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Abstract: We have developed a method of segregating desired speech from concurrent sounds re-
ceived by two microphones. In this method, which we call SAFIA, signals received by two micro-
phones are analyzed by discrete Fourier transformation. For each frequency component, differences in
the amplitude and phase between channels are calculated. These differences are used to select frequency
components of the signal that come from the desired direction and to reconstruct these components as
the desired source signal. To clarify the effect of frequency resolution on the proposed method, we
conducted three experiments. First, we analyzed the relationship between frequency resolition and the
power spectrum’s cumulative distribution. We found that the speech-signal power was concentrated
on specific frequency components when the frequency resolution was about 10 Hz. Second, we deter-
mined whether a given frequency resolution decreased the overlap between the frequency components
of two speech signals. A 10-Hz frequency resolution minimized the overlap. Third, we analyzed the
relationship between sound quality and frequency resolution through subjective tests. The best fre-
quency resolution in terms of sound quality corresponded to the frequency resolutions that concentrated
the speech signal power on specific frequency components and that minimized the degree of overlap.
Finally, we demonstrated that this method improved the signal-to-noise ratio by over 18 dB.

Keywords: Sound source segregation, Phase difference between input signals, Amplitude difference
between input signals, Frequency analysis, Discrete Fourier transformation
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1. INTRODUCTION

The problem of segregating a desired sound from
among several concurrent sounds in a sound field has
been actively studied, but a satisfactory solution has not
yet been obtained. The aim of our research is to develop
a signal-processing technique for segregating individual
speech signals from received signals consisting of vari-
ous sounds.

Two main approaches have been used in pursuit of
this goal. One uses a single channel input (acquired by
a single microphone), and the other uses multi-channel
inputs (acquired by multiple microphones).

An example of a single-channel method is to estimate
the harmonic structures of speech signals [1,2]. Much ef-
fort has gone into finding a way to detect the pitch pattern
of the desired sound. However, tracing the pitch pattern
is still difficult, especially when it changes rapidly. Spec-
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tral subtraction methods, which enhance the speech signal
by subtracting estimated noise from the observed signal,
have also been proposed [3–5]. However, these methods
are difficult to apply to non-stationary noise.

Methods that use multi-channel inputs use spatial
characteristics as additional cues [6–8]. To work, how-
ever, these methods require a very precise estimation of
the transfer function. Other methods derived from binau-
ral perception have also been proposed [9]. These use two
microphones and imitate several auditory processes. The
model uses a series of broadband filters as a basilar mem-
brane model, imitates the neuron’s excitation pattern, and
uses an interaural cross-correlation model to achieve a
computational cocktail-party effect. However, which part
of this process is the key to the cocktail-party effect is still
under investigation.

In this paper, we describe a new method called SAFIA
(sound source Segregation based on estimating incident
Angle of each Frequency component of Input signals Ac-
quired by multiple microphones). SAFIA segregates ob-
jective speech from concurrent sounds by selecting the
frequency components judged to be the objective speech.
SAFIA is based on sound localization. It uses two chan-
nel inputs and is simpler than several previous approaches
using multi-channel inputs. In SAFIA, each signal re-
ceived by two microphones is transformed into the fre-
quency domain by discrete Fourier transformation. For
each frequency component, differences between the chan-
nels in both amplitude and phase are calculated. These
differences are then used to determine which frequency
components come from the desired direction and to re-
construct these components as the desired source signal.

SAFIA falls into the same category as methods that
enhance the objective speech by weighting the spectrum
— for example, conventional harmonic weighting meth-
ods or spectral subtraction methods. However, harmonic
weighting methods suffer from the drawback of pitch
mistracing, which degrades their performance. SAFIA
is free from this drawback because pitch tracing is not
needed. Moreover, our method uses spatial cues to de-
cide which spectrum-weighting rule to use on a frame-
by-frame basis, and does not require a priori knowledge
of the power spectrum of noise. Thus, it can be used to
reduce even non-stationary noise, unlike the conventional
spectral subtraction method.

