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ABSTRACT: Fine-scale differences in behaviour and habitat use have important ecological impli-
cations, but have rarely been examined in marine gastropods. We used tri-axial accelerometer
loggers to estimate activity levels and movement patterns of the juvenile queen conch Lobatus
gigas (n = 11) in 2 habitat types in Eleuthera, The Bahamas. In 2 manipulations in nearshore areas,
queen conchs were equipped with accelerometers and released in adjacent coral rubble or sea-
grass habitats. Queen conchs were located approximately every 6 h during daylight by snorkel-
ing, to measure individual differences in linear distance moved, and after 24 h they were relocated
to an alternate habitat (24 h in each habitat). We found significant inter-individual variability in
activity levels, but more consistent levels of activity between the 2 habitat types within individual
queen conchs. Four (36 %) of the individuals placed in seagrass moved back to the adjacent coral
rubble habitat, suggesting selectivity for coral rubble. Individuals showed variable behavioural
responses when relocated to the less preferable seagrass habitat, which may be related to differ-
ing stress-coping styles. Our results suggest that behavioural variability between individuals may
be an important factor driving movement and habitat use in queen conch and, potentially, their
susceptibility to human stressors. This study provides evidence of diverse behavioural (activity)
patterns and habitat selectivity in a marine gastropod and highlights the utility of accelerometer
biologgers for continuously monitoring animal behaviour in the wild.
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INTRODUCTION

Animal movement is a central mechanism driving
habitat selection, population, and community dy-
namics (Nathan et al. 2008). It is the result of internal
and external stimuli and is commonly aimed at im-
proving foraging opportunities, environmental con-
ditions, avoiding predation, or finding a mate. Move-
ment is limited by the navigational and locomotory
capacities of the animal, but even relatively simple
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invertebrate species are capable of advanced per-
ception of their environment, resulting in complex
patterns of movement and a diversity of behaviours
(Matthews 1969, Mather & Logue 2013). Animal be-
haviour can be highly flexible, resulting in high vari-
ability between individuals even at the population
level, but is often consistent within individuals across
time and contexts (i.e. personality; Sih et al. 2004,
Réale et al. 2007, Bergmiiller 2010). The degree and
nature of this variability has important implications
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for understanding population dynamics, spatial ecol-
ogy, and how populations will respond to anthro-
pogenic stressors and environmental changes (Wolf
& Weissing 2012). Despite the fact that personality
provides important insight into ecological and evolu-
tionary dynamics, it has rarely been examined in
invertebrate species, many of which are both ecolog-
ically and economically important, as well as being
good models for behavioural research (Kralj-FiSer &
Schuett 2014).

The queen conch Lobatus gigas is a large gastro-
pod found throughout the tropical western Atlantic
and Caribbean Seas. Highly popular for human con-
sumption and ornamental purposes, it is a socially
and economically valuable fisheries resource (Appel-
doorn 1994). However, it is currently listed in Ap-
pendix II of the Convention on International Trade
in Endangered Species (CITES), and concerns are
growing that it will be threatened with extinction due
to continued exploitation rates throughout its range
(Stoner 2003), though it has not yet been formally
evaluated for Red List status by the International
Union for the Conservation of Nature. Juvenile
queen conchs typically occupy shallow (<10 m) near-
shore habitats, including coral rubble, seagrass beds,
and sand flats (Stoner & Ray 1993, Glazer & Berg
1994, Stoner 2003) and often form distinct aggrega-
tions that move through nursery habitats foraging on
macroalgae, diatoms, and detritus (Stoner & Waite
1991, Stoner & Ray 1993). As queen conchs reach
sexual maturity (~3.5 to 4 yr; Appeldoorn 1988) they
migrate to deeper water habitat (up to 40 m), occu-
pying a diversity of substrates. Queen conchs fre-
quently move between substrate types to improve
foraging or reproductive opportunities (Stoner &
Sandt 1992). Rates of movement can be surprisingly
high (1 to 2+ km yr™!), with juveniles generally hav-
ing smaller home ranges (<1000 m?) than adults
(2500 to 5000 m?; Hesse 1979). Like most gastropods,
queen conch movement is facilitated by a strong foot
used to ‘crawl’ or 'leap’ across the substrate (Berg
1975).

