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In this paper we have addressed the problem of resynthesizing stimulus signal from adapted
auditory neural firing pattern. The major issues discussed are : new method of nonlinearity
inversion and effects of the stimulus signal’s properties in forward and reverse outputs. A
simple and efficient inner hair cell (IHC) inversion method based on Meddis IHC simulation
has been constructed. With this inversion method and in response to tone-bursts of increas-
ing frequencies and intensities, it was possible to reverse-process the nonlinearity of the
auditory system and regenerate the estimate of the stimulus signal. Estimated signal
showed good recovery of the information such as amplitude, frequency and phase, even in
frequencies above 3kHz. However, at intensities higher than 65 dB, amplitude recovery
was not satisfactory enough. We conclude that, in reverse auditory simulations, our inver-
sion method recovers important information pertaining to the identity of the original
stimulus signal and could be employed as an IHC output monitoring or evaluation system.
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1. INTRODUCTION

In recent years, a number of sophisticated
computational and experimental auditory fiber
activity studies have been presented that aim to
explain the particular nonlinearities that occur at
the junction between the inner hair cells (IHC) and
auditory-nerve fibers, the point of neuromechanical
transduction.!””® So far, forward auditory models
have been used as a powerful tool for investigating
the neural mechanisms underlying speech percep-
tion. However, unlike other fields of science and
engineering, usability and application domain of its
reverse models have not been explored yet. Particu-
larly, it is evident that despite a number of forward
IHC models,*® there has not been any remarkable
study on ITHC reverse simulations, their func-
tionality, characteristics and possible applications.

In reverse applications, there are some transforma-

Inner hair cell, Reverse auditory model, Synaptic model, AGC, Auditory

tions, like FFT, that can be inverted without loosing
any information. However models containing
nonlinear transformations such as many auditory
and IHC models, are not 100% reversible. Then, a
fundamental question is that, how a particular IHC
inversion model will be useful in speech processing
and what type of information will be recovered from
inversion of the nonlinear transformations. To
answer the above questions, first, we will explain
about the possible application domain of the audi-
tory inversion methods. Then we will investigate
whether basic and essential information necessary
for that application are present in the inverted sig-
nal.

In this paper, for IHC inversion purpose, we will
rely on the Meddis THC model"® which is widely
accepted as a realistic inner hair cell firing simula-
tion. This model gives us the opportunity to setup
a realistic and relatively simple model of human
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peripheral auditory system.'® It is rich in parame-
ters, which could be tuned manually or automati-
cally.!V

Due to the usage of the auditory or neural firing
software/hardware models in speech recognition
systems (as a pre-processor),'”® cochlear implant
systems (as a hardware simulation),'® and speech
enhancement applications,’*'® we need to investi-
gate the outputs of the models to evaluate the condi-
tion and quality of the transferred signal.

For auditory model evaluation, we can reverse
process the auditory model and resynthesis the esti-
mate of the original stimulus signal.’®*!® Then
the estimated signal could be checked with listening
test. According to the idea of testing by resynth-
esis,'® two different acoustic signals having the same
auditory representation should sound identical to
some extent. Therefore, degree of the perceptual
difference between original and estimated signals is
a good measure of the model’s quality. Using this
method, we may perceive original and estimated
signals equivalent while they have different represen-
tations in some respect (e.g. different waveform).

The same argument and method can be applied
for evaluation of the cochlear implant system (CIS)
device. CIS itself is a prosthetic device that gets
speech signal as input and generates electrically
simulated auditory neural firing pattern in the out-
put to provide limited speech comprehension. This
device is being implanted as a replacement to
peripheral auditory system in hearing impaired
patients. Using the inversion method, electrically
stimulated auditory perception of the CIS can be
inverted by reverse processing of an auditory model.
By regenerating the estimate of the original input
signal, we are able to evaluate the device with test on
normal listeners and avoid troublesome clinical
preparations. Thus, many CIS experiments and
tests could be done just in a laboratory and with
computer simulations.

