Fig. 1 Experimental apparatus.

Fig. 2 Boundary condition.
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¼ �
1

4
N0ðkjr� r0jÞ þ

i

4
J0ðkjr� r0jÞ ð4Þ

where N0 and J0 represent the zero-order Neuman function

and Bessel function, respectively. Although a complex

calculation has to be carried out to solve the boundary

integral equation, the calculation can be effectively done by

using the Neuman function when it is solved by making k a

real number. By substituting Eq. (4) for Green’s function

in Eq. (3) and putting the numerical integration into

practice, the pressure on the boundary element can be

obtained.

3. ENERGY DISSIPATION OF ULTRASONIC
VIBRATION BY BUBBLES

The value �n, which is used in Eq. (1) to non-

dimensionalize the basic equations, has to be determined

so as to find the actual pressure in the cleaning vessel. It is

assumed that the energy attenuation is made zero in the

analysis developed in the previous section, and as a result,

the sound pressure pattern in the cleaning vessel can be

found. This assumption, however, makes it impossible to

decide the absolute amplitude of the pressure wave. The

actual pressure is determined by the mechanism of the

energy attenuation in the cleaning vessel. There are a large

number of cavitation bubbles in the cleaning vessel, and

the pressure wave depends largely on the attenuation

induced by these bubbles. Here, the radial oscillation of the

bubbles, which exerts both free oscillation and forced

oscillation by ultrasonic vibration, is investigated by

solving the governing equation of the dynamics of the

bubbles, thermal conduction, and diffusion in the liquid

phase and gas phase, when both evaporation and

condensation occur. Since the cavitation bubbles generated

by ultrasonic vibration are very small, simulation is

performed by using a single bubble. Finally, the attenuation

of all of these single bubbles is integrated over the volume

of the vessel.

3.1. Governing Equation

The governing equation, which describes the phenom-

ena occurring in the bubble, and the liquid surrounding it,

induced by considering evaporation and condensation of

vapor and the dissolution and precipitation of air at the

bubble interface. The conservation equations for the gas

phase (such as the continuity, the balance of the

momentum, the energy conservation, and the diffusion

equation) are given as follows.

@�g

@t
þ

1

r2
@

@r
r2�g�r ¼ 0 ð5Þ

�g
@�r

@t
þ �g�r

@�r

@r
¼ �

@pg

@r
ð6Þ

�g
@hg

@t
�

1

�g

@pg

@t

 !
þ �g�r

@hg

@r
�

1

�g

@pg

@r

 !
¼ �g�Tg ð7Þ

@�v

@t
þ

1

r2
@

@r
r2�v�r ¼ Dav�g�

pvMv

pvMv þ paMa

ð8Þ

where

�g, �v: density of gas, vapor (kg/m3)

�r: radial direction velocity (m/s)

hg: specific enthalpy of gas (J/kg)

�g: heat conductivity of gas (W/mK)

Tg: temperature of gas (K)

Dav: diffusion coefficient of air into vapor (m2/s)

Ma, Mv: molecular weight of residual gas in a bubble,

vapor (kg)

In each equation, pg is the pressure in the bubble, which

is the sum of two partial pressures of vapor and air,

pg ¼ pv þ pa; �g ¼ �v þ �a ð9Þ

and hg in Eq. (7) is the enthalpy of gas, which is given by

hg ¼ CpgTg ¼
pvMvCpv þ paMaCpa

Mapa þMvpv
Tg ð10Þ

In the liquid phase, the thermal conduction equation for

the liquid phase around the bubble, the diffusion equation

of air into liquid, and the equation of the motion of the

bubble are given, respectively, as follows.

�lCl

@Tl

@t
¼ �

l
�T

l
ð11Þ

@�al

@t
¼ Dal��al ð12Þ

�lR
d2R

dt2
þ

3

2
�l

dR

dt

� �2

þ
4	l

R

dR

dt
¼ pg � p1 �

2


R
ð13Þ

where

�l: density of liquid (kg/m3)

�al: density of air into vapor (kg/m3)

Tl: temperature of gas (K)

R: instantaneous radius of a bubble (m)

Cl: specific heat constant of liquid (J/kgK)

Dal: diffusion coefficient of air into liquid (m2/s)

	l: coefficient of viscosity of liquid (Pa�s)
p1: ambient pressure (Pa)


: surface tension of liquid (N/m)

The boundary conditions at gas-liquid interface are

expressed as follows.