While previous studies have provided coarse es-
timates of queen conch movement over large tem-
poral scales (e.g. Hesse 1979, Stoner & Sandt 1992),
fine-scale activity and movement have never been
quantified in the wild. Further, while many studies
have examined forms of locomotor activity in gas-
tropods (e.g. Berg 1974, 1975, Perron 1978), indi-
vidual-level differences in behavioural traits have
yet to be quantified in the wild or with respect to
environmental factors such as photoperiod or habi-
tat use. Queen conchs occupy a diversity of habi-

tats and often exhibit variable preferential habitat
use between hard bottoms and seagrass beds
across space and time (Randall 1964, Hesse 1979,
Stoner & Sandt 1992, Stoner et al. 1996). Given the
importance of movement and habitat use for forag-
ing, survival, and reproduction of queen conch, es-
timates of behaviour in relation to environmental
factors are useful for their conservation (Caro 1999).
Recent advances in technology have made such
measurements possible (Cooke et al. 2004). Ac-
celerometer biologgers collect sub-second meas-
urements of animal movement and posture that
enable quantification of fine-scale behaviour in the
wild in a range of species (Shepard et al. 2008,
Brown et al. 2013, Brownscombe et al. 2014),
including molluscs (Robson et al. 2012). Here, our
objective was to examine individual juvenile
queen conch activity and movement in the wild
across 2 commonly occupied habitat types using
tri-axial accelerometer biologgers. We predicted
that queen conchs would exhibit diverse behav-
ioural patterns between individuals and across
habitat types, with consistent behaviours within
individuals across space and time (personality).

MATERIALS AND METHODS
Study site

This study was conducted in a shallow embay-
ment of the western Atlantic Ocean in Eleuthera,
The Bahamas (24.83981°N, 76.33651°W). This
embayment consisted primarily of seagrass, with
adjacent coral rubble substrate 5 to 10 m in width
along the shoreline. The seagrass habitat was pre-
dominately (65 % ground cover) turtle grass Thalas-
sia testudinum in sand substrate. The coral rubble
habitat consisted primarily of coral debris, but also
contained Batophora algae (30% ground cover).
Queen conchs were released 10 m apart from each
other in a linear line adjacent to the shoreline at a
mean (+SD) depth of 90 cm (+£3.6) in the seagrass
and 16 cm (+1.6) in the coral rubble. Within 8 m of
release locations, habitat consisted of 988 m? (71 %
of study area) of seagrass and 405 m? (29%) of
coral rubble. This study was conducted in the wild;
hence, external factors such as the density of
untagged queen conchs and the presence of their
predators could not be controlled. Initial surveys of
the study site via snorkeling found queen conchs in
the coral rubble habitat (~0.1 to 0.2 m~2), but none
in the adjacent seagrass habitat.
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Behavioural measures: activity and
movement patterns P 7
Juvenile queen conchs (n = 12; mean + SD: 16.7 +
2.0 cm length, no flared shell lip indicative of matu- X

ration; Appeldoorn 1988) were collected from coral
rubble habitat and fitted with tri-axial accelerome-
ter loggers (Model X8M-3, 500 mAh battery, 15 g
in air, 25 Hz recording frequency; Gulf Coast Data
Concepts), which were fastened with electrical tape
to the dorsal surface of the body whorl (Fig. 1).
Colouration of the tape was unique to allow indi-
vidual identification during recapture and displace-
ment trials. Capture and release of tagged queen
conchs occurred in 2 trials: on 30 January 2013 at
17:00 h and on 4 February 2013 at 15:00 h (n = 6
per release; different individuals for each release).
Tagged queen conchs were released into either the
coral rubble or adjacent seagrass habitats (n = 3
per habitat per release). Releases occurred a mini-
mum of 10 m apart from each other, and the loca-
tion of release was marked with a flag. Researchers
returned to the site approximately every 6 h during
daylight hours to locate (but not disturb) tagged
queen conchs and measure the linear distance
moved between observations. Upon location, the
marker flag was moved to the new location, and
subsequent movement distances were measured
from that location. After 24 h, queen conchs were
relocated to the alternate habitat. After 48 h, ac-
celerometers were removed, and queen conchs
were released back into the coral rubble habitat
from which they had initially been collected, but
outside of the study area so as to avoid reusing the
same individuals in the second trial. One individual
released in the coral rubble habitat could not be
found at the end of the second trial, resulting in the
collection of acceleration data from 11 queen
conchs.

