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ABSTRACT—In cerebral arteries isolated from most of mammals, nerve stimulation produces relaxations

in contrast to contractions in peripheral arteries. The relaxant mechanism is found to be non-adrenergic

and non-cholinergic, but the neurotransmitter is not clarified until recently. Based on several functional and

histological studies with isolated cerebral arteries, nitric oxide (NO) is now considered to be a neurotrans-

mitter of the vasodilator nerve and the nerve has been called a nitroxidergic (nitrergic) nerve. Upon neural

excitation, calcium influxed through N-type Ca2+ channels activates neuronal NO synthase, and then NO is

produced by the enzyme from L-arginine. The released NO activates soluble guanylate cyclase in smooth

muscle cells, resulting in relaxation with a cyclic GMP-dependent mechanism. The functional role and

neuronal pathway have also been investigated in anesthetized dogs and Japanese monkeys. The nitroxidergic

(nitrergic) nerves innervating the circulus arteriosus, including the anterior and middle cerebral and posterior

communicating arteries, are found to be postganglionic nerves originated from the ipsilateral pterygopalatine

ganglion and tonically dilate cerebral arteries in the resting condition. Our findings suggest that the nitro-

xidergic (nitrergic) nerve plays a physiologically important role to maintain a steady blood supply to the

brain.
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Neurogenic control of muscle tone plays important roles

to maintain the homeostasis of cardiovascular, digestive,

respiratory and urinary systems. Most of the organs in these

systems are innervated by two or more different types of

nerves, and their functions are reciprocally regulated. It has

generally known that noradrenergic and cholinergic nerves

are responsible for the reciprocal regulation, but this may

not be the case in the vascular system.

Histological findings demonstrate the innervation of

cholinergic nerve in the vasculatures (1). However, func-

tional evidence supporting the idea that acetylcholine di-

rectly controls the vascular tone as a neurotransmitter is

only limited to certain regions including canine portal and

mesenteric veins (2), rabbit portal vein (3) and monkey

ciliary artery (4), and stimulation of the cholinergic nerves

elicits vasoconstriction, but not vasodilation, in these

blood vessels. Therefore, reciprocal regulation of vascular

tone by noradrenergic and cholinergic nerves may not exist.

On the other hand, the presence of vasodilator nerves

has been reported in various regions of arteries since 1975

when neurogenic, non-adrenergic, non-cholinergic vaso-

dilation was found in canine cerebral arteries (5). The

mechanism of neurogenic vasodilation and the functional

role of the vasodilator nerve have only recently been deter-

mined.

Mechanism of neurogenic relaxation in cerebral arteries

Since neurons innervating cerebral vascular walls were

histochemically found to contain several peptides such as

substance P, vasoactive intestinal polypeptide (VIP) and

calcitonin gene-related peptide (CGRP) (6 – 9), which

were determined to be potent cerebralvasodilators when

applied exogenously (8, 10, 11), these peptides were re-

garded as candidates for the vasodilator neurotransmitter

of the non-adrenergic, non-cholinergic nerve. However,

whether or not the peptides in concentrations sufficient to
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produce relaxation were released from the nerve upon

stimulation has not been evidenced. Furthermore, functional

data against this hypothesis were obtained: a) relaxant

responses to nerve stimulation are not influenced in the

arterial strips desensitized to VIP and CGRP (10, 12),

b) the neurogenic response is not reduced by treatment with

capsaicin (13) that depletes these peptides from nerves,

and c) substance P-induced relaxation is endothelium-de-

pendent (14), whereas neurogenic relaxation is not depen-

dent on the endothelium (15). As far as canine, bovine and

monkey cerebral arteries are concerned (10, 16), these

peptides, together with atrial natriuretic peptide, an endo-

genous cerebral vasodilator (17), were therefore excluded

from candidates for the neurotransmitter. However, this

conclusion may not be extended to all kinds of mammals

because evidence for the involvement of VIP and CGRP

has been reported in sheep and cat cerebral artery, respec-

tively (18, 19).

During the analysis of mechanisms underlying the cere-

bral vasospasm after subarachnoid hemorrhage, oxyhemo-

globin or hemolysate was found to abolish the response to

nerve stimulation in cerebral arteries (20, 21). This was

also true with methylene blue (20), an inhibitor of soluble

guanylate cyclase. These findings suggest that cyclic GMP

mediates the neurogenic relaxation, and a substance that

increases the production of cyclic GMP in smooth muscle

is a neurotransmitter (20). Involvement of atrial natriuretic

polypeptide that promotes synthesis of cyclic GMP via

activation of particulate guanylate cyclase (22) is ruled out

(17), as described above.