Temperature on bubble wall:

Tg ¼ T
l

ð14Þ

Condition at saturation:

dpv

dTl

¼
Lpv

RvTl
2

ð15Þ

Equality of solubility:
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pa ¼ kH�al ð16Þ

Equality of mass flux:

�gð�r � _RRÞ ¼ _mmv þ _mma ð17Þ

Equality of heat flux:

��g
@Tg

@r
þ L _mmv ¼ ��l

@Tl

@r
ð18Þ

Equality of relative mass flux:

�Dav�g
@

@r

pv

pg
¼ jv ¼

�a

�g
_mmv �

�v

�g
_mma ð19Þ

Mass flux diffusion of air into surrounding fluid:

� Dal

@�al

@r
¼ jal ¼ _mmal ð20Þ

where

L: latent heat of vaporization (J)

kH: Henry constant (Pa�m3/kg)

jal: diffusion mass flux of air into liquid (kg/m2s)

ma, mv: condensation mass flux of residual gas in a

bubble, vapor (kg/m2s)

Equations for the corresponding physical variation f ,

such as �r, pg, pv, pa, and hg, can be estimated by first-order

linear approximation ( f ¼ f0 þ f 0, where f0 is a constant

equilibrium value, f 0 � f0 is a small variation). These

linearized equations and boundary conditions are given in

Appendix A. Next, all of the fluctuating variables f 0ðr; tÞ
are oscillated by the same frequency ! ( f 0ðr; tÞAf ðrÞej!t).
The eigenvalues are obtained from linear differential

equations with constant coefficients for Af ðrÞ. Since Af ðrÞ
is expressed by the linear summation of the eigenfunctions

corresponding to these eigenvalues, the constant coeffi-

cients used in the linear combination are calculated from

linear algebraic equations by using above the boundary

conditions. Consequently, complex amplitude Af ðrÞ is

solved as a function of r.

3.2. Profiles of Temperature, Partial Pressure of
Vapor, and Partial Pressure of Air in an
Oscillating Bubble

Temperature fluctuations are rarely seen in the liquid

(side) as the surrounding liquid has a large heat capacity,

but heat is transferred between the interior of the bubble

and surrounding fluid by the contraction and expansion of

the bubble. Accordingly, phenomena in the interior of the

bubble are shown here.

Figure 3 shows the amplitudes of the fluctuation

profiles of the temperature, partial pressure of vapor, and

partial pressure of air for 40 kHz ultrasonic irradiation.

Temperature fluctuations rarely occur in the liquid (side),

and accordingly, the temperature fluctuation jATg j=Tg0

decreases near the bubble wall and becomes zero on the

bubble wall. Here, the real amplitude of the gas

temperature must be obtained by jATg j since ATg is

complex. The saturated vapor pressure on the bubble wall

(R=R0 ¼ 1) is held nearly constant, and accordingly, the

fluctuation of vapor pressure jAPv j=Pg0 decreases near the

bubble wall, and becomes zero on the bubble wall like the

temperature fluctuation. The vapor diffusion and other

effects occur by the evaporation and condensation at the

interface, since the temperature distribution exists in the

bubble by the oscillation and the saturated vapor pressure

on the bubble wall is held constant, these affect the bubble

oscillation.

3.3. Damped Oscillation of a Single Free bubble

In order to study how interior phenomena affect the

oscillation of a bubble, we obtain the logarithmic

decrement (per cycle) of the bubble in free oscillation.

When the pressure far from the bubble p1 is set to zero,

complex angular frequency ! is calculated from linear

homogeneous equations. Hence, the damping factor per

cycle 
 is expressed by multiplying 2� by the ratio of the

imaginary part to the real part of complex !.


 ¼ 2�
=½!�
<½!�

ð21Þ

Figure 4 shows a calculated logarithmic decrement

result with a variation of vapor pressure in a bubble. The

abscissa is the radius of the single bubble R0. The

logarithmic decrement has a peak value when R0 is equal

to 20 	m, and it increases with vapor pressure.

Figure 5 shows a calculated logarithmic decrement

result when the diffusion rate of the air in a bubble into the

surrounding fluid is varied. When the diffusion coefficient

Dal becomes larger and R0 becomes smaller down to

several mm, the influence by the diffusion rate becomes

larger.

