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ABSTRACT—Adenosine, a metabolite of ATP, serves a number of important physiological roles in the

body. These actions contribute to sedation, bradycardia, vasorelaxation, inhibition of lipolysis and regulation

of the immune system and are mediated, in part, through activation of three distinct adenosine receptor (AR)

subtypes. To date, four receptor types have been cloned: A1, A2A, A2B and A3. It is becoming increasing

clear that adenosine contributes significantly to cytoprotection, a function mediated principally by the A1AR

and A3AR. In this review, we survey the literature on the role of adenosine and the mechanisms underlying

cytoprotection and ischemic preconditioning, a process characterized by cytoprotection derived from repeat-

ed brief ischemic challenges. An important recent observation is that the expression of several AR subtypes

could be regulated by oxidative stress to provide a greater cytoprotective role. Thus, like other proteins

known to be regulated during ischemia, the A1AR and A3AR can be considered as being inducible receptors.
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1. Introduction

Adenosine and ATP are important components of the

purinergic system, mediating their effects preferentially at

the P1 and P2 purinoceptors, respectively. While not con-

sidered a true neurotransmitter, since it is not stored in

synaptic vesicles, adenosine serves important autocrine

and paracrine roles. One such role, the regulation of cardio-

vascular functions, was demonstrated over 70 years ago by

Drury and Szent-Gyorgyi (1). These investigators demon-

strated that adenyl purines were important for promoting

coronary vasodilation, suppressing heart rate and decreas-

ing blood pressure. Subsequent studies by Berne (2) demon-

strated a vasodilatory role of adenosine elaborated during

hypoxia. In addition to its cardiovascular role, adenosine

also suppresses central nervous system excitability, inhibits

lipolysis, provokes bronchoconstriction, suppresses the

generation of superoxides in neutrophils and decreases

glomerular filtration rate. However, one of the primary

roles of this nucleoside is cytoprotection. Adenosine, re-

leased under conditions of stress, provides negative feed-

back regulation to maintain cellular preservation and is

therefore termed a “retaliatory metabolite.”

2. Adenosine and adenosine receptors

Synthesis of adenosine

The levels of adenosine are determined primarily from

the dephosphorylation of its immediate precursor, adenos-

ine monophosphate (AMP). Precursors of AMP include

cyclic AMP, ADP and ATP. ATP is co-released with other

neurotransmitters from presynaptic vesicles and is also

produced by mast cells, basophils and endothelial cells and

as a result of cellular damage. ADP is derived from activat-

ed platelets, while cyclic AMP serves as a second messen-

ger in most cells. Since the estimated ratio of ATP:AMP

under normoxic condition is approximately 50:1, a small

decrease in total ATP is expected to produce a large in-

crease in AMP and adenosine (3). Adenine nucleotides are

degraded by a series of ectonucleotidases. One such en-

zyme, 5'-nucleotidase, catalyzes the conversion of AMP to

adenosine during increased cellular metabolism. 5'-Nucleo-

tidase is found both extracellularly (attached to the plasma

membrane by glycosyl-phosphatidylinositol anchors) and

in the cytosol (3, 4). Regulation of the activity and /or ex-

pression of this enzyme is critical for regulation of the

levels of adenosine. The initial report suggested that the

level of ecto-5'-nucleotidase and adenosine were increased

by ischemic preconditioning (5). However, subsequent stud-

ies using microdialysis were unable to confirm this result

(6, 7). Adenosine is also produced from the hydrolysis of
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S-adenosylhomocysteine, by S-adenosylhomocysteine hydro-

lase. This mechanism accounts for a significant portion of

the adenosine present under resting conditions. S-Adenosyl-

homocysteine also serves as an intracellular binding protein

for adenosine, thereby protecting the nucleoside from deg-

radation. In the central nervous system, S-adenosylhomo-

cysteine is localized on glial and astrocytic cells near to

synaptic terminals. Adenosine is rapidly cleared from the

extracellular space through a bi-directional facilitated trans-

porter that is sensitive to the drug dipyridamole. As such,

application of dipyridamole increases interstitial adenosine

levels, thereby accounting for the pharmacological actions

of this drug, which include coronary vasodilation, sedation

and anticonvulsant action. Under normoxic conditions, ad-

enosine is phosphorylated by adenosine kinase to AMP

and subsequently to ATP to restore the nucleotide pool.