Another approach to the auditory model inver-
sion is to use it in pitch perception and sound
separation systems.'®¥  This method uses the tem-
poral periodicity information and sound grouping
capability of the auditory system for recovering of
information in the two successive inversion stages.
From a correlogram (representation of sound as a
three dimensional function of time, frequency and
periodicity) to a cochleagram, and then from a
cochleagram to a waveform.
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In the rest of the paper, to verify the richness of the
estimated signal from IHC inversion, recovery rate
of the amplitude, frequency and phase will be inves-
tigated.

It is to mention that, some primitive auditory
inversion ideas are seen in the literature.’®'” The
only satisfactory auditory and adaptation inversion
study prior to our work carried out by D. Naar'¥
and M. Slaney"™ which was based on Lyon’s coch-
lear model.” In the next section we will give a brief
explanation about Lyon’s model adaptation and its
weakness against noise and signal level.

2. INVERSION OF THE LYON’S MODEL

In the Lyon’s cochlear model inversion, the coch-
lear output’s firing pattern was inverted by undoing
the automatic gain control (AGC), finding the
missing portions of the waveform that were removed
by the detector, and combining the channels of the
filter bank to create a waveform that will generate
the same firing pattern. This model used compli-
cate and multi-stage AGC for adaptation simula-
tion.!” In the Lyon’s model, output of the forward
AGC, y, in response to input x and gain G is
defined to be:

y=0Gx

The estimated Xes from inversion processing is
related to y by:

Xes=(y+N)/Ges (N is noise)

Substituting the relation for y results in
Xes:(Gx+N)/Ges:(G/Ges)x+N/Ges

The first coefficient in the above equation causes the
resulting estimate to be scaled by ( G/ Ges) if the gain
and the gain estimate are not equal. If G is small,
then an error in Ges translates into a large multi-
plicative and additive noise error in inversion.
With very large signals, the AGC state is pushed
close to one and the gain hovers near zero. Small
amounts of noise sent back through the AGC state
estimator translate into large changes in gain when
the AGC is inverted.

In an attempt to overcome above-mentioned prob-
lems concerning AGC adaptation, a new nonlinear-
ity inversion algorithm based on Meddis IHC model
will be defined.
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3. INVERSION OF THE MEDDIS IHC
MODEL

In this section, the IHC model will be simulated
in forward with intensity and frequency varying
tone bursts. Then, the model outputs will be used
in inversion process to estimate the stimulus signal
with recovering the effect of the nonlinear transfor-
mations. Finally, degree of recovery from these
transformations and synchronization effect will be
investigated.

3.1 Meddis IHC Model

Meddis IHC model, which has been described in
detail by Meddis,” can be viewed in terms of the
production, movement, and dissipation of the trans-
mitter substances in the region of the inner hair cell
and the auditory nerve fibers. Figure 1 and
differential equations (1)-(4) define the model’s
structure.

dgfdt=y(M—q(t))+ zw(t)— k(1)q(t) (1)
defdt =k(t)q(t)— lc(t)— rc(t) (2)
dwldt=rc(t)— zw(t) (3)

kB)=gdi(S(H+A)/(S(H+A+B), S(H)+A>0
K(t)=0, S(1)+A<0 (4)

The nonlinear k(¢) function is intended to reflect the
permeability of the membrane. Transmitter sub-
stance is assumed to be stored in a free pool g near
the synaptic junction and to be released across the
membrane into the cleft ¢. The permeability factor

Factory
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transmitter Synaptic
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q
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Reprocessing
store, w
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Fig.1 Meddis inner hair cell model B.”

k(¢) of the membrane is a nonlinear function of the
instantaneous amplitude of the stimulus signal S(z).
Symbols g, A and B are permeability parameters.
Factors r, /, x and y are refactory, loose, reprocess-
ing and replenish coefficients respectively. Firing-
rate factor, A, is a scale factor and M is transmitter
quantity.?

