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A 27-node isoparametric acoustic element, namely Spl27, using the spline interpolation

polynomials for the analysis of sound fields in rooms is presented first.

Next, the basic

characteristics of the element are discussed by comparing with the conventional elements in
the eigenanalysis of a small room. Then, the mechanism of causing errors in eigenanalysis
is investigated to propose error-characteristic curves as proper guidelines for the appropriate

applications of the elements.

An example application on a three dimensional sound field

proved that, if the size of elements satisfies the value given by the guideline, Spl 27 can be
expected to provide both fair eigenfrequency approximation within 1% relative error and

exact modal order agreement with the analytic solution.

Finally, its application to a

one-dimensional sound field proved that the guideline estimated by the error-characteristic
curves give satisfactory results in the approximation of sound pressure waveforms. The
basic relation between the eigenmode approximation and resulting sound pressure response

was clarified through the process.
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1. INTRODUCTION

Numerical methods have been intensively used to
analyze acoustic problems of many kinds. The
finite element method (FEM) is advantageous in its
broad range of adaptability among the numerical
methods based on the wave equation especially
when the sound fields in closed cavities are being
investigated. Although many works have been
done on and around acoustic problems using the
FEM, it is necessary to prove the basic relation
between the properties of elements and the resulting
accuracy. It is especially the case in the sound field
analysis on architectural acoustics because huge
amounts of degrees of freedom would usually be
required ; when a proper estimation about the cost-
effectiveness would be of great importance. In this
paper, a 27-node acoustic element using spline

Interpolation-polynomial,
polynomial, Accuracy-estimation

Eigenvalue, Spline-

polynomials is proposed first. Then, the following
basic investigations reveal the systematic relation
among element division, the accuracy of eigen-
analysis of a room and the resulting sound pressure
in a simple sound field.

2. FORMULATION OF 27-NODE
ISOPARAMETRIC ACOUSTIC
FINITE ELEMENT

The 8- and 20-node elements are widely used in
many works on the analysis of three-dimensional
sound field from the early decade of the FEM.!-%
While, elements build up on 27-node are advanta-
geous because their nodal locations can directly be
applied to analysis by 8-node elements.

2.1 Formulation of Element Matrices
Following the standard finite elemental proce-
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dure, the acoustic element matrices are given as
follows ; first let the sound pressure, p, at an arbi-
trary point in an element be expressed by

P={N}"{p}.. (1)

The kinetic and potential energy in an element can
be derived for the angular frequency of w by,

7=l G S

+( Q) +( ) vz (2)
YRR POV

The work done by the external force is,
W=, untd.. (4)

With them, by applying Hamilton’s principle to the
Lagrangian of the system, the following discrete
formula can be obtained ;

((K]e= LM D)= 00 (] . (5)
The matrices used here, [ K], and [M]., are defined

by
-5 [240 2 0
510 o .
(1= (N ez (7)

The global matrices and global matrix equation can
be assembled with these elemental matrices, and the
global matrix equation can be written by

([K]— [ MD{p}=0a™{u} . (8)

The eigenvalue, w,? and the eigenvector, {¢,}, can
be obtained by solving

(K= ox’ [MD{gn}=0.

2.2 Shape Functions

Figure 1 shows the nodal points in a three-
dimensional 27-node finite element. To construct
shape functions of the elements, Lagrange and spline
interpolation polynomials can be employed as
below.

With the given values f(&;) at the nodal points &;
(i=1,2,..., v), a function P(£) can be interpolated
by

(9)

P(&)= 2 A(EILLE).

Here Lagrange interpolation polynomials are given

(10)
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Fig.1 27-Node acoustic element (a) in global
co-ordinate of (x, y, z), and (b) in local co-
ordinate of (&, #, §).

by

L= +-%. (in)
G+

]' L Et 7
To construct the shape function for the element
shown in Fig. 1, the following polynomials can be
applied.

ne=-1i-%-440 0
G#1)
L(&)=(1-8), (3)
Li(g)=5Ex1 (14)

There, at the three points (&= —1, £=0, &=1),

Li(&)=1, Li(&)=0, Li(&)=0: for Eq.(12)
Lo(&)=0, Lo(&)=1, Lo(&)=0: for Eq.(13)
La(&)=0, Ly(&)=0, Liy(&)=1: for Eq.(14)

are assumed.