However, under conditions of increased metabolic stress,

the increased levels of adenosine easily saturate adenosine

kinase and excess adenosine is metabolized to inosine and

hypoxanthine by adenosine deaminase (3, 4).

Adenosine receptors

Adenosine exerts its major physiological roles by inter-

acting with various subtypes of P1 purinergic receptors,

also termed adenosine receptors (ARs). These receptors

differ from the P2 purinergic receptors based on their

preference for adenosine over ATP (8). The AR subtypes

that have currently been described from both functional and

molecular cloning studies include the A1, the A2A, the A2B,

and the A3 subtypes. The A1AR represents the predominant

AR subtype in the central nervous system (3). It differs

from other AR subtypes based on a unique agonist interac-

tion profile: the order of potency for agonists with decreas-

ing affinity for the A1AR is R-N
6-phenylisopropyladenos-

ine (R-PIA) � 5'-N-ethylcarboxamidoadenosine (NECA)

� S-PIA (9). Methylxanthines, such as theophylline, caffeine

and 3-isobutyl-1-methylxanthine, are generally nonselec-

tive antagonists of most ARs subtypes. However, the rat

A3AR appears relatively insensitive to methylxanthines

(10). A number of substituted 8-phenylxanthine deriva-

tives, such as 8-(4-[([[(2-aminoethyl)amino] carbonyl]meth-

yl)oxy]phenyl)-1,8-diallylxanthine (XAC), are selective

antagonists for the A1AR.

Autoradiographical studies indicate wide distribution

of the A1AR, particularly to the cortex, cerebellum (both

molecular and granular layers), the hippocampus and thala-

mus (3). Immunohistochemical studies have shown high

levels of A1AR in the central auditory system, including the

temporal cortex, medial geniculate, inferior colliculus and

cochlear nucleus (11). In the periphery, high levels of the

A1AR are detected in the testis and adipose tissue, with

lower levels in the kidney and heart. Activation of the

A1AR mediates inhibition of adenylyl cyclase in a number

of systems through activation of the Gi proteins. Using

purified preparations derived from bovine brain, preferen-

tial coupling of the A1AR to the Gi3 protein was demonstrat-

ed, with lower affinities for Gi2, and Go proteins (12). The

A1AR inhibits presynaptic voltage-sensitive Ca
2+ channels

in cortical synaptosomes (13), hippocampal neurons (14)

and Ca2+ currents into rat dorsal root ganglion cells (15).

Such inhibition of Ca2+ influx could subserve, in part, the

cytoprotective role of adenosine. Adenosine also activates

4-aminopyridine-sensitive K+ channels in hippocampal

neurons and a K+ conductance in atrial myocytes (16).

The A1AR was purified, prior to its cloning, from rat

testes (17) and bovine brain (18). In most tissues, this

receptor exhibits a molecular size of 36 kDa, while in the

testis it migrates as a 42-kDa protein (19). This larger ap-

parent molecular size is a result of increased glycosylation

of the A1AR in the testis (17).

3. Adenosine mediates cytoprotection

Adenosine serves a paracrine role since it is released

in response to ischemic stress and activates cells in the

vicinity of its release site. During low-flow ischemia, the

levels of cardiac interstitial adenosine increases from sub-

micromolar levels to micromolar concentrations (20). The

nucleoside mediates its cytoprotective action by interacting

with A1AR and A3AR on myocardial tissue and central

nervous system. In the central nervous system, experiments

utilizing microdialysis technique indicate a good corre-

lation between the levels of extracellular adenosine and

cerebral blood flow. For example, a transient increase in

adenosine was observed when flow was reduced below

25 ml · 100 g–1 · min–1 (21).