Figure 6 shows a calculated logarithmic decrement

Fig. 3 Amplitude of temprature and partial pressure
of air and vapor.
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result under normal temperature and normal pressure. The

partial pressure of vapor in the bubble under normal

temperature and normal pressure is 2 kPa, and the

influence of vapor diffusion on the bubble oscillation is

almost negligible. The influence of the thermal diffusion of

gas is large when R0 is nearly 10 	m. The maximum value

of the logarithmic decrement is nearly 0.4. When R0

becomes smaller, the influence of the viscosity of liquid

and the diffusion of air into the surrounding liquid becomes

larger.

In the cleaning vessel used in the present experiment, it

is assumed that a large number of cavitation bubbles with a

radius of 50 	m (¼ 0:05 mm) are generated in the

ultrasonic field with a frequency of 40 kHz. As Fig. 6

indicates, the thermal diffusion within the bubble plays a

dominant role when the bubble radius is 50 	m. The same

result was given by the analysis of Chapman et al. [5]

which neglected the diffusion of gas and liquid.

3.4. Energy Dissipation of Bubbles in the Vessel by
Forced Oscillation

To obtain the actual pressure, the energy loss in the

water vessel must be determined. The cavitation bubbles

come to suffer forced oscillation when ultrasonic vibration

is applied. When the distribution of the corresponding

physical quantity in the radial direction can be found by

solving the basic equation, the energy dissipation can be

calculated [6]. If the energy dissipation _EE1 by the

oscillation of a single bubble, is made to occur by only

the thermal diffusion, the following equation can be

induced [6].

_EE1 ¼
�g

T0

Z R0

0

@T 0

@r

� �
4�r2dr ð22Þ

where T0 is the average temperature and
� represents an

average over one period. The energy dissipation versus

frequency when the bubble radius is 50 	m is shown in

Fig. 7. A large dissipation occurs at the resonant frequency

of the bubbles.

Total energy dissipation _EE by bubbles in a cleaning

vessel is calculated by multiplying the energy dissipation

for a single bubble by bubble density N and integrating

over the volume of water V in the cleaning vessel.

Fig. 4 Effect of partial pressure on the decay of

Fig. 5 Diffusion on the decay of bubble oscillation.

Fig. 6 Bubble oscillation in the normal state.

Fig. 7 Energy dissipation.

S. NOMURA and M. NAKAGAWA: ANALYSIS OF AN ULTRASONIC FIELD

287



_EE ¼
Z
V

N _EE1dV ð23Þ

Hence, the actual sound pressure can be found by making

this dissipation equal to the ultrasonic output. Accordingly,

velocity �n of the vibrating surface can be obtained from

ultrasonic power _EE by evaluating the energy dissipation of

the bubble oscillation,

ð2��c�nÞ�2 ¼
�ð�� 1Þ2T0R0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�g�g�cvg!

p
NV

�2p02 _EE

�
!n

4

ð!n
2 � !2Þ2 þ ð2�!n!Þ2

�
1

V

Z
V

fp2gdV : ð24Þ

where

!n ¼

ffiffiffiffiffiffiffiffiffiffi
3�p0

�R0
2

s
; 2�!n ¼

4	

�R0
2

�: ratio of specific heat

cvg: specific heat at a constant volume of gas (J/kgK)

!: angular frequency (rad/s)

p2 in the integrated function is the square of the non-

dimensional sound pressure in Eq. (1). The detailed

derivation of Eq. (24) is described in Refs. [7] and [8]. If

_EE is equal to the ultrasonic output and the profile of the

sound field is known, the velocity of the vibrating surface

can be determined by giving cavitation bubble radius R0

and bubble density N.

4. RESULTS OF ANALYSIS

4.1. Sound Profile on the Block Surface

As the ultrasonic wavelength in water at the frequency

of 40 kHz is 37 mm, a numerical analysis is carried out by

setting the width of the two-dimensional cleaning vessel to

10 wavelengths, and the height to four wavelengths. The

pressure or the pressure gradient of the boundary element is

obtained by dividing a boundary of the cleaning vessel

2� ð370þ 148Þ mm into 420 elements (the line segment

length of the element is equal to 1/15 the wavelength).

Then, the pressure in the cleaning vessel is calculated.

Cavitation bubble radius R0 is 0.05 mm and bubble density

N is 1� 107 #/m3 by referring the number density [9] of

bubble nuclei as reported in experiments measuring bubble

nuclei. The electric input power of the transducer is 600 W,

but as the transformation efficiency of the ultrasonic

transducer employed is 50%, the mechanical output of

the transducer becomes 300 W. Velocity �n of the

vibrating surface is determined so that the energy

dissipation is equal to the output power of the transducer.