Endothelium-derived relaxing factor was found to be

identical to nitric oxide (NO) synthesized from L-arginine

via NO synthase (23), and this enzyme activity is inhibited

by L-arginine analogs such as NG-monomethyl-L-arginine,

NG-nitro-L-arginine and NG-nitro-L-arginine methylester

(24 – 26). We found that NG-monomethyl-L-arginine and

NG-nitro-L-arginine applied to cerebroarterial preparations

abolishes the relaxant response to transmural electrical

stimulation (27, 28). The response is restored by the addi-

tion of high concentrations of L-arginine. D-Arginine ana-

logs are without effect. L-Arginine does not potentiate the

response, but completely prevents the inhibition by NO

synthase inhibitors. This may be due to the presence of

sufficient amounts of L-arginine in the tissue than the Km

values of NO synthase for L-arginine. 7-Nitroindazole, a

relatively selective inhibitor of neuronal NO synthase, also

inhibits neurogenic relaxation in monkey cerebral arteries

(29).

The necessity for extracellular Ca2+ in the neurogenic

response has been found by using Ca2+ depleted media or

Ca2+ entry blockers. Removal of external Ca2+ also abolishes

the response to nerve stimulation but not to NO (30). Relax-

ations and increments in cyclic GMP content induced by

nerve stimulation are not influenced by nicardipine, a

L-type specific Ca2+ channel inhibitor (31), but are dose-

dependently inhibited by �-conotoxin GVIA, a N-type

specific Ca2+ channel inhibitor (30), suggesting that exter-

nal Ca2+ is introduced into nerve terminals via N-type, but

not L-type Ca2+ channels upon electrical nerve stimulation.

Furthermore, calmodulin inhibitors such as calmidazolium

and W-7 depress the neurogenic response (32). These find-

ings suggest the involvement of the constitutive type of

NO synthase in the vasodilator nerve function, since Ca2+

and calmodulin are required for activation (33).

Electrical nerve stimulation increases the release of

nitroxy compounds (NOx) in the superfusate from super-

fused cerebral arterial strips without the endothelium (15),

which is abolished by tetrodotoxin or NG-nitro-L-arginine.

Cyclic GMP content in the endothelium-denuded artery is

also increased by nerve stimulation, and an NO synthase

inhibitor abolishes the effect (34). Furthermore, in canine

cerebral arteries loaded with BNN5M, a caged NO that

liberates NO inside muscle cells upon irradiation with

ultraviolet light (35), relaxation induced by electrical

nerve stimulation is abolished only when the arteries were

irradiated. Typical recording is illustrated in Fig. 1.

Moreover, histochemical studies have demonstrated the

presence of perivascular nerve fibers and bundles contain-

ing NO synthase immunoreactivity or NADPH diaphorase

in cerebral arteries. Bredt et al. (36) have clearly demon-

strated that perivascular nerves innervating the rat cerebral

artery of proximal portion contain NO synthase immunore-

activity. We found networks of the positively stained nerve

fibers and bundles in the canine (37) and monkey cerebral

arteries and arterioles (38). Neurons are mainly located

in the adventitia, and some fine fibers are also seen in the

outer layer of media (37). The characteristic localization of

the fibers in the media may indicate that NO synthesized

and liberated from the nerve is effectively accessible to

smooth muscle with a minimal degradation and spacial dif-

fusion. NO synthase-immunoreactive nerve fibers are also

observed in human (39) and bovine (40) cerebral arteries.

Taken together, it appears that nerve stimulation elicits

Ca2+ entry through N-type Ca2+ channel, which activates

NO synthase located in the nerve terminals; thus NO is

synthesized by the enzyme from L-arginine and is released

into outside cells, and then the released NO activates solu-

ble guanylate cyclase in smooth muscle and increases the

production of cyclic GMP, resulting in vasorelaxation.

Since the neurotransmitter is considered to be NO or its

stable analog, such as S-nitrosocysteine, the nerve has been

called ‘nitrergic’ or ‘nitroxidergic’ (41).

