J. Acoust. Soc. Jpn. (E) 21, 2 (2000)

PAPER

A new tuning method for glass harp based on a vibration
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When using wine glasses as musical instruments (also referred to as the glass-harp), the pitch
needs to be minutely adjusted. That is, it needs to be tuned. A wide adjustment range has
been achieved by a new method that locally shaves the bottom of the cup of each vessel
circumferencially. The pitch decreased in proportion to the quantity of glass shaved. This
relationship between the quantity of glass shaved and the change in pitch was clarified both
experimentally and analytically by Finite Element Method (FEM) analysis. The amount
of pitch change accompanied with the shaving method is occasionally limited by the vessel
shape. In such cases, pitch can be changed by filling wine glasses with specific quantities of
water, a well-known conventional tuning method. This auxiliary method has been mea-
sured experimentally and analyzed by FEM to clarify the relationship between the water
quantity in vessels and the amount of pitch change. A harmonics analysis was also
performed. Using these procedures, prediction of vibration frequency could be done in

advance, which means a desired pitch can be easily obtained.
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1. INTRODUCTION

The glass harp has a long history as a musical
instrument, because it can be simply composed from
wine glasses. The harp is played by rubbing the
rim of each glass with a moist finger. Despite the
glass harp’s simplicity, it has a very pleasing sound,
which has been described as *“a sound from heaven”.

When using wine glasses as musical instruments,
it is necessary to adjust the pitch minutely. The
water-filling method, which has been widely per-
formed, is one effective method for adjusting pitch.
In spite of its effectiveness and the simplicity, how-
ever, it has some disadvantages. These include the
need to adjust the water level just before the perfor-
mance and the small extent that the pitch can be
changed. We have achieved pitch change with a
method that has many advantages over the conven-
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tional water-filling method. In this method, we
shave the bottom part of each vessel locally and
circumferentially. Our final goal for the glass harp
as a musical instrument is to be able to use only
commercially available glasses.

However, the number of pitches that can be
obtained by using only commercially available
glasses, even when the shaving method is fully
adopted, is limited by the kinds of wine glasses
available on the market (in other words, the finite
variety of shapes and sizes) and thus the limits of
pitch change that can be achieved by shaving.
Therefore, the water-filling method must still be
considered as a necessary auxiliary method for
making minute pitch changes. Even when the
water-filling method is used, the water volume
required is much less with the shaving method than
without it. This is important because better timber
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can be obtained with less water, as shown below.

This study performed a Finite Element Method
(FEM) analysis, as well as an experimental investi-
gation, to analyze the vibration (inherent fundamen-
tal and harmonic frequencies) of wine glasses.
Previous research has been done on the wine glass
vibration mechanism,'~® hitherto, the mode study*®
and on an analytical natural resonant frequency
study of the simple wine glass model.® However,
such research with regard to the tuning has not been
conducted yet.

2. VIBRATION ANALYSIS USING
THE FINITE ELEMENT METHOD

2.1 Conditions of the FEM Analysis

Three types (A,B,C) of commercially available
crystal glasses (PdO 24%) of different sizes were
prepared in order to experimentally confirm the
FEM-analyzed results of the wine glass vibrations.
Plural glasses were prepared for each type of glass.
Table 1 lists the main dimensions measured, whose
definitions are shown in Fig. 1. The thickness data
of each glass which varies according to the height,

Table 1 Main dimensions of the

glasses.
Glass type

A B C

H 190 170 140

h 91 76 62

¢ 66 60 50
M 79 70 58

Unit: mm

: Total height

: Vessel's height

: Diameter of the top of the glass
: Maximum diameter

L6 T

Fig.1 Definitions of wine glass dimensions.
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were obtained through measurement. Though
shapes of these three types of glasses resemble each
other, they are not exactly the same.

Figure 2(a) shows a cross-sectional view of a
glass, which is divided into finite elements. As is
shown in the figure, each element has a quadrilateral
shape that has four nodal points. This division
into finite elements required a finer treatment, iLe.,
smaller elements, for the area around the shaved part
than for the other parts of the glass. The shaving
method will be described later. This cross section
was rotated 360 degrees and the solid glass was
divided equally into 36 circular arcs around the
circumference, resulting in cubic finite elements that
were each composed of eight nodal points, as shown
in Fig.2(b). The boundary conditions required
the bottom of the cup of the glass to be fixed. The
material constants of the glasses are shown in Table
2.7 For these glasses, we first analyzed the vibra-
tion frequencies using FEM analysis (MARC4 soft-

Boundary condition

a) two dimensional cross- . .