Data analysis

Tri-axial accelerometer loggers con-
tinuously recorded acceleration (g =
9.8 m s?) at 25 Hz frequency along 3
axes. Total acceleration comprises static
(gravity) and dynamic (queen conch

Dynamic acceleration

Fig. 1. Queen conch Lobatus gigas tagged with a tri-axial
accelerometer

along the x-axis (representing the strongest dynamic
acceleration signal along the longitudinal axis of the
animal; Fig. 1) was analyzed using continuous wave-
let transformation with a band-pass filter including
frequencies of 0.1 to 2 Hz. A k-means clustering algo-
rithm was used to categorize spectra into 6 cate-
gories, which were then grouped into either active or
inactive behavioural states (Fig. 2). All accelerometer
data analyses were conducted with Igor Pro 6.32 soft-
ware (WaveMetrics) and Ethographer (see Sakamoto
et al. 2009).

Queen conch activity levels (% time active) were
analyzed with generalized least squares regression.
Queen conch identification (ID), habitat type (coral
rubble, seagrass), photoperiod (day, night), and the
2-way interactions ID x photoperiod, ID x habitat,
and photoperiod x habitat were included as predic-
tors. Backward model selection with single-term de-
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smoothing filter with a 2 s (60 samples)
moving window. Dynamic acceleration

9:35:00

9:36:00 9:36:30

Time

9:35:30

active and inactive behavioural states

Inactive

Fig. 2. Dynamic acceleration (x-axis, g) by a queen conch Lobatus gigas over a
2 min period clustered using a k-means algorithm into 6 categories representing
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letions using log-ratio tests at oo = 0.05 was used to
determine the final model, and an autocorrelation
structure was implemented to account for autocorre-
lation within individuals (Pinero & Bates 2000, Zuur
et al. 2009). To examine consistency within individu-
als, queen conch activity levels were rank trans-
formed and analyzed for concordance between habi-
tat types (coral rubble and seagrass) and between
diel periods (night and day) within each habitat
type using Kendall's coefficient of concordance (W).
Linear distance moved (cumulative sum of linear dis-
tances moved between each relocation in meters) by
queen conch was analyzed with a linear mixed ef-
fects model with time active (h), habitat type (coral
rubble or seagrass), and the interaction between time
active and habitat type as predictors, and individual
queen conch as a random factor. Due to patterns in
residuals, linear distance moved was square root
transformed. Models were validated using the proto-
cols outlined in Zuur et al. (2009). Habitat selectivity
by queen conch was examined by comparing the
number of individuals in each habitat type after the
24 h study periods to the expected number in each
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Fig. 3. Time active (% of total observation time) for queen
conchs Lobatus gigas fitted with a Loess smoother by hour of
the day in seagrass and coral rubble habitats

Table 1. Significant factors (p < 0.05; bold) predicting queen
conch (Lobatus gigas) activity levels (% time active) using
generalized least squares estimation. ID: identification