Functional role of nitroxidergic (nitrergic) nerve in

cerebral artery

Injections of NG-nitro-L-arginine into the cisterna magna
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produce potent basilar arterial constriction that lasted for

4 h or longer in anesthetized dogs (42). The vasoconstrictor

effect is reversed by intracisternal injections of L-arginine.

The arterial diameter is not affected by NG-nitro-D-arginine

or the vehicle. Treatment with phentolamine does not inhibit

the response but rather potentiates the vasoconstriction

produced by NG-nitro-L-arginine. These findings indicate

that the magnitude of induced vasoconstriction might re-

flect vasodilation due to basal release of NO. Treatment

with a ganglion blocking agent, hexamethonium, clearly re-

duces the vasoconstriction induced by NG-nitro-L-arginine;

vasoconstriction relative to the size prior to the injection

under phentolamine treatment is 34%, and the value in

hexamethonium-treated dogs is 10% (42). These findings

suggest that about 2 /3 of the vasodilation is associated

with NO from the vasodilator nerve that continuously re-

ceives efferent impulses from the brain and liberates

neurotransmitter, and the remaining 1 /3 is due to NO from

extraneuronal tissues, possibly the endothelium. Nicotine,

a chemical stimulant of nerves, injected into the vertebral

artery induces dilatation of the basilar artery that is abo-

lished by treatment with NG-nitro-L-arginine (42). There-

fore, nitrergic (nitroxidergic) nerve is expected to partici-

pate in maintaining the dilator tone of large pial arteries in

vivo, which is considered to play an important role in the

regulation of vascular resistance (43, 44), under resting

conditions and when the nerve is stimulated.

Cortical blood flow in anesthetized rats is also increased

by electrical microstimulation of the basal forebrain (45)

and the nucleus basalis of Meynert (46). Intravenous infu-

sion of NG-nitro-L-arginine, but not NG-nitro-D-arginine,

results in a significant, dose-dependent attenuation of the

stimulation-induced response. Nitroxidergic nerve inner-

vating the cortical vasculature may have some connection

with basal forebrain / nucleus basalis Meynert. However,

interrelations between the intracerebral neuclei and para-

sympathetic ganglia outside the skull remains to be deter-

mined.

Neuronal pathway of nitroxidergic (nitrergic) nerve in

cerebral artery

NO synthase immunoreactivity is observed in nerve

cells, bundles and fibers in the pterygopalatine ganglion

from Japapnese monkeys (38), dogs (37) and rats (47), and

the otic ganglion from dogs and rats. The pterygopalatine

ganglion also contains VIP (48) and acetylcholinesterase

(49). Unilateral chemical denervation of the pterygopa-

latine ganglion abolishes the immunoreactivity in the ipsi-

lateral middle cerebral artery of dogs (37, 50), and bilateral

denervation is required to abolish the neurons in rat middle

cerebral arteries (47). Moreover, the unilateral impairment

of the pterygopalatine ganglion also abolishes relaxation in

response to nerve stimulation or reverses it to contraction in

middle and posterior arteries only from the ipsilateral side

(50). The relaxation is sensitive to NG-nitro-L-arginine, and

the induced contraction is suppressed by treatment with

phentolamine. Relaxation caused by NO applied exoge-

nously does not differ in the arteries from both sides. Simi-

lar histological and functional results are observed in

central retinal arteries (50). In contrast, the impairment of

the pterygopalatine ganglion does not affect the neurogenic

relaxation in temporal arteries, which is also sensitive to the

NO synthase inhibitor. Therefore, NO synthase-containing

neurons innervating pial cerebral and central retinal arteries

in dogs seem to originate mainly from the pterygopalatine

ganglion.

Electrical stimulation of the greater petrosal nerve, facial

nerve or pterygopalatine ganglion increases cortical or

cerebral blood flow in anesthetized rats and dogs; the

response is mediated by non-cholinergic (51 – 53) and

Fig. 1. Typical recording of mechanical responses to transmural electrical stimulation (5 Hz, dots) of a canine middle cerebral

artery loaded with bis-N-nitroso-caged nitric oxide (BNN5M). The artery was incubated with 1 �M BNN5M for al least 30 min,

rinsed with a drug-free Ringer-Locke solution, and then precontracted with prostaglandin F2� under resting tension of 1.5 g. Ultra-

violet light at 320 nm was continuously irradiated between ON and OFF. PG indicates the additional application of