3.2 Meddis IHC Inversion Algorithm

Since no analytic solution exists for the Meddis
original differential equations except for the period
of silences,” those original equations and equations
(5)-(8) which are derived from them are evaluated
numerically and iteratively using small time inter-
vals dt.

Getting the probability of firing rates or synaptic
cleft data as input and launching the following
algorithm, we are able to estimate input acoustic
pattern (Sest) to the model. Estimated signal
would be perceptually equivalent to the original
input acoustic pattern. Table 1 shows the input
and output relations between Meddis IHC forward
and reverse models.

The following algorithm defines the Meddis IHC
inversion process for a single fiber :

1. Initialize the reservoir contents to w=0.1628

and ¢g=0.1187.

2. Get cleft contents c(f) or neural firing rate

data for sampling period dft.

3. Use the Eq. (5) (derived from Eq. (2)) and

calculate the membrane’s permeability func-
tion k(1)

k)=[c(t+dt)+ c()(rdt+ idt —1)]/q(t) (5)

4. Use Eq. (6) and (7) (derived from Eq. (1) and
(2) respectively), adjust the contents of the
reservoirs q(t) (transmitter pool) and w(¢)
(reuptake pool)
a(t+dt)=q(t)— k(t)q(t) + (xw(t)

+y(M—q(1)))dt

w(t+dt)=w(t)+(rc(t)—xw(t))dt

(6)
(7)

Table 1 Input/Output relations be-
tween Meddis THC forward and

reverse models.

Model Input Output
Forward model S(1) c(t)
Reverse model c(t) Sesi()
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5. Use Eq. (8)(derived from Eq. (4)) and k(¢) to
estimate the instantaneous stimulus data,
Suwr(?), for dt epoch.

S ) =244 tlg(_t);g}*B) (8)

6. Output the estimated signal Suws(f), that is
the half wave rectified (HWR) version of the
estimated signal Seq.

The reservoirs initial values in reverse model have
been defined based on reservoir contents at steady
state of the forward model. However, using other
positive and less than one initial values will con-
verge to the same results over longer simulation
time. Following experiments verify the capability
of the inversion algorithm in response to various
stimulus signal.

3.3 Simulations and Experiments

In this subsection, we outline the result of reverse
and forward simulations with different input stimu-
lus. Experiments and calculations have been done
with MATLAB'™ and Mathematica™ programming
under Windows™ operating system. All parame-
ters (Table 2) and stimulus signals employed in our
experiments were in compliance with Ray Meddis’
last paper.”

Forward simulations have been carried out to
re-investigate the characteristics of the Meddis IHC
model, and use its outputs as inputs for the inverse
model.

3.3.1 Processing with tone bursts of increasing
intensities
3.3.1.1 Forward processing

In the first forward simulation which is the re-
examination of the Meddis’ experiment," the stimu-
lating signal was combination of the increasing
intensities of a 1-kHz, 300 ms sinusoidal tone bursts
with 250 ms intervening silences. Tone intensities
varied from 40 dB to 80 dB with 5 dB steps (S(¢) is
normalized such that S%(¢)=1 corresponds to a
sound level of approximately 30 dB re zPa). At
this and all other experiments, the sampling fre-
quency (SF) was 20 kHz, unless otherwise stated.
Figure 2 shows the response of the Meddis model to
the mentioned signal. Note that with intensity
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increase, onset rate is increasing while steady state
rate remains almost unchanged for different inten-
sities (Fig. 2(c)). Model shows very good level of
adaptation in different intensities and silence period
that agrees with physiological findings.?