The procedure of SAFIA is described in Section 2.
Then, the effect of the frequency resolution upon SAFIA
is analyzed in Section 3. In Section 4, we evaluate the
performance of SAFIA in terms of the signal-to-noise ra-
tio.

Fig. 1 Arrangement of sound sources and microphones.

2. PROPOSED METHOD (SAFIA)

Consider one objective sound source, one noise
source, and two microphonesML and MR set in a field
(Fig. 1). To simplify the explanation, we assume that the
objective sound source is closer to microphoneML than
to microphoneMR, and that the noise source is closer to
microphoneMR than to microphoneML.

A block diagram of SAFIA is shown in Fig. 2. The
processing steps of the method are as follows.

In the frequency analysis, each input signal,r(n),
l(n), is transformed into frequency componentsR( f ) and
L( f ) by discrete Fourier transformation. The length of the
overlap between analysis frames is half the frame length.
ComponentsR( f ) andL( f ) are expressed by

R( f ) = |R( f )|exp( jarg(R( f ))) (1)

L( f ) = |L( f )|exp( jarg(L( f ))) (2)

The inter-channel amplitude difference∆A( f ) and the
inter-channel phase difference∆φ( f ) betweenR( f ) and
L( f ) are then calculated. These are defined as

∆A( f ) = 20log10

( |L( f )|
|R( f )|

)
(3)

∆φ( f ) = arg(L( f ))−arg(R( f )) (4)

To keep∆φ( f ) within −π < ∆φ( f ) < π, we add or sub-
tract 2π to or from∆φ( f ) if necessary.

Both objective speech and noise (including undesired
speech) are assumed to have harmonic structures. We
then hypothesize that if the frequency resolution is prop-
erly determined, these harmonic components hardly over-
lap. In other words, most of the frequency components
of a mixed signal belong to either the objective original
speech or the noise. Based on these assumptions, the
inter-channel amplitude difference∆A( f ) for each fre-
quency betweenL( f ) andR( f ) is that of either the ob-
jective speech or the noise. The inter-channel phase dif-
ference∆φ( f ) betweenL( f ) andR( f ) is that of either the
objective speech or the noise. For the arrangement shown
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Fig. 2 Block diagram of proposed method, SAFIA.

Fig. 3 Examples of sound-acquisition equipment.

in Fig. 1, where the objective source is closer to micro-
phoneML thanMR, the level of the objective speech con-
tained inL( f ) will be greater than that inR( f ). The phase
of the objective speech inL( f ) will be farther advanced
than that inR( f ). So, in the decision process, a frequency
component that has a positive∆A( f ) or ∆φ( f ) is judged
to contain the objective speech. In the same way, a fre-
quency component with a negative∆A( f ) or ∆φ( f ) is
judged to contain noise.

In the waveform synthesis process, the objective
speech is enhanced by weighting the spectrum ofL( f ),
which contains more of the objective speech than the
spectrum ofR( f ). To enhance the objective speech, the
frequency component ofL( f ) judged not to contain the
objective speech is multiplied by 0 or some small number
α ( f ). Also, the component ofL( f ) judged to contain the
objective speech is multiplied by 1. The objective speech
is then reconstructed by transformingL( f ) from the fre-
quency domain into the time domain by inverse Fourier
transformation.

Which criterion (∆A( f ) or ∆φ( f )) to use in the
judgement for each frequency component depends on the
type of sound-acquisition equipment. This is because the

degrees of the amplitude and phase differences depend
on the sound-acquisition equipment. There are several
kinds, such as two omnidirectional microphones, two mi-
crophones implemented within a diffraction object (for
example, a dummy head or a hard sphere), and two direc-
tional microphones (Fig. 3).

In the case of two omnidirectional microphones,
inter-channel amplitude differences∆A( f ) are detected
at all frequencies. If the distance between the two micro-
phones is short, however,∆A( f ) becomes small, and de-
tection errors occur. Therefore, in a low-frequency range,
where the phase difference can be determined uniquely
and with few errors (except at very low frequencies), the
inter-channel phase difference∆φ( f ) is used in the deci-
sion process. In a high-frequency range, half the spatial
wavelength is smaller than the microphone distance, so
∆φ( f ) cannot be determined uniquely; in this case, the
inter-channel amplitude difference∆A( f ) is used for the
judgement.