Cardiovascular system

In the cardiovascular system, adenosine plays an impor-

tant role in reducing cellular injury produced during is-

chemia and reperfusion. Several mechanisms of cytopro-

tection have been proposed. The nucleoside reduces heart

rate and force of contractility (22, 23), thereby reducing

the oxygen demand of the heart. Adenosine also reduces

the local build-up of reactive oxygen species (ROS) through

inhibition of superoxide anion generation by neutrophils

(24) and increases myocardial glucose uptake (25, 26),

probably secondary to the increase in coronary blood flow

(27). Furthermore, adenosine serves as a substrate for the

regeneration of ATP, mediated via the purine salvage path-

way described above. The direct action of adenosine to

suppress heart rate and contractility can be explained by

the ability of this nucleoside (via the A1AR) to activate the

acetylcholine-sensitive K+ channels in the atrium (16) and

to inhibit catecholamine-stimulated cyclic AMP generation

(28) and Ca2+ channels in the ventricle (29).
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Central nervous system

Another area in which the cytoprotective action of ade-

nosine has been studied extensively is the central nervous

system. The levels of adenosine in the central nervous sys-

tem increase significantly following metabolic insults such

as ischemia, hypoxia and hypercapnea (30, 31). While these

increases confer some degree of neuroprotection, exoge-

nously applied adenosine analogs can provide additional

protection against these injuries. For example, administra-

tion of 2-chloroadenosine to rats protected against hippo-

campal cell loss induced by ischemia (32). Another analog,

cyclohexyladenosine, protected against cerebral ischemia

in gerbils (33) and against transient ischemia in rats (34).

Cyclohexyladenosine also provided protection to the hippo-

campus and striatum following 30 min bilateral carotid

occlusion (34). Rats treated with caffeine to increase A1AR

expression in the brain were more resistant to ischemia,

underscoring the protective role of this receptor subtype

(35). In contrast, down-regulation of the A1AR by pro-

longed agonist treatment exacerbated the damage created

by a subsequent ischemic episode (36). While the central

nervous system protective role of adenosine has been attri-

buted to the A1AR, an additional role of the A3AR has not

been ruled out (36). In contrast to the A1 and A3AR, activa-

tion of the A2AAR in the brain appears to aggravate is-

chemia (37).

Proposed mechanisms underlying adenosine-mediated

cytoprotection

Several mechanisms contributing to the cytoprotective

role of adenosine in the central nervous system have been

proposed. The major mechanism proposed involves activa-

tion of presynaptic A1AR to decrease release of excitatory

neurotransmitter such as glutamate (38 – 40). These pre-

synaptic A1AR activate a K
+ conductance (leading to hyper-

polarization) (41, 42) and inhibit Ca2+ influx into the nerve

terminal (11, 34). Such actions reduce neuronal excitability

and firing rate (43). Activation of a voltage-dependent Cl–

conductance by adenosine, distinct from that activated by

GABA, can also contribute to neuronal hyperpolarization

(44). Adenosine also acts postsynaptically to reduce NMDA

receptor-induced synaptic amplification (45) and hyper-

polarizes astrocytes (46), thereby facilitating glutamate

uptake by these cells. Furthermore, adenosine analogs de-

crease the rate of glucose consumption in the central ner-

vous system (47, 48), due in part to inhibition of neuronal

activity (49) and through augmentation of cerebral blood

flow through vasodilation of most vascular beds (49). In

addition, adenosine (via an A2AAR) inhibits the aggregation

of platelets and neutrophils and can thereby reduce a local-

ized inflammatory response.