Figure 8 shows a two-dimensional isobar diagram of

standing vibration in a cleaning vessel when the height

from the vibrating surface to the base of the block is one

wavelength (1�: about 37 mm). The isobar space in the

figure is 0.1 MPa. The standing vibration causes resonance

at the base of the block and the pressure becomes high

there, in contrast, the pressure is low at the sides and other

points in the vessel. Figure 9 shows mean values of the

sound pressure at the base of the block, with varying

distance yb from the oscillator. The vertical line in the

figure corresponds to Fig. 8. The resonance phenomena

appear with a period of about 20 mm.

4.2. Water Depth and Cavitation Bubbles

The ultrasonic pressure in a cleaning vessel is governed

by the attenuation of the ultrasonic vibration in the vessel.

Figures 10 and 11 show analysis results when the depth (le)

of water filled in the cleaning vessel is made two

wavelengths and six wavelengths. The distance from the

vibrating surface to the base is one wavelength in each

case. In Fig. 10 strong resonance of the standing vibration

can be seen, but when the depth of water is six wave-

lengths, no definite resonant appearance can be seen and

the sound escapes around the block.

In order to show this in detail, the mean sound pressure

Fig. 8 Isobar diagram in a cleaning vessel, le ¼ 4�.

Fig. 9 Pressure on the base of an object, le ¼ 4�.
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when the height of the block yb is varied is shown in

Figs. 12 and 13. As the depth of water becomes higher, the

number of bubbles increases and so a larger attenuation of

the ultrasonic vibration occurs. If we compare the case that

the depth of water is two wavelengths with the case that it

is four wavelengths as in Fig. 8, there is no large difference

in the analyzed sound pressure. When the standing wave

causes resonance between the ultrasonic generator and the

block surface, the sound pressure at the base is independent

of the water volume in the cleaning vessel. It is assumed

that in the resonant state, only the bubbles that exist

between the generator and the block surface oscillate and

energy dissipation is caused.

On the other hand, when the depth of the water is large

up to six wavelengths, the resonant part becomes irregular

and the sound pressure is decreased. When the standing

wave causes resonance between the ultrasonic generator

and the block surface, the sound pressure becomes lower as

the quantity of water in the ultrasonic field increases. The

amount of energy dissipation of the ultrasonic wave

increases proportionally to the number of bubbles.

5. MEASURED CAVITATION INTENSITY

In order to verify the analyzed sound pressure, the

strength of cavitation on the block surface is measured

experimentally. The cleaning power by ultrasonic vibration

can be evaluated with the mass loss of an aluminum sheet.

An aluminum sheet of 15 	m is cut to the size of the

bottom area of the block, 105 mm � 105 mm, and it is

stretched to remove any air trapped between the base

surface of the block and itself, and after that, the sheet is

attached by putting double-face adhesive tape on the four

corners of the base. The aluminum sheet immersed in the

cleaning vessel is eroded by cavitation damage [1,10]. The

mass loss calculated from the eroded area of the aluminum

sheet increases linearly under the applied time of less than

50 s. The strength of the cavitation is determined quantita-

tively as the cavitation intensity (C.I.) by the mass loss rate,

where the mass loss is divided by the applied time.

Figure 14 shows the cavitation intensity at the base

surface for the depth of four wavelengths. A resonant state

appears periodically, and this tendency agrees well with

analysis results. Figure 15 shows the same for the depth of

water of two wavelengths, the profile of the cavitation

intensity is almost the same as that at four wavelengths. In

Fig. 16 where the depth is six wavelengths, the resonance

comes to have an irregular period and its magnitude

Fig. 10 Isobar diagram in a cleaning vessel, le ¼ 2�.

Fig. 11 Isobar diagram in a cleaning vessel, le ¼ 6�.

Fig. 12 Pressure on the base of an object, le ¼ 2�.

Fig. 13 Pressure on the base of an object, le ¼ 6�.
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decreases. These series of measurement results of the

cavitation intensity can be well predicted by the present

analysis. Hence, the present analysis can predict the

cleaning effect by ultrasonic vibration.