3.3.1.2 Reverse processing

In this experiment, neural firing or cleft contents
data, captured from forward experiment explained
in subsection 3.3.1.1 (Fig. 2(a)), have been used as
an input to Meddis IHC inversion system. Using
inversion algorithm in time intervals 4, estimate of
the input tone burst to the Meddis model has been
calculated. Figure 3 shows the estimated signal
and its degree of recovery from onset and steady
state firings. The steady-state function represents
the firing rate after adaptation to the stimulus tone.
The onset function represents the firing rate in the
first millisecond after tone onset.’® Figure 3(b)
shows that except over 65 dB, recovery from onset
firing is satisfactory.

To reduce the error, we tried shorter time intervals
up to 0.025 ms for numerical evaluations of the
differential equations. This did not have notice-
able effect on results. However, steady state level

2 Time [s] 3 5
0.04 — . . .
- ®)
S 002
o /\J\N\JU\/\J\/\/\/\/\/\/\A/\A/\A/\/\A
_ 0.005 001, “0015 0.02 025
K soo —
£
ﬁ 400} (c) Onset
2
£2001 Steady state
g 4 e ; ; = ° - ;
£ a0 45 50 55 60 65 70 75 80

Stimulus intensity [dB]

Fig.2 Response of the Meddis model to I-kHz
300 ms tone bursts with 5 dB steps and 250 ms
intervening silences. (a) Synaptic cleft con-
tents. (b) First 25 ms of the 80 dB, 1-kHz tone
burst. (c) Onset and steady state firing rates at
different intensities.

Table 2 Meddis IHC models’ parameters set.

A B y g !

r x M h dt

300 5.05 2,000 2,500

6,580  66.31 1 50,000 0.05ms
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Fig.3 Estimated |-kHz 300 ms tone bursts with
5 dB steps and 250 ms intervening silences. (a)
Estimated amplitude of the Sywx signal using
inversion process. (b) Recovery of Syws from
onset and steady state firings at different inten-
sities.
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Fig.4 Response of the Meddis IHC model to

50 dB tone bursts at frequency range of 0.5-8

kHz with 1-kHz steps. (a) Synaptic cleft con-

tents. (b) Onset and steady state firing rates.

recovery was acceptable for whole intensity ranges
with slight mismatching in higher intensities (Fig.

3(b)).

3.3.2 Processing with tone bursts of increasing
frequencies

3.3.2.1 Forward processing

Figure 4 shows the amount of the synaptic cleft
data, resulting from a series of tones with different
frequencies. Signal intensity was set to 50 dB, and
frequency range was from 0.5 kHz to 8 kHz with
about 1-kHz step. Here, in contrast with intensity

Time {s]
60 T T T T —]
(b)
Onset
g50f 8 g . : 1
% 7
@40k Steady state
30 L . ; \ L . .
4] 1 2 6 7 8

3 4 5
Stimulus Frequency [kHz)

Fig.5 Estimated tone bursts at frequency range
from 0.5 kHz to 8 kHz with about 1-kHz steps.
(a) Estimated 50 dB Suws signal with increas-
ing frequencies. (b) Recovery of Sywr from
onset and steady state firings at different fre-
quencies.

variations, with increase of the frequencies, onset
rate, steady state rate and periodic part of the signal
are decreasing while DC part of the ¢(¢#) is increas-
ing (Fig. 4(a)). This behavior completely agrees
with the earlier physiological studies.'®
3.3.2.2 Reverse processing

Synaptic cleft contents data, captured from for-
ward experiment in subsection 3.3.2.1 (Fig. 4(a)),
have been used as an input to Meddis THC inversion
system. Figure 5 (a) shows the output from inver-
ston process. As it can be seen, inversion from tone
bursts of increasing frequencies from 0.5 kHz to 8
kHz with 50 dB fixed intensity, provide us with
acceptable estimate of the original signal. How-
ever, due to very compressed time scale in Fig. 5(a),
estimated tone frequencies and shape of the cycles
are not visible. Figure 5(b) shows that recovery
from onset and steady state firing is near perfect.
3.3.3 Phase locking in forward and reverse simula-

tions

It is clear that the ability of the model’s excitation
function to reflect the fine structure of the stimulus is
limited by the rate at which the transmitter could be
cleared from the cleft. This clearance is affected by
two factors : dissipation and reuptake into the cell.
When these two are slow relative to stimulus fre-
quency, phase locking will be less evident.'®

The forward synchronization coefficients, S,, have
been calculated using the relation (9):
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S(%)={(Number of spikes in half cycle)/
(Number of spikes in full cycle)}-100
(9)

Note that, the chosen half cycle should be the
most populated one in that period.