4. Adenosine and ischemic preconditioning

Ischemic preconditioning describes a process by which

brief intermittent periods of ischemia provides protection

against a more sustained ischemic episode. The cardiopro-

tective action of ischemic preconditioning was described

initially by Murry et al. (50) and has been supported by

several other studies (for review, see reference 51). These

investigators described a phenomenon that was relatively

short-lived and diminished within a few hours. A second

window of protection, evident about 24 h after the precon-

ditioning treatment and associated with the synthesis of

protective proteins, was subsequently described (52). Is-

chemic preconditioning of the myocardium has been ob-

served in serveral different animal models including dogs

(53), rabbits (54) and pigs (55) and also in humans (56,

57). It is believed that adenosine released during the pre-

conditioning ischemic episodes is involved in the beneficial

effects of preconditioning induced by either brief (58) or

prolonged (59) ischemic episodes in the rabbit heart. How-

ever, the identity of the AR subtype mediating this action is

still controversial. Various studies have implicated the

A1AR and the A3AR in mediating ischemic precondition-

ing. Drugs which show selectivity for either the A1AR or

the A3AR mimic the protection afforded by ischemic pre-

conditioning (20, 60, 61). Overexpression of the A1AR and

A3AR in chick cardiac myocytes confers protection against

ischemia (62). However, given that the A1AR exhibits a

higher affinity for adenosine than the A3AR, it is not clear

to what extent the latter is activated during low-flow is-

chemia when the interstitial fluid adenosine levels are in

the low micromolar range. Interestingly, while activation

of the A1AR is associated with significant negative chrono-

tropic and dromotropic effects, activation of the A3AR is

devoid of these side effects (20). Since the negative chrono-

tropic and dromotropic actions are unrelated to the cardio-

protective effect of A3AR agonists, these results suggest

that drugs with A3AR selectivity may prove more benefi-

cial in patients. In contrast, activation of the A2AAR abol-

ishes the protective role of these receptors (60).

One mechanism underlying the AR-mediated precondi-

tioning response involves activation of protein kinase C

(63). This conclusion was derived indirectly, given that

inhibition of protein kinase C during the preconditioning

and prolonged ischemic phases blocked the beneficial re-

sponse of preconditioning (63). Blockade of the precondi-

tioning response was not reliably achieved but required a

specific temporal sequence of inhibition of protein kinase C

(64). There is no definitive evidence for membrane translo-

cation of protein kinase C during ischemia and reperfusion.

Simkhovich et al. (65) were unable to demonstrate actual

translocation of this protein to the membrane fraction.

However, transient membrane association of protein
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kinase C with the plasma membrane has been demonstrated

in the rat heart during ischemia-induced preconditioning

(66) and following phorbol ester-mediated preconditioning

response (67). Furthermore, ischemic preconditioning was

associated with membrane translocation of the �  and �  iso-

forms of protein kinase C (68). In a recent study, Liang (69)

demonstrated that activation of the A1AR in chick cardiac

myocytes was involved in hypoxia-induced precondition-

ing response. Activation of the A1AR stimulated protein

kinase C and led to activation of an ATP-sensitive K+

channel. The importance of these channels in the precondi-

tioning response is inferred from the observation that inhi-

bition by glibenclamide blocked protein kinase C-induced

preconditioning response (69). Furthermore, direct activa-

tion of KATP channels by bimakalim (70) and cromakalin

(71) led to reductions in infarct size in the dog heart. It

was initially thought that the beneficial action of the KATP

channel activators was due to shortening of the action

potential duration. However, this appears unlikely since

the protective action of these agents was observed even in

quiescent cardiac myocytes which did not produce action

potentials (72). A viable alternate explanation is that these

KATP channel activators mediate their beneficial action by

interacting with channels on the mitochondrial membrane

instead of the sarcolemmal membrane (73). Activation of

these KATP channels by protein kinase C likely involves

phosphorylation of consensus sites on the channel protein

(74, 75).