6. CONCLUSION

The sound pressure on a block and the pressure profile

in a cleaning vessel are analyzed by a boundary element

method while varying the water volume in the ultrasonic

cleaning vessel. The conclusion of the present paper is

shown in the following.

(1) In an ultrasonic field with a frequency of 40 kHz,

energy dissipation by thermal diffusion in a bubble is

predominant for the dissipation of the oscillation of

cavitation bubbles.

(2) The sound pressure can be evaluated well by

considering of the thermal diffusion in the bubble by

bubble oscillation.

(3) When the standing wave does not cause resonance

between the ultrasonic generator and the block

surface, the sound pressure on the block surface

decreases with increasing water volume.

(4) When the standing wave does cause resonance, in

contrast, the sound pressure on the block surface is

independent of the water volume in the cleaning

vessel. Energy dissipation by bubble oscillation

occurs only between the generator and the block base.
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Fig. 14 Cavitation intensity, le ¼ 4�.

Fig. 15 Cavitation intensity, le ¼ 2�.

Fig. 16 Cavitation intensity, le ¼ 6�.
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�r ¼ 0þ �0r

pg ¼ pg0 þ p0g; �g ¼ �g0 þ �0g

pv ¼ pv0 þ p0v; �v ¼ �v0 þ �0v

pa ¼ pa0 þ p0a; �a ¼ �a0 þ �0a

hg ¼ hg0 þ h0g ðA�1Þ

into the physical variable of each fundamental equation in

section 3.1, Eqs. (5)–(13) can be linearized.

Omitting small quantities of the second order (f 0 being

of the first order), linearized equations are obtained in the

vapor phase.

Continuity equation:

�a0

�g0pa0

@p0a
@t

þ
�v0

�g0pv0

@p0v
@t

�
1

Tg0

@T 0
g

@t
þ

1

r2
@

@r
r2v0r ¼ 0

ðA�2Þ
Momentum equation:

�g0
@�0r

@t
¼ �

@p0a
@r

�
@p0v
@r

ðA�3Þ

Energy equation:

�g0
@h0g

@t
�

@p0a
@t

�
@p0v
@t

¼ �g div grad T 0
g ðA�4Þ

where

h0g ¼
MaCpaTg0

Mapa0 þMvpv0
p0a þ

MvCpvTg0

Mapa0 þMvpa0
p0v þ Cpg0T

0
g

�Cpg0

Map
0
a

Mapa0þMvpv0
Tg0�Cpg0

Mvp
0
v

Mapa0þMvpv0
Tg0

ðA�5Þ

Then,

Cpg0 ¼
pv0MvCpv þ pa0MaCpa

Mapa0 þMvpv0
: ðA�6Þ

Equation of diffusion:

1

pv0

@2p0v
@t2

�
1

Tg0

@2T 0
g

@t2
�

1

�g0
div grad ðp0a þ p0vÞ

¼
Dva�g0MaMv

�v0ðpv0Mv þ pa0MaÞ2

� pa0 div grad
@p0v
@t

� pv0 div grad
@p0a
@t

� �
ðA�7Þ

In the liquid phase, the following linearized equations are

deduced from Eqs. (11), (12), and (13).

Diffusion equation for the liquid phase around the

bubble:

�lCl

@T 0
l

@t
¼ �l div grad T 0

l
ðA�8Þ

Diffusion equation of air into liquid:

@�0al

@t
¼ Dal div grad �0al ðA�9Þ

Motion of bubble:

�lR0

d2R0

dt2
þ

3

2
�l

dR0

dt

� �2

þ
4	l

R

dR

dt
¼ pg � p1 �

2


R

ðA�10Þ
In addition, the linearized boundary conditions are obtained

as follows.

T 0
g

Tg0

¼
T 0
l

Tg0
ðA�11Þ

p0v
pv0

¼
L

RvTg0

T 0
l

T 0
g0

ðA�12Þ

p0a ¼ kH�
0
al ðA�13Þ

�g0ð�0r � _RR0Þ ¼ _mmv þ _mma ðA�14Þ

��g
@T 0

g

@r
þ L _mmv ¼ ��l

@T 0
l

@r
ðA�15Þ

�a0

�g0
_mmv �

�v0

�g0
_mma ¼ �

Dav�g0MaMv

ðpv0Mv þ pa0MaÞ2

� pa0
@p0v
@r

� pv0
@p0a
@r

� �
ðA�16Þ

�Dal

@�0al

@r
¼ ma ðA�17Þ
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