@ . . (b) three dimensional

scctional view of a .
view

glass

Fig.2 A wine glass divided into its finite ele-
ments.

Table 2 Material constants.

Wine glass

Young’s modulus
Poisson’s ratio
Mass density

6.15% 10'°N/m?
0.25
3.0 10° kg/m?
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ware was used). The eigenvalue analysis was
adopted for the glasses without water, and the fluid/
solid-coupled analysis was adopted for the glasses
with water.

Figure 3 shows the analytical results of the rela-
tionship between the number of circumferencial
divisions and the inherent frequency of the multiple
vibration modes for the A-type glass without the

7000
6000 - omode (2,0)
amode (3,0)
55000_ omode (4,0)
& 4000 |
[}
=
g 3000 |
=
s
S 2000 [
e
o
5 1000F ‘
36
0 1 i i H 1 1
0 10 20 30 40 50 60

Number of circumferencial division

Fig.3 Relationship between the number of
circumferencial divisions and vibration fre-
quency.

(2, 0) Mode

(3, 0) Mode
Fig.4 Vibration modes of a glass.

vessel bottom shaved and without water. Here, the
definition of each mode corresponds to the previous
research.¥ A typical example of these results is
shown in Fig. 4. (The vibration, however, is exag-
gerated here.) Figure 3 indicates that each fre-
quency becomes almost constant when the division
number is between 30 and 40. From these results,

36 was adopted as the division number.

2.2 The Relationship between the Glass Shape and
Vibration Frequency

Figure 5 shows the relationship between the
magnification power n () <n= 3) and the funda-
mental vibration frequencies of a B-type glass. (In
this case, the magnification power n relates to every
portion of the vessel, including the height, diameter
and thickness.) This was obtained through FEM
analysis. The relationship reveals an inverse pro-
portion, whose numerical equation is put inside the
figure. The reason for this inverse proportion can
be explained as follows. The eigenvalue analysis
for the vibration is governed by the following equa-
tion of motion:

Mx"+Kx=0 (1)

(4, 0) Mode
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Fig.5 Relationship between the magnification
power n and the vibration frequency (Type B).

Here, M, x and K are the mass matrix, displacement

vector and stiffness matrix, respectively. When the
periodic solution for x is set as
x=Xexpljwt), (2)

Equation (1) can be described as follows:

[-&*M+K]X=0 (3)

From this equation, the angular vibration frequency
can be obtained. 'When glass shape varies similarly
(the magnification power is n), the mass and
stiffness are proportioned as n® and n, respectively.
Consequently, M and K in Equation (3) should be
set as n°M and nK. Substituting these into Equa-
tion (3), and setting the angular frequency to be &/,
the following equation can be obtained :

[~ (ne'YM+K]X=0 (4)

Accordingly, the relationship @ =w/n can be
obtained. This shows that the vibration frequency
is proportional to 1/n even for a wine glass with a
very complicated shape.

2.3 The Relationship between Wine Glass Thick-
ness and Vibration Frequency

Figure 6 shows the relationship between the
magnification power n (0 <n= 3) of the thickness
for a B-type glass, and the fundamental vibration
frequencies. (In this case, the magnification power n
relates to only the thickness of the vessel.) The
relationship reveals a direct proportion, whose
numerical equation is put inside the figure. The
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Fig.6 Relationship between the magnification
power n of the thickness and the vibration
frequency (Type B).

reason for this proportion can be explained with a
procedure similar to the previous section. When
glass thickness varies with the magnification power
n, the mass is proportional to n and the stiffness is
approximately proportional to #% Then, the fol-
lowing Equation (5) based on the Equation (3) can
be obtained :

[— (0" )M+ K]X=0 (5)

Accordingly, the relationship @”=nw can also be
obtained. This shows that the vibration frequency
is directly proportional to # even for a wine glass
with a very complicated shape.

3. MINOR CHANGES IN PITCH
DUE TO LOCALIZED SHAVING
OF THE CUP BASE

In order to achieve minor changes in the pitch of
a glass, we tried a method involving localized shav-
ing of the bottom of the vessel of each glass both
analytically and experimentally.® The shaving
was performed circumferencially at the base of the
cup, just above the stem of the glass, as shown in
Fig. 7. This method was chosen to make the
mechanical shaving itself and the analysis easier.
The experimental shaving was performed using the
following method. First, a glass was set on a
manually rotating plate and then ground using a
grinder, set at 30,000 rpm. The processing time
needed for shaving several grams of glass was rough-
ly several minutes. The drill diameter of the
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Fig.7 Method for shaving a glass circumferen-
cially.
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Fig.8 Relationship between the glass mass
shaved and the fundamental inherent fre-
quenctes (Types A, B, C).

grinder was 5 mm.