In addition to protein kinase C, the involvement of addi-

tional kinases in the development of preconditioning has

been suggested. Administration of tyrosine kinase inhibi-

tors blocked the ischemic preconditioning response in rat

(76) and rabbit heart (77), implicating this kinase in the

development of the phenomenon. Furthermore, adenosine

increases the activity of p38 mitogen activated protein

(MAP) kinase in cardiomyocytes (78, 79), while the activity

of the MAPKAPK-2 is increased in the preconditioned

heart. These latter results suggest an involvement of the

MAP kinase pathway in ischemic preconditioning.

Since coupling of the A3AR to phospholipase C-�  and

activation of protein kinase C in a rat basophilic leukemia

clone was demonstrated previously (80, 81), a role of this

receptor subtype in mediating the preconditioning response

to adenosine was proposed. As described above, experi-

mental evidence support an integral role of the A3AR in

mediating the ischemic preconditioning of cardiac myo-

cytes in vitro, linked to the activation of protein kinase C

(63, 69, 82, 83). Given the beneficial effects of antioxidants

and antioxidant enzymes against ischemic reperfusion inju-

ries (84), we tested whether adenosine can induce the acti-

vation of antioxidant enzymes. Activation of the A3AR in

the rat basophilic leukemia (RBL) cells led to a increase in

the activities of superoxide dismutase, catalase, glutathione

peroxidase and glutathione reductase, along with a reduc-

tion in malondialdehyde, a marker of lipid peroxidation

(85) (Fig. 1). This stimulatory action appears to involve

protein kinase C-mediated phosphorylation (86). Such a

mechanism could serve to decrease the levels of ROS,

which would otherwise be harmful to the cell. This effect

of adenosine was also evident in vivo, and may account

for adenosine-induced reduction of lipid peroxidation in

the cochlea (87). Furthermore, the adenosine analog (R-

PIA) has been shown to protect cochlear explants from

oxidative damage induced by cisplatin (88) and confers

protection against noise-induced loss of hair cells in the

chinchilla cochlea (89).

Studies in the rat inferior colliculus, a central nucleus in-

volved in processing of auditory signals, indicate that phos-

phorylation plays an integral role in the activation of these

antioxidant enzymes. Incubation of inferior colliculus homo-

genates with alkaline phosphatase to induce dephosphory-

lation resulted in reductions in the activities of antioxidant

enzymes, while subsequent incubation with protein kinase C

restored enzyme activities (90). Restoration of enzyme ac-

tivity was specific to the protein kinase C-�  isozyme, but

not to the � 1, � 2, �  or �  forms (Fig. 2). Taken together,

these data may explain the mechanism underlying the ben-

eficial role of A3AR and protein kinase C activation in

ischemic preconditioning.

Fig. 1. Stimulation of the activity of antioxidant enzymes and

glutathione reductase by adenosine analogs. Rat basophilic leukemia

cells were treated with adenosine deaminase and further with R-PIA

(10 �M) or R-PIA + theophylline (1 mM) for 90 min at 37�C. Basal

activity of each enzyme was represented as the mean � S.E.M. of

5 experiments, each performed using triplicate determinations.

Increases in enzyme activity obtained in the no adenosine deaminase

and R-PIA groups were statistically significant (p�0.05). (Reproduced

from reference #85 with permission from Academic Press, Inc.)
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5. Oxidative stress regulates A1AR expression via acti-

vation of NF����B

While acute administration of adenosine increases the

activities of antioxidant enzymes (as described above), we

have recently demonstrated that the expression of the A1AR

subtype is regulated by oxidative stress (91). Oxidative

stress induced by certain antineoplastic agents and by H2O2

up-regulates the A1AR in hamster ductus deferens (DDT1

MF-2) smooth muscle cells. Treatment of DDT1 MF-2 cells

with cisplatin, a chemotherapeutic agent which enhances

ROS generation, increased the level of the A1AR, deter-

mined by the binding of the antagonist radioligand 8-cyclo-

pentyl-1,3-dipropylxanthine (DPCPX), the the agonist radio-

ligand 125I-N 6-2-(4-amino-3-phenyl)ethyladenosine (APNEA)

and by Western blotting, by approximately twofold (Fig. 3).