To test the phase locking of the model in forward
and reverse, 60 dB sinusoidal stimuli of 1,2,3,4 and
S kHz were used with sampling frequency of 100
kHz. The cleft contents were averaged over one
whole cycle of the signal then multiplied by a rate
factor in order to estimate the approximate firing
rate in spikes per second for that cycle. Figure 6(a)
shows forward synchronization coefficient as a func-
tion of stimulus frequency. As it is seen, the aver-
age synchronization rate is about 65% and
coefficients decline in strength between 1 and 5 kHz.
This behavior agrees with the earlier empirical
data.®®

The reverse model’s synchronization coefficients,
RS., are based on each period of Sywg and represents
mean of the populated half of the cycle as a percent-
age of mean of its full cycle. Relation (10) has been
used to calculate the reverse synchronization
coefficients for estimated signal. This relation is
extracted from relation (9) by eliminating the rate
factor 4 from nominator and denominator.

RS(%)={(mean of the populated half cycle)

/(mean of the full cycle)}+100 (10)

Figure 6(b) shows the synchronization coefficient
of the estimated signal for different frequencies.

100 . _ .
90 (a) Forward process

Synchronization coefficients (%)

3
Frequency [kHz)

Fig. 6 Synchronization coefficients as a func-
tion of stimulus frequency. (a) Meddis ITHC
model’s behavior (After Ray Meddis'®). (b)
Reverse IHC model’s behavior.
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From Fig. 6(b) we can see that phase information
recovery rate is very high even in higher frequencies.
However, phase recovery slightly decreases when
stimulus frequency increases.

4. DISCUSSION

In auditory models, which are nonlinear in
nature, auditory stimulus signal has some informa-
tion like characteristic periodicity that remains un-
disturbed by most of its nonlinear transformations.
While some information such as bandwidth, ampli-
tude and phase characteristics of signal are changing
in some degree.'*?” Number of disturbed informa-
tion and degree of distortion of the signal depends
on the structure of the nonlinearities and nature of
the stimulus signal (e.g. its frequency and intensity).

4.1 Recovered Information in Higher Frequencies

According to the outputs of the Meddis THC
inversion experiments, estimated signal at 50 dB
from tone-bursts of increasing frequencies (Fig. 5),
has perfect timing, amplitude and periodicity infor-
mation in all working frequency ranges.

Earlier studies on analysis of the responses of the
auditory neurons against a frequency varying tone-
burst, relied only on data computed from PST
histograms for representation of firing rate in high
frequencies. Thus, due to low firing rate in fre-
quencies higher than 1.5 kHz, it was concluded that
the conveyed information in this region is very
poor®® (e.g. poor localized synchronized rate).
However, our inversion results show that, even in
higher frequencies there are enough conveyed infor-
mation which enables us to regenerate the stimulus
signal with acceptable recovery of the information
such as, amplitude, timing and phase.

4.2 Onset Firing Recovery in Higher Intensities
In case of inverting stimulus signal containing
increasing intensities, due to overshooting phenom-
ena at intensities above 65 dB (Fig. 2), onset rate
firing recovery was not satisfactory. This problem
can be viewed in two ways. First, it is related to
physiological behavior of auditory system in
response to abnormal high intensity stimulus, which
starts with sudden and very high firing rate, and then
declines to a steady state level. Second, it is related
to the inversion system itself, which over estimates
the data and fails to handle very high onset firing at
intensities higher than 65 dB. This distortion is the



auditory system and regenerate the estimate of the
stimulus signal, which recovered most of the infor-
mation needed for auditory or CIS output monitor-
ing or evaluation.
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source of a little bit added noise which appears in
estimated signal at high intensities.