While, the authors tried to apply the cubic spline
S:(&) with the same number of nodal points as
Lagrange polynomials.

Si(é):f(fi)+ Cil(s_Ei)+ Ciz(f—éi)2+ Ci3(5_ Ei)3
S<é<&, =12,V (15)

For simplicity, let us employ the natural cubic
spline which assumes that §2S;/9£&? at both ends of
an interval zero.® Then the coefficients ¢;;, ¢;2 and
¢ can be defined and the final form of polynomials
can be written as follows:

P(&)=2A(E)S(8) (16)
[ 0.258+0.7582—05¢ : £€[—1,0]
S‘(E)_{40.2553+o.7552—0.55 s e<o,1] an
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L® & S®

— Spline
---- Lagrange

Fig.2 Comparison of Lagrange and spline
polynomials.
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The basic shapes of Lagrange and spline

polynomials are compared in Fig. 2. Although the
difference of the two functions seems to be small,
their characteristics differ considerably a lot in the
investigation on the accuracy of eigenanalysis in the
following sections.

With these polynomials, shape functions for 27-
node elements can be defined as follows :

{N}={M,, No, Ns,....,Ner} . (20)

Here, N,=L;L;L, for the Lagrange element and
Npn=S8.:S;S, for the spline element, and i, j and &
correspond to the nodal order in &-, »-, and ¢-
direction of the elemental node m respectively, (m=
1,2, ..., 27).

In addition, though these shape functions are
constructed on the local co-ordinate of (&,7,¢), the
matrices in the Equations (6) and (7), which are on
the global co-ordinate of (x,»,z), can be obtained
using the Jacobean matrix.

3. COMPARISON OF EIGENMODE
APPROXIMATION AMONG ELEMENTS

The eigenanalysis on a rectangular room with the
dimension of 1.56 X0.72 X 0.54 [m?] are carried out
to compare the accuracy among four element types :

Table 1 Number of elements and
degrees of freedom used in the
eigenanalysis.

Element Division Degrees of
type U, by I) freedom
Lin8 (2,2,2) 27
Ser 20 2. L1 32

Lag 27 (1, 1, 1) 27
Spl 27 (1, 1, 1) 27
€ [%]

A Lin8 ¥ Ser20 O Lag27 ® Spl27

30 —
T %Lé
20 >k ¥ * e had
[ S
g [ X XY
[}
& 0 ® XX a0 ® | g
-10
0 5 10 15 20 25 30 35 40 45

No._Analytic

Fig.3 Comparison of relative errors in
eigenanalysis computed by FEM using four
element types.

hexahedron 8-node isoparametric linear element®
(Lin 8), hexahedron 20-node isoparametric seren-
dipity element® (Ser20), hexahedron 27-node
isoparametric Lagrange element (Lag 27) and hexa-
hedron 27-node isoparametric spline element (Spl
27). Both the arrays of element division, (I, L, L),
and the degrees of freedom used in the eigenanalysis
are given in Table 1, which shows the same degrees
of freedom are used in Lin 8, Lag27 and Spl 27,
while about 20% higher degrees of freedom are used
in Ser 20.

Figure 3 shows the result of the eigenanalysis,
where No. Analytic denotes the sequential number
in order of natural frequency, f,, obtained by the
analytic solution using Equation (21).

—c¢ [(n ﬂ)z <n)2
=g (7 () + ()

The relation between No. Analytic and the array
of spatial mode order, (n,, n,, n.), is easy to be
found in the analytic solution. On the other hand,

the numeric results of the Equation (9), eigenfre-
quencies and eigenvectors, do not give direct infor-

@1
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Table 2 Correspondence of eigenfrequencies obtained by analytic solution and by

FEM with the four element types.