prostaglandin F2� to raise the arterial tone close to the level before the irradiation. TTX, 3 � 10�7 M tetrodotoxin; PA, 10�4 M

papaverine.
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cholinergic mechanisms (54). Parasympathetic nuclei in

the brain stem send the preganglionic fibers through the

geniculate ganglion as the greater petrosal nerve to the

pterygopalatine ganglion; the nerve cells of this ganglion

send the postganglionic fibers to nasal and lacrimal glands

and possibly cerebral vasculatures. When unilateral ptery-

gopalatine ganglion is electrically stimulated, vasodilation

of ipsilateral cerebral arteries is observed in anesthetized

dogs (55) and Japanese monkeys (56). Typical angiographic

recordings are shown in Fig. 2. The response is abolished

by intravenous injections of NG-nitro-L-arginine and the

effect is reversed by L-arginine (Fig. 3). Stimulation of

the greater petrosal nerve, upstream of the pterygopalatine

ganglion, also produces cerebral vasodilation, which is

abolished by treatment with the nitric oxide synthase inhi-

bitor and is restored by L-arginine. Treatment with hexa-

methonium abolishes the response to electrical stimulation

of the petrosal nerve, but does not affect the response to

pterygopalatine ganglion stimulation. Surgical denervation

of the ganglion elicits cerebral vasoconstriction, indicating

that vasodilator nerves from the vasomotor center are

tonically active in the regulation of vascular tone (56).

Denervation of efferent nerve fibers originated from

the pterygopalatine ganglion abolishes the vasodilation,

lacrimation and nasal secretion induced on the ipsilateral

side by electrical stimulation of the ganglion and petrosal

nerve in anesthetized dogs (55). The vasodilator response

is suppressed by NG-nitro-L-arginine but unaffected by atro-

pine, whereas lacrimation and nasal secretion are abolished

solely by atropine. These findings indicate that postgan-

glionic nitroxidergic (nitrergic) neurons from the pterygo-

palatine ganglion innervate the circulus arteriosus, includ-

ing the middle cerebral and posterior communicating

arteries, and the intracranial internal carotid artery in dogs;

and preganglionic neurons innervating the pterygopalatine

ganglion originate via the greater petrosal nerve, possibly

Fig. 2. Typical angiographical recordings of the

response to pterygopalatine ganglion stimulation (10 Hz

for 15 s) of anterior (A), middle (M) and posterior (P)

cerebral and posterior communicating (Pc) arteries

before (control), during (stimulation) and 5 min after

(after) the stimulation in an anesthetized dog. Arrows

indicate vasodilatation of ipsilateral arteries in response

to nerve stimulation. (Adopted with a slight modification

from Ref. 55 with permission from Lippincott Williams

& Wilkins)

Fig. 3. Modifications by NG-nitro-L-arginine (L-NA,

5 mg /kg, i.v.) and L-NA + L-arginine (L-Arg, 500 mg

/kg, i.v.) of vasodilatation of ipsilateral middle

cerebral and posterior communicating arteries by

electrical stimulation (2, 5 and 10 Hz) of the pterygo-

palatine ganglion in anesthetized dogs. The ordinate

indicates percent increase in the arterial diameter

compared to that prior to the electrical stimulation.

Significantly different from the control, aP�0.05;

significantly different from the value with L-NA,
bP�0.05 (Tukey’s test). Experimental number is 7.

Vertical bars represent S.E.M. (Adopted with a

slight modification from Ref. 55 with permission

from Lippincott Williams & Wilkins)
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from the superior salivatory nucleus in the brainstem. Tonic

discharges from the nucleus (vasomotor center) significantly

participate in the maintenance of cerebral vasodilation.

Postganglionic cholinergic neurons are expected to inner-

vate lacrimal and nasal glands and cerebral vasculature

(57, 58); cholinergic neurogenic activations stimulate exo-

crine secretions and possibly inhibit nitroxidergic (nitrer-

gic) vasodilator nerve function as seen in monkey cerebral

artery (59). Neuronal pathway of nitroxidergic (nitrergic)

and choninergic nerves discussed in this article is schemat-

ically summarized in Fig. 4. Endogenous NO released from

the vasodilator nerve may contribute to the maintenance of

blood flow in main cerebral arteries necessary to supply

blood to the different regions of the brain. Without the in-

fluence of this nerve, cerebral arteries might be constricted

to the extent that blood flow is impaired.
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