In the case of two microphones implemented within
a diffraction object, the two criteria,∆A( f ) and∆φ( f ),
are used for each frequency component as in the previous
case. This is because the phase difference is determined
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uniquely at low frequencies, and a large amplitude differ-
ence can be obtained at high frequencies because of the
benefit of diffraction [10,11].

In the case of two directional microphones, sufficient
amplitude difference can be obtained at all frequencies
even if the distance between the two microphones is short.
However, a precise phase difference is difficult to ob-
tain when the distance between the microphones is short.
Thus, in this case, the amplitude difference is used for all
frequencies.

A generalized explanation of SAFIA is as follows. It
is understood from Fig. 4 that∆A( f ) and∆φ( f ) depend
on the azimuthθ between the sound source and the micro-
phones and on the distancer (Fig. 4). We denote these de-
pendencies as functions∆A( f ,θ ,r) and∆φ( f ,θ ,r), re-
spectively. We assume that the ideal amplitude difference
of the objective speech∆A( f ,θ ,r) is known. Then, the
frequency component is judged to be that of the objective
speech when the absolute value of the difference between
∆A( f ,θ ,r) and the observed∆A( f ) is smaller than some
small numberε1 as shown in Eq. (5). The frequency com-
ponent is also judged to be that of the objective speech
when Eq. (6) holds for a small valueε2. Thus, the objec-
tive speech can be segregated regardless of the position of
its source.

|∆A( f )−∆A( f ,θ ,r)| ≤ ε1 (5)

|∆φ( f )−∆φ( f ,θ ,r)| ≤ ε2 (6)

To simplify the above explanation, only one noise
source was assumed. However, SAFIA also works when
there are multiple noise sources with the judgement based
on Eqs. (5) and (6).

Fig. 4 Dependence of inter-channel amplitude and phase
differences upon azimuthθ and distancer.

3. EFFECT OF FREQUENCY RESOLUTION
ON SAFIA

Certain frequency components of harmonic signals
are more powerful when the frequency resolution is high.
As the concentration of power increases, the performance
of our method rises. However, to increase the frequency
resolution, the analysis window must be made longer.
Therefore, for speech signals, whose pitch and harmon-
ics change over time, a substantial increase in the fre-
quency resolution does not necessarily lead to a concen-
tration of power in specific components. Thus, optimum
selection of the frequency resolution is very important for
methods that segregate speech based on spectrum weight-
ing. However, there have been few studies on how the
frequency resolution can be optimized. We studied this
through three experiments.

First, we analyzed whether the selected frequency res-
olution affects the concentration of power in specific fre-
quency components. Second, we analyzed whether the
selected frequency resolution reduces the degree of over-
lap between the frequency components from two speech
signals. Third, we investigated the relationship between
the frequency resolution and quality of sound segregated
by SAFIA.

3.1. Relationship between Frequency Resolution and
Concentration in the Power Spectrum

3.1.1. Measure of power concentration
As a measure to evaluate the power concentration, we

used the cumulative distribution of the power spectrum.
The procedure for obtaining it (Fig. 5) was as follows:

➀ Speech signals(n) was transformed into frequency
components by discrete Fourier transformation.
The power spectrum|S( f )|2 was then calculated.

➁ Power spectrum|S( f )|2 was sorted in order of size.
➂ The sorted power spectrum from➁ was accumu-

lated.
➃ The cumulative distribution of the power spectrum

was calculated by normalizing the accumulated
power spectrum from➂ . The calculation from➀

to ➃ was repeated while shifting the time window,
and the average curve of the cumulative distribution
of the power spectrum was calculated.

➄ From the average curve calculated above, the per-
centage of frequency components P that corre-
sponded to an accumulated power of 80% was cal-
culated.