Other inducers of reactive oxygen species, such as chemo-

therapeutic agents daunorubicin, doxorubicin and mitrox-

antrone and H2O2 were also effective in increasing the

A1AR (91). The clinically inactive platinum analog, trans-

platin, was ineffective in this regard. A role of reactive

oxygen species generation in mediating the increase in

A1AR expression was supported by the finding that incu-

bating cells with H2O2 and catalase, an scavenger of this

reactive oxygen species, attenuated the response of H2O2.

The increase in A1AR was inhibited when cells were incu-

bated with actinomycin D, suggesting a role for de novo

receptor synthesis in mediating this process. Since certain

chemotherapeutic agents, such as daunorubicin, can acti-

vate nuclear factor kappa B (NF�B) presumably through

generation of reactive oxygen species (92), a role of NF�B

in the induction of A1AR was determined. In cells treated

with cisplatin along with pyrrolidine dithiocarbamate or

dexamethasone, inhibitors of NF�B activation (92), the

induction of the A1AR by cisplatin was attenuated (91).

This finding suggests an obligatory role of NF�B in ROS-

mediated increase in the A1AR. A more direct demon-

stration of activation of the A1AR gene by cisplatin was

provided by the demonstration that this agent increases

luciferase activity in cells transiently transfected with the

A1AR promoter (91), coupled to firefly luciferase reporter

gene (Fig. 4). Activation of the A1AR gene might account

for cisplatin-induced up-regulation of the A1AR in rat

cochlea (93) and testis (94), in renal proximal kidney cell

in cultures (95) and in primary cultures of rat embryonic

neurons (D.M. Hallam et al., unpublished). We believe that

up-regulation of the A1AR in these tissues is an adaptative

response to counter the oxidative stress. Thus, oxidative

stress can enhance the purinergic system in two ways. First,

oxidative stress promotes increases in extracellular adenos-

ine release that can then activate ARs, leading to the en-

hancement of signaling pathways to provide cytoprotec-

tion. Second, oxidative stress itself induces expression of

the A1AR and possibly A3AR (see below), which provide a

more prolonged period of cytoprotection.

6. Role of NF����B in the regulation of both A2AAR and

A3AR

In contrast to the A1AR, oxidative stress decreased the

expression of the A2AAR. Treatment of rat pheochromo-

cytoma (PC-12) cells with H2O2 resulted in a significant

reduction in the expression of the A2AAR, presumably

mediated via activation of NF�B (96). Other activators of

NF�B in these cells, such as ceramide and nerve growth

factor (NGF), also inhibited A2AAR expression. This effect

of NGF was mediated via the low affinity (p75) NGF recep-

tor and was blocked by inhibition of NF�B, implicating

Fig. 2. Identity of the PKC isoform linked to the activation of

superoxide dismutase. A: IC homogenates (from 3-month-old rats)

were phosphorylated total rat brain protein kinase or an equivalent

amount of the recombinant isoforms as described previously (90)

and used for determining the activity of superoxide dismutase.

Results are presented as the mean � S.E.M. of three experiments,

with asterisks indicating statistically significant difference from

control (p�0.05). B: Monoclonal antibodies against protein kinase C-

�  blocked activation of superoxide dismutase. (Reproduced from

reference #90 with permission from Elsevier Science)
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this transcription factor in the process of receptor down-

regulation. However, the response to NGF was unaffected

following blockade of the high affinity NGF receptor,

TrkA, or following blockade of the MAP kinase pathway.

Our working hypothesis concerning the regulation of the

A2AAR is that oxidative stress or NGF activates NF�B and

then stimulates a consensus sequence for this factor in the

upstream promoter region of the rat A2AAR gene (97), and

somehow mediates inhibition of transcription of this gene.