Estimated signal showed very good recovery of
the steady state rate (Fig.3(b)). Although here
also, minor mismatching was found at intensities
above 65 dB.

4.3 Effect of Sampling Frequency

To study the effect of the sampling frequency,
particularly on onset firing recovery, we tried higher
and lower sampling rates than 20 kHz. In 40 kHz
sampling rate, there was not noticeable improve-
ment in the results. Also, much lower sampling
rate, i.e., S kHz or lower, disables the rapid adapta-
tion and causes the negative values appear in reser-
voirs and makes the system unstable.

4.4 Phase Recovery and Stimulus Frequency

Phase locking experiment on inverted signal
showed that phase recovery is almost perfect in low
frequencies. Recovery rate slightly decreases when
stimulus frequency increases. However, synchroni-
zation coefficient is about 96% in average at fre-
quency range of 1-5kHz. Which shows better
phase locking in compare to average synchroniza-
tion rate of 65% in forward simulation.

4.5 Remaining Inversion Processes

After calculating Sywg from single-fiber THC
inversion process, for a full and multi-channel audi-
tory model inversion, the process will be completed
with undoing the effects of the auditory filter and
half-wave rectifier on Sywr to get Sest for each chan-
nel. Final output as summation of all channels,
will be the estimate of the original input signal to
the peripheral auditory system.

4.6 Effect of the Un-recovered Information on the
Estimated Signal

As stated before, in this paper we do not claim

that auditory output is completely reversible. That

is, because of some eliminated and unrecoverable

information by adaptation operation, IHC’s rectify-

ing behavior and filtering property of the basilar

membrane, estimated signal can not be equal to the '

original signal. However, in a human auditory
system, the eliminated or reduced data in forward
processing is believed to be an irrelevant or out of
operating-range information. This irrelevance may
be interpreted in the following way. In a perfect

inversion of the auditory output with partial recov-
ery of the reduced information, if the estimated
signal were reprocessed on the same auditory system,
it would produce the same firing pattern as original
signal.

4.7 Informal Perceptual Evaluation of the Esti-
mated Speech Signal

Informal perceptual tests on the estimated speech
signal from our previous multi-channel IHC based
auditory model inversion,’*®*¥ provided us with
near perfect representation of the original stimulus
signal. Although, there was a little bit added noise
resulted from inversion of HWR and overshooting
problem stated in subsection 3.3.1.2, good quality of
the estimated signal can be interpreted as a good
performance of the Meddis IHC based reverse
model. Nevertheless, authors believe that to be
more precise on conclusion, perceptual test of the
original and estimated signal should be carried out
in more controlled environment and with more
listeners.

5. CONCLUSIONS

An inner hair cell inversion method based on
Meddis IHC model has been defined. Using this
efficient inversion method, we were able to achieve
acceptable quality without employing complex
multiplicative and multi-stage AGC of the earlier
work.

The validity of the IHC inversion algorithm was
confirmed with three sets of forward/reverse experi-
ments. Inversion from tone bursts of increasing
intensities was successful in recovering onset and
steady state rate amplitude information up to 65 dB.

In reverse processing of the tone bursts of the
increasing frequencies at fixed 50 dB, inversion
method showed very good performance in recover-
ing amplitude at frequency ranges up to 8 kHz.
The method recovered amplitude even at frequencies
higher than 3 kHz, where most of the information
was reduced or eliminated in forward processing.

Phase recovery was quite satisfactory for 1-5 kHz
range, even at frequencies higher than 1.5kHz,
where phase information was severely reduced in
forward simulation. Nevertheless, recovery rate
slightly decreased with increase of the stimulus fre-
quency

With THC inversion method, we could reverse
process the nonlinearity of the Meddis IHC based
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