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REVIEW —Current Perspective—

Nitric Oxide and Depolarization Induce Hydroxyl Radical Generation

Toshio Obata*

Department of Pharmacology, Oita Medical University, Hasama-machi, Oita 879-5593, Japan

Received September 14, 2001

ABSTRACT—Nitric oxide (NO) contributes to the extracellular potassium-ion concentration ([K+]o)-induced

hydroxyl radical (•OH) generation. Cytotoxic free radicals such as peroxinitrite (ONOO�) and •OH may also

be implicated in NO-mediated cell injury. NO is synthesized from L-arginine by NO synthase (NOS). NOS

activation was induced by K+ depolarization. Oxidative modification of low-density lipoprotein (LDL) is

thought to contribute to the production of oxygen derived-free radicals. However, LDL oxidation may be

related to noradrenaline-induced •OH generation, but LDL oxidation may be unrelated to •OH generation via

NOS activation. Abnormal levels of extracellular free dopamine (DA) and /or intraneuronal Ca2+ triggered

by 1-methyl-4-phenylpyridinium ion (MPP+) may be detrimental to the functioning of dopaminergic nerve

terminals in the striatum. Although [K+]o-induced depolarization enhances the formation of •OH product

due to MPP+, the •OH generation via NOS activation may be unrelated to the DA-induced •OH generation.

Depolarization enhances the formation of •OH products via NOS activation.
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1. Introduction

Endothelium, macrophages and brain synaptosome

preparations have been shown to produce nitric oxide (NO)

by oxidizing arginine by a calcium-activated NADPH-

dependent enzyme (1, 2). NO is a free radical that regulates

a variety of biological functions and also has a role of

pathogenesis of cellular injury (3 – 5). NO is synthesized

from L-arginine by NO synthase (NOS) (6). Highly reactive

oxygen species (ROS) such as superoxide anion (O2
�) and

hydroxyl radical (•OH) cause excessive Na+ entry through

the fast Na+ channel, leading to intracellular Ca2+ overload

through the Na+-Ca2+ exchange system (7). Intracellular

Ca2+ overload is then considered to cause cell death under

physiological conditions such as ischemia / reperfusion

injury (8, 9). The enzyme xanthine oxidase (XO) resulting

from xanthine dehydrogenase during ischemia (10) is

thought to be a potential source of O2
�. Although, O2

� and

NO are known to form the stable peroxinitrite (ONOO�)

and its decomposition generates •OH, these ideas are still

being discussed (11). Cytotoxic free radicals such as

ONOO� and •OH may also be implicated in NO-mediated

cell injury (12). ROS damages biological membranes and

cellular components, including DNA, resulting in cell death

(13). This review will focus on the mechanism by which the

increase in the extracellular potassium-ion concentration,

[K+]o, via NOS activation affects the 
•OH generation.

2. Detection of hydroxyl radical

Owing to the ultrashort half-life of oxygen free radicals,

demonstration of the generation of highly reactive oxidants

was previously limited to in vitro studies. Free radicals

from in vitro generation of ROS can be trapped and dis-

played unequivocally by electron paramagnetic resonance

(EPR) spin trapping procedures. However, a practical use

of EPR spectroscopy for in vivo detection of ROS in

biological systems is quite difficult and remains to be

improved. Attack of •OH radicals, generated by a Fenton

system, on salicylate produces 2,3- and 2,5-dihydroxy-

benzoic acids (DHBA) as major products and catechol as

a minor product (14, 15) (Fig. 1). It has been shown that
•OH free radicals react with salicylate and generate 2,3- and

2,5-DHBA, which can be measured electrochemically in

picomole quantity by high performance liquid chromatog-

raphy with an electrical (HPLC-EC) procedure (16). The
•OH adducts of salicylate, in particular, 2,5-DHBA, follow-

ing administration of salicylate have been used as an

index of •OH generation in heart and brain tissues during
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ischemia and reperfusion (17). A cautionary note was

raised by Halliwell et al. (14) since 2,5-DHBA can be

formed not only by •OH adduct but also by hydroxylation

catalyzed by liver cytochrome P-450 and microsomal en-

zymes. Moreover, 2,3-DHBA is non-enzymatically formed

by •OH adduct and provides an assay for •OH formation

in vivo. Additionally, it could be used to answer some of

the fundamental questions concerning the chemical impli-

cations of ROS (i.e., NO and •OH) in heart and brain dis-

orders.