If the frequency component power is concentrated
within specific frequency components, the cumulative
distribution of the power spectrum increases rapidly and
the value ofP becomes smaller.
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Fig. 5 Procedure for obtaining the percentage of frequency componentsP that corresponds to an 80% cumulative distribution
of the power spectrum.

In this test,P was calculated for six different fre-
quency resolutions (2.5, 5, 10, 20, 40, and 80 Hz), and the
values were compared. We used 60-s-long speech signals
from male and female subjects as the test signal. The sam-
pling frequency was 11.025 kHz. A Hanning window was
used for discrete Fourier transformation. The six differ-
ent frequency resolutions mentioned above were achieved
by using six different frame lengths, which were 4,096,
2,048, 1,024, 512, 256, and 128 points, respectively. The
frequency ranges of the speech signals were from 20 Hz
to 5 kHz. Periods of silence were removed from the sig-
nals.
3.1.2. Analysis Results

The analysis results are shown in Fig. 6. As the fre-
quency resolution increased from 80 to 10 Hz, the value
of P decreased;i.e., the frequency component power be-
came more concentrated on specific components. How-
ever,P increased below 10 Hz. The difference betweenP
at 10 and 20 Hz was slight. The female speech was more
sensitive to the frequency resolution, but both female and
male speech showed similar behavior.

If the signal is harmonic and stationary, then as the
frequency resolution improves the frequency component
power becomes more concentrated on specific compo-
nents. Thus,P becomes smaller. However, most speech
signals are not stationary. The average stationary period

of a speech signal is about 40 ms [12], and a time window
length of 40 ms corresponds to a frequency resolution of
25 Hz. Therefore, as the frequency resolution rises from
80 to 20 Hz,P will become smaller. However, our re-
sults showed thatP was lowest at 10 Hz. This indicates
that although the signal included a small number of non-
stationary components, the improved frequency resolu-
tion concentrated the power on specific frequency com-
ponents.

When the resolution was 5 or 2.5 Hz, although the
frequency resolution was high enough, the time win-
dow lengths were too long (they were about 200 and
400 ms, respectively). As a result, each window in-
cluded many non-stationary components. Each source’s
frequency components fluctuated more widely in a longer
time window. That is, the power of the frequency compo-
nents was more dispersed among the components.

For the resolutions of 40 and 80 Hz, the window
length was suitable for stationary speech, but the poor
frequency resolution caused the power to be dispersed
among the components.

Thus, the most suitable frequency resolution concen-
trates the speech-signal power spectrum on specific fre-
quency components. A suitable frequency resolution for
segregating objective speech signals by SAFIA is likely
to be between 10 and 20 Hz.
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Fig. 6 Dependence ofP on frequency resolution, where
P is the percentage of frequency components that corre-
sponds to an 80% cumulative distribution of the power
spectrum.

Fig. 7 Relationship between frequency resolution and
degree of overlap (female speech with female speech).

Fig. 8 Relationship between frequency resolution and
degree of overlap (male speech with female speech).

3.2. Frequency Component Overlap between Two
Speech Signals

3.2.1. Measure of the degree of overlap
We investigated the degree of frequency component

overlap between two speech signals as follows.
(1) Two speech signals, denoted bysa(n) andsb(n), with

equal amplitudes were transformed into frequency com-
ponents by discrete Fourier transformation. These fre-
quency components were denoted bySa( f ) andSb( f ).
(2) For each frequency component, the ratio of the am-
plitude ofSa( f ) to that ofSb( f ) was calculated; this was
denoted by∆Lev( f ).