No. Analvti Order Eigenfrequency [Hz] obtained by

o_Analyc (T, n) " Analyic  Lin8  Ser20  Lag2]  Spl27
1 0, 0, 0) 0 0 0 0 0
2 (1,0,0) 109 120 109 120 120
3 2,0,0) 218 241 240 269 222
4 0, 1, 0) 224 247 247 247 247
5 (1,1,0) 249 275 270 275 275
6 2,1,0) 312 345 345 365 332
7 0,0,1) 315 347 347 347 347
8 3,0,0) 327 N/A 394 N/A N/A
9 (1,0, 1) 333 368 364 368 368
10 2,0, 1) 383 422 422 439 412
11 1,1 386 426 426 426 426
12 3,1,0) 396 N/A 465 N/A N/A
13 (1, 1, 1) 401 443 440 443 443
14 (4,0,0) 436 N/A 538 N/A N/A
15 2,110 444 489 489 504 480
16 ©, 2,0) 447 494 552 552 456

mation about the spatial mode orders, and they only
give a sequential order. Therefore it is necessary to
identify the relation between spatial mode orders
and sequential orders, and the identification was
carried out both computationally and graphically.
In the computational confirmation the mode
checker” was applied, and its results agreed with
those obtained by graphically, or by drawing the
contours of three dimensional sound pressure distri-
bution. As for the analytic solution, all the modes
up to 5 kHz were lined up, while those by FEM are
restricted within the degrees of freedom allocated in
their computations. Consequently, several blanks
can be found in the mode orders in the data
obtained by FEM : some examples of the correspon-
dence are listed in Table 2.

In the Fig. 3, Spl 27 gives the best approximation
to the analytic values. Here, the relative errors, &, is
defined by

oS mm— o, ansvie o 100 10g]

f ny Analytic

(22)

and, f; rem and f;, anavuc denote eigenfrequencies of
nth mode obtained by FEM and analytic solution
respectively. Figure 3 shows that most of the & of
Spl 27 are below 5% and they are small compared to
those of the other three elements. In addition, it is
interesting to compare those of Lag 27 with Spl 27 ;
though not much difference can be found in their
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polynomial shapes shown in Fig. 2, the relative
errors of Lag 27 are more than twice those of Spl 27.

4. MECHANISM OF CAUSING
ERRORS IN EIGENMODE
APPROXIMATION

In order to find the mechanism that causes the
approximation errors in eigenanalysis, another
eigenanalysis on a one-dimensional sound field with
the length of 1 [m] was carried out. The elements
applied were Lin 8, Lag 27 and Spl 27. The arrays
of element divisions applied here were chosen to
examine only the characteristics in the tube’s longi-
tudinal direction.

Figure 4 shows the error characteristics curves of
eigenfrequency approximation by the three elements.
Regardless of elemental divisions, clear relationship
can be seen between the error, ¢, and the ratio of
A/d ; here, A and d denote acoustic wavelength and
the nodal distance in an element respectively.

As for Lin 8, the ¢ is less than or equal to 20%
throughout the region A/d>2. The ¢ gradually
decreases as A/d increases in the region A/d >2.5.
On the other hand, for Spl 27, the absolute value of
¢ is less and about 2% in the region A/d >4 ; and at
A/d =4, the € becomes about 10%. It is remarkable
that small and stable errors within 1% can be seen
throughout the region A/d>4.4. Note that inter-
mediate characteristics between these two elements
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Fig.4 Relation between modal order and rela-
tive errors in eigenanalysis by Lin 8, Spl 27 and

Lag27. Symbols denote spatial divisions.
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Fig.5 Approximation of eigenmodes in “A/d >

4" by Lin 8, Lag 27 and Spl 27. (a) n=2, A/d =
10, (b) n=4, A/d=5.

can be seen on Lag27.

Mode shapes obtained through the eigenanalysis
are shown in Fig. 5. Each symbol denotes discrete
nodal values of sound pressure of the 2nd (n=2)
and 4th (n=4) modes, and interpolated mode
shapes are also given there as lines. Not much
difference can be seen among the element types.