Figure 8 shows the analytical and experimental
relationship between the glass mass shaved and the
fundamental inherent vibration frequencies for the
A-, B-, and C-type glasses of Table 1. A sound and
vibration signal analyzer (SA-74, Rion Corp.) was
used for the experiment. Figure 8 shows that every
vibration frequency decreases linearly with the
quantity of mass shaved, keeping both experimental
and analytical gradients almost the same. The
quantitative differences between the analytical and
the experimental results are likely due to the
differences between the cross-sectional shapes of the
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Fig.9 Relationship between the glass mass
shaved and the normalized fundamental vibra-
tion frequency (Types A, B, C).

real glasses and those analyzed. The harmonic
frequencies also decreased linearly, keeping the
ratios of these frequencies to those of the respective
fundamental frequencies being constant. The max-
imum decreases in the vibration frequencies by the
shaving were 51 Hz, 76 Hz and 158 Hz for the A, B
and C glasses, respectively. These values corre-
spond to about 0.6, 0.8 and 1.0 times a semitone,
respectively. Figure 9 shows similar results when
these frequencies are normalized against glasses that
have not been shaved. From the figure, it can be
concluded that the smaller the glass, the larger the
decrease in the frequencies.

The basic mechanism for the characteristic linear
decrease tendency is as follows. When a glass is
shaved, the K value should be set smaller than for
glasses that are not shaved. However, the M value
in Equation (3) can be regarded as constant because
the shaved mass quantity is small compared with the
total mass. This leads to a lower vibration fre-
quency than for non-shaving glasses.

As will be described later in more detail, our
results have proven that the amount of shaving
required can be analytically predicted beforehand if
the inherent vibration frequency before shaving has
been measured.

4. MINOR CHANGES IN PITCH
DUE TO THE WATER-FILLING
METHOD

As described above, even if the shaving method is
fully adopted, the pitch range obtained using only
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commercially available glasses is limited. This is
due the limited variety of wine glasses available on
the market (in other words, the finite variety of their
shapes and sizes) and thus a limit in the pitch change
that can be achieved by shaving. The water-filling
method, therefore, must sometimes be considered as
a necessary auxiliary method for making minute
pitch changes.® Even when the water-filling
method is adopted, however, the water volume
required is much less with the shaving method than
without it. Furthermore, using the shaving method
combined with the water-filling method also pro-
vides better timber because better timber can be
obtained with less water, as shown later.

An FEM that adopts the fluid/solid coupled
analysis as well as an experimental investigation
was also performed to analyze the vibration (inher-
ent fundamental and harmonic frequencies) of wine
glasses. Other procedures conducted were similar
to those in the cup base shaving experiment. The
additional material constant necessary for the analy-
sis is a mass density of water of 1.0 10° kg/m?.

Figure 10 shows the FEM-analyzed and experi-
mental results of the relationship between the water
volume ratio (%) and the inherent fundamental (2,0)
mode frequencies for the three types of glasses in
Table 1. Here, the water volume ratio is expressed
as the ratio of the water in each vessel to that of full
capacity. As shown in the figure, the vibration
frequency gradually decreases non-linearly with
water volume. The tendencies of each curve for
both the experimental and the FEM-analyzed results
coincide well with each other. The reason for the

1800
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Water volume ratio

Fig. 10 Relationship between the water volume
ratio and the fundamental vibration fre-
quency.
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Fig. 11 Relationship between the water volume
ratio and the normalized fundamental vibra-
tion frequency.

quantitative differences in the absolute values is the
same as in the case of Fig. 8. The harmonic fre-
quencies also decreased non-linearly, keeping the
ratios of these frequencies to those of the respective
fundamental frequencies being constant.

Figure 11 shows similar results when the inherent
fundamental vibration frequencies are normalized
by those without water. As shown in the figure, the
normalized frequencies decrease similarly regardless
of glass size. This curve fits the following experi-
mental Equation (6):

Joorm.=1—0.5 ﬁg ( 6 )

Here, frorm. is @ normalized frequency, and p is the
ratio of the water volume in each vessel to the
volume at full capacity. The correlation coefficient
between the equation and the experimental data was
calculated to be 0.99.