The A2AAR is not unique in this regard. NF�B-mediated

inhibition of transcription of genes encoding the androgen

receptor (98), the mouse k immunoglobulin light chain (99)

and the major histocompatibility class II-invarient chain

(100) has been demonstrated. One concern with the current

hypothesis is that temporally, down-regulation of the A2AAR

preceded changes in its mRNA. For example, maximal

change in A2AAR was observed 24-h following NGF treat-

ment, compared to a 3-day post-treatment requirement for

optimal changes in mRNA. The explanation for this is not

immediately apparent. However, these findings suggest

that multiple mechanisms may explain down-regulation of

the A2AAR following activation of NF�B.

The A3AR on rat mast mast cells plays an important

role in augmenting histamine release following crosslink-

ing of IgE. While the A2BAR appears to be more important

in degranulation of human mast cells (101), up-regulation

of the A3AR was observed on eosinophils of asthmatics

(102). Since the asthmatic condition could be exacerbated

by air pollution (containing a variety of reactive oxygen

species) and concurrent airway inflammation, we investi-

gated whether the A3AR is also subjected to regulation by

these stressors using a RBL clone. Oxidative stress, in-

duced with hydrogen peroxide, produced a dose-dependent

increase in A3AR messenger RNA and protein (103). The

increase in receptor protein was blocked by catalase and

pyrrodiline dithiocarbamate, an inhibitor of NF�B, sug-

Fig. 3. Cisplatin treatment for 24 h induced up-regulation of the A1AR in DDT1MF-2 cells. Cells were treated with cisplatin

(2.5 �M) for 24 h and crude plasma membranes were prepared for determining A1AR. a, Saturation curves showing increase in

A1AR expression in DDT1MF-2 cells after cisplatin treatment, as described by Nie et al. (91). b, Western blotting for the A1AR

using a polyclonal antisera at a titer of 1:1000. c, Dose-response effect of cisplatin obtained with cells treated with cisplatin for

24 h using 125I-N 6-2-(4-amino-3-phenyl)ethyladenosine (1 nM). d, Up-regulation of the A1AR by different chemotherapeutic

agents and H2O2. Cells were incubated with 1 �M of the chemotherapeutic agents or 10 �M H2O2 or 200 units /ml catalase for

24 h. e, Inhibition of NF�B by pyrrodiline dithiocarbamate or dexamethasone. *, indicate statistically significant difference from

control. **, statistical significant difference from the cisplatin-treated group. (Reproduced with permission from the American

Society for Pharmacology and Experimental Therapeutics)
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gesting an integral role of this transcription factor in the

regulation of this receptor. Similarly, administration of

tumor necrosis factor (TNF)-� , increased A3AR expres-

sion. This effect was blocked by actinomycin D and cyclo-

heximide, suggesting the involvement of gene transcription

and protein synthesis, respectively. Treatment of RBL-2H3

cells with lipopolysaccharide and interferon-�  also up-

regulated the A3AR (103). Taken together, these data sug-

gest that the A3AR is subjected to regulation by oxidative

stress and inflammatory mediators which are believed to

activate NF�B. Such an increase in A3AR on mast cells,

coupled to an increase in A1AR in the bronchioles may

contribute to hypersensitivity of asthmatics to adenosine.

In the cardiovascular system, however, up-regulation of

the A3AR might contribute to the ischemic preconditioning

response.

7. Conclusion

In summary, adenosine plays an important role in medi-

ating cytoprotection both in vitro and in vivo. This nucleo-

side can also contribute to the beneficial effect of ischemic

preconditioning. Thus, drugs that mimic the actions of

adenosine might be useful clinically in conditions such

as stroke and myocardial infarction. A dynamic interaction

appears to exist between the expression of AR subtypes and

oxidative stress, mediated by NF�B and possibly other

transcription factors. This finding suggests that in addition

to oxidative stress, other activators of NF�B may promote

cross-regulation of AR subtypes.
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