In the same manner, the shapes of 5th (n=35)
modes are given in Fig. 6. All the values obtained
by the three element types are located on the same
line, which results in the same interpolated sawtooth

Mode (n=5)

R i, &

NN

B SR

N

Sth
12
06
g
ki
&

s o
(=% [=]
Lllll%“lll

T T i T

0.6 08 1.0

Position[m]

* Lin8-(104d)division O Spt27-(5,2,2)division O Lag27-(5,2,2)division
Fig.6 Approximation of eigenmodes at “A/d

=4” by Lin8, Lag27 and Spl 27. n=35, A/d
=4.

wave. This is the reason that when A/d=4, the
relative errors in eigenfrequency computation of the
three element types become the same value, ie. 10%,
as is shown in Fig. 4. Thus, on the condition that
A/d >4, successful interpolation of peaks in mode
shapes assures small errors in the eigenfrequency
approximation. The errors can be estimated refer-
ring to Fig. 4, and for 27-node elements half of A/d
gives the required number of elements per acoustic
wavelength.

5. VERIFICATION OF THE
MECHANISM

Several example eigenanalysis using both Spl 27
and Lin 8 were carried out on a three-dimensional
room, 0.75x0.53X0.30 [m*]. The boundary con-
ditions of the room were assumed to be hard. The
arrays of element divisions applied were (6, 5, 5), (7,
5, 3), (4, 4, 2) and (3, 2, 1), and the same arrays of
element divisions were given to both Lin 8 and Spl
27. The relative errors, ¢, in the eigenanalysis are
shown in Fig. 7 and Fig. 8 to compare the difference
among the divisions. There, the modes are lined up
in a simple sequence of frequency orders obtained
through the numerical computations, which means
that the modes with the same f; do not always have
the same array of spatial mode order ; and the fol-
lowing characteristics were found.

As for Spl 27, clear increases of relative errors can
be found for all the spatial divisions. The numbers
of orders at which the increases occur are listed in
Table 3 named as AN, with their spatial orders (n,,
ny, nz). Note that one of the three numbers other-
wise 0 coincides with the number in the correspond-
ing directions of element spatial divisions. The
agreements of the mode shapes obtained by FEM
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Table 3 Correspondence of element types, element division (L, 4, k), critical order N, spatial
mode order (7, ny, ny) and e of Ngth and (N,—1)th modes.

element division order (ng, ny, nz) of € [%] of e [%]of
type ey by k) N, Analytic Solution Noth mode (No— 1)th mode
Spl 27 (6, 5,5) 59 (6,0, 0) 1.13 —0.24
Spl 27 (7,5, 3) 80 0, 5, 0) 0.33 —0.28
Spl 27 “4,4,2) 21 4,0,0) 1.55 —0.27
Spl 27 3,2, 1 9 0, 2,0) 9.42 8.82
Lin8 (6, 5, 5) 6 2,1,0) 1.36 4.61
Lin8 (71,5, 3) 9 (0, 2, 0) 5.46 4.07
Lin8 4,4,2) 9 0, 2,0) 10.08 9.19
Lin8 (3,2, 1) 6 2,1,0) —0.28 16.96
&%) (%)
30 30
25 ] ' Spl27(3.2.1) 25 ] Lin8(3.2.1) i
20 ) 201 ’ Lin§(6,5.5)
i Ling@A2)
,.g 15 J E is A n ’ /\ l( by e
H . Spl27(4,4,2) 2 1 5/ __/\\52/\
8 10 B 10— AN
g ] ERE N
s \7 V.k-‘. \/ 5 I‘ / A'l\_g’\] Lin§(7,53)
o Spl27(6,5.5) o _ﬁ
i T SpIb7(7.53) i
'5 T T T T T T T T T T T ’5 T 1 T LI e | T 1 1 T 1T 1T 71 L
o7h 2k 50 59h B0 g, 150 o 0 MY 20 30 40 50
Sequential Mode Order Sequential Mode Order

Fig.7 The relation between relative error, and
element division in eigenfrequency computa-
tion by Spl 27.

with those by the analytic solution could be found
from 1st to (Ny— 1)th orders, and Npth is the first
order where modes begin to shift their positions in
frequency region. Then, with simple mathematics,
it is clear that N, coincides with the position where
the value of A/d is equal to 4 in one of the spatial
directions.