In the heart experiment, we designed a system for hold-

ing the microdialysis probe which includes loose fixation

of the tube and synchronization of the probe with that of

the heart. Details of the technique necessary for manipula-

tion of the flexibly mounted microdialysis probe in in vivo

rat hearts were described previously (18).

3. Potassium depolarization induces •OH generation

It is well known that in the case of acute myocardial

infarction or ischemia, there is a marked increase in [K+]o

and the resulting membrane potential of the ventricular

muscle in the infarcted area is remarkably depolarized

(19). In heart, the release of norepinephrine was induced

by nerve depolarization (20). Catecholamine release con-

tributes to the formation of cytotoxic free radicals. K+

depolarization enhances Ca2+ overload by [K+]o-induced

depolarization and may generate •OH radicals in the myo-

cardium. In brain, intracerebral administration of 1-methyl-

4-phenylpyridinium ion (MPP+) elicited an accumulation

of Ca2+ (21) and sustained increase in striatal dopamine

(DA) efflux (22, 23) and produced brain lesions. Abnormal

levels of extracellular free DA and /or intraneuronal Ca2+

triggered by MPP+ may be detrimental to the functioning

of dopaminergic nerve terminals in the striatum. Release

of catecholamines is introduced by depolarization (19).

This Ca2+-mediated DA release elicited by MPP+ was

modified by pretreating with [K+]o-induced depolarization

(24). Although the interaction between depolarization and

NO remained obscure, NOS activation was induced by

[K+]o-induced depolarization (25, 26). [K
+]o-induced depo-

larization augmented MPP+ induced •OH formation by

NOS activation (24).

4. LDL oxidation and •OH generation

Several experimental studies have shown that oxygen

radical contributes to myocardial damage induced by is-

chemia / reperfusion (18, 27). It is well known that ischemia

induces depolarization (28, 29). NO may mediate is-

chemia / reperfusion-induced •OH generation via depolar-

ization in ventricular muscle. NO is responsible for tissue

damage during ischemia. L-NAME (NG-nitro-L-arginine

methyl ester, a NOS inhibitor) attenuated •OH generation

by ischemia / reperfusion of rat heart (30). It is known that

L-NAME inhibits depolarization-induced NOS activation

by Ca2+ influx through blockade of the Na+-Ca2+ channel

(26). Oxidative modification of low-density lipoprotein

(LDL) is thought to contribute to the production of oxygen-

derived free radicals (31). Oxidative LDL (Ox-LDL) may

be important in neurotoxicity in the brain (32). It is well

known that a 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase inhibitor reduces the oxidizability

of LDL (33). The inhibitory effect on the susceptibility

of LDL oxidation can reduce •OH formation. The blockage

of LDL oxidation by fluvastatin (an inhibitor of LDL

oxidation) can reduce •OH generation. However, L-NAME

did not affect noradrenaline-induced •OH formation.

Fluvastatin is associated with a cardioprotective effect due

to the suppression of noradrenaline induced •OH formation

by inhibiting LDL oxidation (Fig. 2) (34). LDL oxidation

may be related to noradrenaline-induced •OH generation,

but LDL oxidation may be unrelated to •OH generation via

NOS activation.