The reason for the frequency decrease can be
considered as follows. In the fluid/solid-coupled
analysis of FEM, water is set to be an ideal liquid,
that is, a non-compressible liquid. The equation of
motion can be rewritten based on Equation (3):

(7)

Here, M, and M; are the glass mass and water mass,
respectively. The K values in Eq.(7) and Eq.(3)
are equal. Comparing Eq.(7) with Eq.(3), «”
should decrease corresponding to the increase in
mass from Mg (without water) to Mg+ M; (with
water).

The timber, however, gradually worsens as the
water volume increases, becoming clearly unpleas-

[— o™ ( M+ M)+ K]X=0
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Table 3 The maximum adaptable decreases in
the vibration frequency.

Glass

Shaving Water filling Total  M.P*

type
A 51 Hz 23 74 ~0.9
B 76 35 111 ~1.2
C 158 50 208 ~1.4

*Magnifying power to semitone.

ant when the water volume ratio exceeds roughly
40%. Based on these considerations, we set the
maximum adaptable water volume ratio to be 40%.
Therefore, it can be concluded that the maximum
decreases in the vibration frequency for each glass is
23 Hz, 35Hz and 50 Hz for A, B and C glasses,
respectively. These values correspond to about 0.3,
0.4 and 0.4 times one semitone, respectively.

Table 3 summarizes the maximum adaptable
decreases in the vibration frequency (Hz) and the
corresponding magnifying power in the semitones
for A, B and C glasses, when both the cup shaving
and the water-filling methods are adopted.

5. TIMBER ESTIMATION

The influence of the vessel-base shaving and the
water volume ratio on timber was studied through a
harmonics estimation. As mentioned earlier, tim-
ber gradually worsens as the water volume exceeds a
certain percent (~40%) of the vessel’s volume.
However, we found that when the base of each vessel
was shaved, the timber did not worsen at all.

Figure 12 shows the relationship between relative
amplitudes of the second and third harmonics (dBr :
the ratios of the second and third harmonic ampli-
tudes to those of the respective fundamental fre-
quencies for three types of glasses) for both the
shaved-mass and the water-volume ratios. Water
was poured into each vessel after the base was
shaved as much as possible. The experimental
results showed that 1) the relative amplitudes of
every harmonic were almost independent of the mass
shaved, and 2) all relative amplitudes for every
harmonic, except that of the second harmonic,
showed little relation to water volume, but the rela-
tive amplitude of the second harmonic increased as
water volume increased. At around the 40% water-
volume ratio, the relative amplitude of the second
harmonic was less than about 20 dB. These results
clarified that the timber aggravation that accom-
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Fig. 12 The relationship between the ratios of

the second and the third relative amplitudes
and both the mass shaved and the water vol-
ume ratio.

panies an increase in water volume is mainly due to
the increase in the relative amplitude of the second
harmonic.

6. PREDICTION OF THE PITCH

Based on the reasons above, the FEM analysis
was proven to be effective in predicting the pitch
achievable from glasses of various shapes that have
different amount of mass shaved and water volume.
The concrete method for estimating pitch in advance
is performed according to the following procedures.

1) When a certain pitch is required, the proce-
dures in Section 2.2 and 2.3 can be used to find an
approximate size and shape for a glass.

2) When a glass is obtained that has a shape
close to that found in procedure 1, we can accurately
establish both its analyzed and measured inherent
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fundamental vibration frequencies, foc and fom,
before the cup base is shaved.

3) The gradient value b for the relationship
between the mass shaved from the vessel and the
frequency can also be calculated using the FEM
analysis of Chapter 3.

4) Combining the values fim and b, we can
calculate the exact amount of shaved mass required
to obtain the objective frequency, and the objective
pitch can be attempted.

5) When the pitch accomplished in the above
procedures is still out of the target one, the water
volume needed for the precise pitch adjustment
should subsequently be calculated using experimen-
tal Equation (6).

Through these procedures, the objective pitch can
be obtained.

7. CONCLUSION

Due to the limited variety of commercially avail-
able glasses (in other words, a small variety of
shapes and sizes) for the glass harp, a glass shaving
method has been developed for making minute pitch
changes. The wine glass vibration was analyzed
using Finite Element Method (FEM) analysis and
an experimental investigation. The vibration
mode was clarified through the FEM analysis. It
was found that the experimental and analyzed fre-
quency changes for the shaved mass and water
volume nearly coincided with each other. This
shows that FEM analysis can be effective for predict-
ing the pitch of various shapes of glasses. It was
also found that the timber aggravation correspond-
ing to an increase in water volume was caused
mainly by an increase in the second harmonic ampli-
tude.
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