So, the mechanism obtained in the previous sec-
tion can successfully be applied to predict the accu-
racy of eigenanalysis in the three dimensional sound
field, and A/d or N, can be used as a guideline to
estimate the accuracy of sound field analysis with
Spl27. Here, we tentatively call the “N,” as “criti-
cal order,” and below the order the relative error in
the eigenanalysis can be estimated to be stable and
small, within 1% in this case.

On the contrary, as for Lin 8, the error gradually
increases as the number of order increases. The N,
of Lin 8 is also listed for reference in Table 3 by
following the same mode checking procedure
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Fig.8 The relation between relative error, and
element division in eigenfrequency computa-
tion by Lin 8.

applied on Spl27. These smaller numbers of N,
compared to those of Spl 27 indicate that the eigen-
modes obtained by Lin 8 begin to shift their sequen-
tial orders in rather lower frequency region, while
Fig. 8 also shows that the shifts do not directly cause
critical increases in the errors in the eigenfrequency
computations.

To examine more details, another eigenanalysis
was carried out using Lin 8 with (14, 10, 6)-division,
which has the same degrees of freedom as Spl27
with (7, 5, 3)-division. Here, Lag27 with (7, 5,
3)-division was also used for comparison. In the
following investigation, the correspondence of the
spatial mode orders were confirmed in advance
between the modes that have the same sequential
numbers. The outline of the correspondence is
shown in Table 4 and characteristics of eigenfre-
quency approximation are given in Fig. 9. In gen-
eral, the error of Spl 27 is smaller than those of the
other two, and its error increases from 1% to 10% at
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Table 4 Correspondence of eigenanalysis : ana-
lytic solution, FEM by Spl 27 with (7, 5, 3)-
division and FEM by Lin 8 with (14, 10, 6)-
division.

Analytic Solution FEM

No. Order Frequency Spl27 Lin8
Analytic  (ng, ny, 1) [Hz] e[%] e[%]
1 (0, 0, 0) 0 0.0 0.0
2 (1,0, 0) 233 01 02
3 0, 1, 0) 321 —0.2 0.4
4 (1, 1,0) 396 -0.1 0.3
5 (2,0,0) 466 —0.2 0.8
6 2,1,0) 566 —01 07
7 (0,0, 1) 567 —0.1 1.1
8 (1,0, 1) 613 —01 10
9 , 2,0) 642 —-0.2 1.7
75 6, 1,1) 1542 —04 6.5
76 2,3,2) 1558 —0.3 39
77 3,4, 1) 1567 —-0.3 5.0
78 4, 4,0) 1586 —-0.3 5.5
79 4,2,2) 1601 —0.3 3.7
80 , 5, 0) 1604 10.2 10.3
81 (53, 1) 1613 —0.3 42
82 (1, 5,0) 1621 10.1 10.1
83 (5,0,2) 1625 —-0.3 5.0
84 (7,0, 0) 1630 10.2 10.3
85 6,2, 1) 1639 —0.3 6.0
195 (1, 6, 2) 2246 4.3 11.8
196 (5,6,0) 2249 42 12.0
197 (1,7,0) 2257 7.8 17.9
198 (8, 4,0) 2262 3.8 11.1
199 9,2, 1) 2264 56 141
200 (0, 0, 4)

2267 7.1 17.0

the critical order (N, =80) because of the frequency
shift of the eigenmode.

6. ESTIMATION OF ACCURACY IN
SOUND PRESSURE COMPUTATION

To test the issue given in the previous section,
sound pressure computation in a one-dimensional
sound field, 1.5X0.1X0.1 [m®], was carried out
using the Linear Acceleration Method to solve the
Equation (8) in the time domain.¥ The wall condi-
tions were assumed to be hard and the sound source
to be a tone burst with the center frequency of 500
Hz and with 6-waves. The frequency range of the
tone burst lies roughly from 350 to 650 Hz.

Here, when the eigenfrequency of the (n,, 0, 0)th
mode equals 650 Hz, the order n, becomes 5.7.

& [%]
80
7 e spi27
o © S2I053) || x .
| X Lag27(7.53) X
60 - © Lin8(14,10,6) e
7 x
L%
g h X
M 40
o <
2 ]
g 30 .
7] _
CE N, = 80 (Sp127) ¥ x *

No._Analytic

Fig.9 Comparison of relative error ¢ in eigen-
frequency computations by Lin 8 with (14, 10,
6)-division, Spl 27 with (7, 5, 3)-division and
Lag 27 with (7, 5, 3)-division.