5. NOS activation and MPP+-induced •OH generation

in the striatum

Intracranial administration of MPP+ elicited an accumu-

lation of Ca2+ (21). K+ depolarization enhances the forma-

tion of •OH product due to MPP+ via NOS activation. If

indeed the effect of KCl on •OH formation is due to NO

via ONOO�, [K+]o-induced depolarization may increase
•OH formation. NOS inhibition is associated with a protec-

tive effect due to suppression of K+ depolarization-induced
•OH generation. The •OH was generated by the presence of

NOS and O2. Depolarization-induced DA release is well

Fig. 1. Products of the attack by •OH radicals on the salicylate

molecule.
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known. Therefore, it is possible that endogenous release of

DA after KCl stimulation in part contributes to the •OH

formation. Induction of high [K+]o or DA significantly

increased the MPP+-induced •OH formation (24). However,

the application of L-NAME abolished the [K+]o depolariza-

tion-induced •OH formation with MPP+, but L-NAME did

not change the effect of DA. [K+]o induced depolarization

enhances the formation of •OH products due to MPP+ via

NOS activation (24). In accord with the reaction pathway in

Fig. 3, •OH was generated by the presence of NOS and O2.

Based on these studies, the •OH generation via NOS activa-

tion may be unrelated to the DA-induced •OH generation.

The toxic effects of MPTP are proposed to be mediated

via an excessive production of NO (35). Inhibitors of

neuronal NOS such as 7 nitioindazole (7-NI) were found

to prevent MPTP-induced striata DA depletion and nigral

Fig. 2. The reaction pathway in rat heart illustrates the formation of hydroxyl radical by depolarization-induced NO. Abbre-

viations: NO, nitric oxide; NOS, nitric oxide synthase; L-NAME, NG-nitro-L-arginine methyl ester; XO, xanthine oxidase;

O2
�, superoxide anion; •OH, hydroxyl radical; MAO, monoamine oxidase; DOPGAL, 3,4-dihydroxyphenylglycolaldehyde;

LDL, low-density lipoprotein. (Modified from ref. 34)

Fig. 3. The reaction pathway in rat brain illustrates the formation of hydroxyl radical by depolarization-induced NO. Abbrevia-

tions: NO, nitric oxide; XO, xanthine oxidase; O2
�, superoxide anion; •OH, hydroxyl radical; MAO, monoamine oxidase;

DOPAC, 3,4-dihydroxyphenylacetic acid; NOS, nitric oxide synthase L-NAME, NG-nitro-L-arginine methylester; MPP+, 1-

methyl-4-phenylpyridinium ion. (Modified from ref. 24)
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cell death (36, 37). In addition, 7-NI may react with O2
�

to generate ONOO� (38) and •OH radicals (12). Di Monte

et al. (39) strongly claimed that reduction of MPTP conver-

sion into MPP+ by inhibition of the extraneuronal B-form

of the enzyme monoamine oxidase is a more important

factor for the protection of 7-NI than the inhibition of

neuronal NOS.

The controversy concerning the possible neurotoxic (40)

and /or neuroprotective role of NO in cell cultures has

been discussed (41). Chronic or high-dose administration

of D-amphetamine elicits NO formation in the striatum of

rats and striatal dopaminergic terminal damage ensues (42).

Neuronal NOS inhibitors may be useful in the treatment of

neurologic diseases in which excitotoxic mechanisms play

a role (43). A synthetic nonsteroidal antiestrogen inhibits

NOS, leading to interference with consecutive NOS-

dependent formation of NO and /or O2
� in various tissues

(44). Rats that lack inducible NOS are resistant to the

MPTP-induced decrease in tyrosine hydroxylase-positive

neurons, but show no change in DA-depletion. In contrast,

glutathione peroxide-homozygote deficient mice and vesi-

cular monoamine transporter 2-heterozygotes showed en-

hanced MPTP neurotoxicity (45, 46).

6. Conclusion

NO is a free radical that regulates a variety of biological

functions and the pathogenesis of cellular injury. NO

mediates ischemia / reperfusion-induced •OH generation

via depolarization in ventricular muscle. The •OH was

generated by the presence of NOS and O2
�. NOS inhibition

is associated with a protective effect due to suppression

of [K+]o depolarization-induced 
•OH generation. The •OH

generation via NOS activation may be unrelated to the
•OH generation by catecholamine.
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