∆Lev( f ) = −
∣∣∣∣20log10

( |Sa( f )|
|Sb( f )|

)∣∣∣∣ (7)

From this definition,∆Lev( f ) reaches 0 dB when the am-
plitudes ofSa( f ) and Sb( f ) are equal. This means that
Sa( f ) andSb( f ) are highly overlapped for that frequency
component.
(3) The value of∆Lev( f ) varies depending on frequency
and time. To obtain the distribution of∆Lev( f ), we cal-
culated its histogram. The intervals of the histogram were
defined as follows.
(Int. 1) ∆Lev( f ) � −40 dB
(Int. 2)−40dB< ∆Lev( f ) � −30 dB
(Int. 3)−30dB< ∆Lev( f ) � −20 dB
(Int. 4)−20dB< ∆Lev( f ) � −10 dB
(Int. 5)−10dB< ∆Lev( f ) � 0 dB

When the value of∆Lev( f ) fell into Int. 4 or Int. 5,
the estimated degree of overlap for the frequency compo-
nents between two signals was high. On the other hand,
when the value of∆Lev( f ) fell into Int. 1 or Int. 2, the es-
timated degree was low. We calculated the histogram of
∆Lev( f ) for five different frequency resolutions: 5, 10,
20, 40, and 80 Hz.

Two pairs of simultaneous speech signals were used
as test signals. One pair consisted of male speech and fe-
male speech; the other pair consisted of female speech,
with the same person speaking different phrases. The sig-
nal length was about 60 s.
3.2.2. Analysis results

Figures 7 and 8 show the calculated histograms of the
overlap for the two types of speech pairs. (The vertical
axis shows the percentages of distribution∆Lev( f ) for
each interval.) Both histograms had some common fea-
tures as follows.
(1) In Int. 4 and Int. 5, where the degree of overlap was
high, the distribution of∆Lev( f ) increased as the fre-
quency resolution fell from 10 to 80 Hz. On the other
hand, in Int. 1 and Int. 2, where the degree of overlap
was low, the distribution of∆Lev( f ) decreased as the fre-
quency resolution became lower. Thus, the degree of fre-
quency component overlap between the two speech sig-
nals increased as the frequency resolution became lower.
(2) In Int. 4 and Int. 5, the percentage of∆Lev( f ) de-
creased as the frequency resolution rose from 80 to 10 Hz.
However, it increased when the frequency resolution was
even higher (5 Hz). In Int. 1, on the other hand, it
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increased as the frequency resolution rose from 80 to
10 Hz, but decreased when the frequency resolution be-
came 5 Hz.

These results indicate that the optimal frequency reso-
lution that minimizes the degree of frequency component
overlap between two speech signals is about 10 Hz. This
is consistent with the optimal resolution obtained in Sec-
tion 3.1 (Fig. 6).

3.3. Relationship between Frequency Resolution and
Sound Quality

3.3.1. Evaluation method
To establish the relationship between the sound qual-

ity with SAFIA and the frequency resolution, we evalu-
ated the sound quality through a subjective test where the
frequency resolution was varied from 5 to 80 Hz. The in-
put signals were mixed to simulate the situation shown in
Fig. 9. In this situation, a free-field was assumed. Two
omnidirectional microphones, separated by 23 cm, were
used. Each sound source was arranged at 45◦ to the line
through the microphones. The distance between the mi-
crophones and the sound sources was 60 cm. The mean
energies of the two source signals were assumed to be
equal. This simulated situation represents two speakers
sitting side by side.

Two mixed speech signals (Table 1) were used in the
test. One was a mixed signal containing male speech and
female speech. The other was a mixed signal containing
only female speech (the same person speaking different
phrases). The frequency range of the signals was from
20 Hz to 5 kHz. The parameterα ( f ) was set to zero. The
parametersε1 and∆A( f ,θ ,r) were set to 3.37 dB. The
parametersε2 and∆φ( f ,θ ,r) were set to 0.676 ms.

In the test, five subjects listened to six kinds of
speech: the original speech and the speech segregated at
a frequency resolution of 5, 10, 20, 40, or 80 Hz. The sig-
nal length was about 4 s. The subjects used headphones
to listen to the six kinds of speech in random order. Then
they ranked the speech quality on a five-point scale from
1 (bad) to 5 (excellent). The five subjects were Japanese
men in their twenties or thirties.
3.3.2. Results

The results are shown in Fig. 10. In the S1 case, the
highest quality was achieved at a frequency resolution of
10 Hz, and there were significant differences (α � 0.05)
between the frequency resolutions. In the S2, S3, and S4
cases, although the highest-quality frequency resolution
was 20 Hz, there were no significant differences between
the test results of 10 and 20 Hz. There were significant
differences between 20 and 5 Hz, between 20 and 40 Hz,
and between 20 and 80 Hz.