Then, it is safe to estimate N, equals 6 in this compu-
tation. Since the eigenfrequency fs00 equals 680
Hz, the satisfactory accuracy can be expected below
the frequency. In this case, A/d becomes greater
than 4.

The results are shown in Fig. 10 and Fig. 11
comparing the element divisions. Figure 10 shows
that Spl 27 gives fair agreement if the array of (6, 1,
1)-division, which corresponds with the number of
the critical order “6”, allocated ; in this case A/d =
42>4. Only a small change can be found if the
array is increased to (7, 1, 1)-division (1/d =4.4>
4), while the agreement becomes worse if the array is
reduced to (5, 1, 1)-division (1/d =3.5<4). Inthe
latter case, A/d falls on 4 when the eigenfrequency of
a mode becomes 566.7 Hz, which results in about
10% relative error in eigenfrequency approximation.

To the contrary, from the results of Lin 8 in Fig.
11, only small and gradual refinements are observed
even if the array is increased from (10, 2, 2)-division
(A/d=3.5), to (60, 2, 2)-division (1/d =20.9). The
degrees of freedom for the computation with the
array of (10, 2, 2)-division by Lin 8 are the same as
those of (5, 1, 1)-division by Spi 27. On the whole,
these characteristics of both Spl 27 and Lin 8 agree
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Fig. 10 Comparison of computed sound pres-
sure waveforms; (a) Analytic solution vs.
FEM by Spl27 with (6, 1, 1)- and (7, 1,
t)-divisions, (b) Analytic solution vs. FEM by
Spl 27 with (5, 1, 1)-division.

with the characteristics given by Fig. 4.
7. CONCLUSIONS

A 27-node isoparametric acoustic finite element
using spline polynomial is introduced and its basic
characteristics are investigated. From a basic
eigenanalysis on a small room using small degrees of
freedom, Spl 27 showed the superior approximation
to the other elements. Another eigenanalysis
revealed the detailed mechanism causing the approx-
imation error, and critical order has been found for
Spl 27. Then, systematic error-characteristic curves
have been presented for the elements that are expect-
ed to give a guideline in applications of the elements
on the sound field analysis of three-dimensional
rooms, which was confirmed by the results of
waveform computations in a one-dimensional
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Fig. 11 Comparison of computed sound pres-
sure waveforms; (a) Analytic solution vs.
FEM by Lin8 with (10, 2, 2)- and (12, 2,
2)-divisions, (b) Analytic solution vs. FEM by
Lin 8 with (20, 2, 2)- and (60, 2, 2)- divisions.

sound field. However, above mentioned superior
approximation of Spl27 could be seen only if the
guideline was satisfied and further investigations on
the applicability of them to three-dimensional
sound fields with more complicated conditions
would be required.
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SYMBOLS

¢ : speed of sound
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d : nodal distance in a finite element

fisx: eigenfrequency of (i j, k)th mode

[+ eigenfrequency of nth mode

Sfugems  franayuc: eigenfrequencies of nth mode
obtained by FEM and analytic solution
respectively

L,, L, L;: dimensions of room, x-, y- and z-
direction respectively

(I, l,, L) : array of element division in x-, y- and
z-direction respectively

Ny : critical order

{N}: shape function

(ny, ny, n): array of spatial mode order in x-, y-
and z-direction respectively

n: modal order

p: sound pressure

{p} : sound pressure vector

T, : kinetic energy in an element

u, : normal displacement at I%

{1} : displacement vector

Ve : potential energy in an element

W,: work done by external force

I'.: elemental boundary of external force

g relative error

{¢n} : eigenmode vector

A: wavelength

o mass density of air

w: angular frequency

wn : eigenfrequency (w,=2xf7)

e
e
T

{)
{}
[]
[]
[]

2)
3)
4)
5)
6)
7)

8)

vector

: elemental vector
matrix

: elemental matrix
: transpose of | ]
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