Fig. 9 Arrangement for the subjective test.

Table 1 Segregated signals evaluated subjectively.

Mixed test signal Segregated signal

Maie speech + female speech Male speech (S1)
Female speech (S2)

Female speech + female speech Female speech (S3)
(same person speaking different phrases) Female speech (S4)

These results imply that the optimal frequency reso-
lution was between 10 and 20 Hz. This optimal resolution
was almost the same as the frequency resolution that gave
the highest concentration of speech-signal power on spe-
cific frequency components (Section 3.1). Moreover, this
optimal resolution was almost the same as the resolution
that minimized the degree of overlap (Section 3.2).

4. IMPROVEMENT OF THE
SIGNAL-TO-NOISE RATIO

We also evaluated the performance of SAFIA in terms
of the signal-to-noise ratio (SNR). This indicated how
much of the objective speech was segregated from the
mixed speech. The SNR of segregated speech (s′a(t)) is
defined by Eq. (8), wheresa(t) represents the original
speech. The SNR of mixed speech (speech signal before
segregation) (sa(t) + sb(t)) is defined by Eq. (9), where
sb(t) represents the undesired signal. From these defini-
tions, the improvement in the SNR between before and
after segregation can be calculated by Eq. (10).

S/Naft = 10log10




N−1

∑
n=0

sa(n)2

N−1

∑
n=0

(s′a(n)− sa(n))2


 (8)
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Fig. 10 Relationship between sound quality and frequency resolution.

S/Nbef = 10log10




N−1

∑
n=0

sa(n)2

N−1

∑
n=0

((sa(n)+ sb(n))− sa(n))2




(9)

S/Nimp = S/Naft−S/Nbef (10)

The frequency resolutions were 10 and 20 Hz (which
achieved high scores in the subjective test). The speech
signals were the same as those used in Section 3.3. As
shown in Table 2, SAFIA improved the SNR by more than
18 dB.

5. CONCLUSION

We have developed a method called SAFIA, which
segregates desired speech from signals created from con-
current sounds received by multiple microphones. In
SAFIA, each signal received by two microphones is trans-
formed into the frequency domain by discrete Fourier
transformation. Differences in both the amplitude and
phase between channels are calculated for each frequency
component. These differences are used to select the fre-
quency components that come from the same direction,
and to reconstruct those components as the desired source
signal.

Table 2 Improvement in signal-to-noise ratio.

Frequency Male Female Female Female
resolution speech (S1) speech (S2) speech (S3) speech (S4)

20 Hz 20.19 dB 18.01 dB 18.10 dB 18.26 dB
10 Hz 21.66 dB 18.82 dB 20.22 dB 18.35 dB

The choice of which frequency resolution to use in
SAFIA is critical. To clarify the effect of the frequency
resolution on the effectiveness of our method, we con-
ducted three experiments.

First, we analyzed the relationship between frequency
resolution and the cumulative distribution of the power
spectrum. We found that the power of speech signals is
concentrated on specific frequency components with a
frequency resolution of about 10 Hz. In our second ex-
periment, we investigated whether a given frequency res-
olution decreased the degree of overlap between the fre-
quency components of two speech signals. We found that
a frequency resolution of 10 Hz minimized the degree of
overlap. In our third experiment, we clarified the rela-
tionship between sound quality and frequency resolution
through subjective tests. The most efficient frequency res-
olution for sound quality, in this case about 10 Hz, was
close to the resolution that concentrated the power of
speech signals on specific frequency components. More-
over, it was close to the frequency resolution that mini-
mized the degree of overlap.
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We also demonstrated that SAFIA improved the
signal-to-noise ratio by more than 18 dB.
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