habitat based on habitat availability (number of indi- number
viduals multiplied by percent availability) using a
chi-squared test of independence (according to Neu Factor df Fevalue p-value
et al. 1974, Le6n & Bjorndal 2002). Habitat availabil- Intercept 1 82.8 <0.001
ity was calculated as the area of each habitat within Queen conch ID 10 2.9 0.046
8 m of release locations (mean movement distance by TiIm? of day 1 4.7 0.052
queen conchs during this study). All statistical analy- Habitat 1 0.2 0.68
. . . ID x Time of day 10 3.0 0.04
ses were conducted using RStudio (Version 0.98.501; ID x Habitat 10 15 0.27
R Core Team).
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interaction between individual and
time of day were significant pre-
dictors of queen conch activity
(Table 1). Some individuals were
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Fig. 4. Lobatus gigas. Mean time active (%, + SE) of individual queen conchs across
photoperiods (day and night) in coral rubble (black) and seagrass (grey) habitats. Up-
per panel shows queen conchs in the first experiment; lower panel shows those in the
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consistent in their activity levels across diel periods
and habitats, ranging from highly active (e.g.
Conchs 4 and 5) to less active (e.g. Conchs 2, 7, 11).
Some queen conchs became highly active in sea-
grass habitat compared to coral rubble (e.g. Conchs
5 and 9), while others were the opposite (e.g.
Conchs 3 and 6). While there was a high diversity
of behavioural patterns, queen conchs did not
exhibit consistent levels of activity across habitats
(Fig. 5A; W = 0.70, %%, = 13.9, p = 0.18), or across
day and night (Fig. 5B) in either seagrass (W =
0.50, x210 = 9.9, p = 0.45) or coral rubble (W = 0.52,
x?10 = 10.6, p = 0.39).
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Fig. 5. (A) Relationship between queen conch (Lobatus gi-

gas) activity in coral rubble and seagrass habitats as a % of

total time observed. (B) Relationship between queen conch

activity during the day and night in coral rubble (4) and sea-
grass (®) habitats as a % of total time observed

Activity and movement

Queen conchs moved on average 8.7 m (3.9 m h™
active) in seagrass habitat and 6.6 m (3.1 m h!
active) in coral rubble over the 24 h periods (Fig. 6).
Linear distance moved generally increased with the
amount of time queen conchs were active, and there
was a nearly significant effect of activity level on lin-
ear distance moved (LME; t=2.1, p = 0.056, df = 13),
no effect of habitat type (t=1.3, p=0.2, df = 13), but
a significant interaction between time active and
habitat type (t = 3.1, p = 0.009, df = 13), reflecting a
stronger positive relationship between time active
and linear distance moved in seagrass habitat than in
coral rubble (Fig. 6). Of the queen conchs placed in
the seagrass habitat, 4 (36 %) moved back to the coral
rubble habitat, while no individuals placed in coral
rubble moved to seagrass. After the 24 h study peri-
ods, there was a significant difference in the number
of queen conchs in each habitat type compared to the
number expected based on habitat availability (3% =
5.3, p =0.02).

DISCUSSION

Queen conchs exhibited a high diversity of activity
and movement levels among individuals, and across
habitat types and diel periods in this study. Inter-
individual variability within a population was com-
mon due to genetic, physiological, and experiential
factors; however, individual consistency along key

301
A Seagrass A
@ Coral rubble

Linear distance moved (m)

Time active (h)

Fig. 6. Cumulative time active (h) and linear distance moved
(m) by queen conch Lobatus gigas in seagrass and coral
rubble habitats
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behavioural axes (e.g. activity, boldness, aggression)
are being documented more and more often both
across time and ecological contexts (Sih et al. 2004,
Réale et al. 2007, Bell et al. 2009). Indeed, a diversity
of behavioural types has been observed not only in
vertebrates, but in a few cases also in invertebrates
(e.g. Mowles et al. 2012, Mather & Logue 2013).
Locomotory activity is an important behavioural met-
ric that is often correlated with other ecologically rel-
evant traits, including foraging, reproduction, and
predator avoidance behaviours (Sih et al. 2004,
Dingemanse & Réale 2005). In this study, we did not
find statistically significant consistency in activity
levels within individual queen conchs across habitat
types or diel periods. However, Kendall's concor-
dance values were relatively high, especially when
comparing activity levels between habitats, and a
lack of statistical significance may be a symptom of
small sample sizes.

In order to further interpret observed queen conch
behaviours, it is important to consider that they
exhibited selectivity for coral rubble habitat over sea-
grass in this study. This is not surprising given that
queen conchs were collected from coral rubble,
while initial surveys of the study site found no queen
conch in the seagrass habitat. In many areas of The
Caribbean, including The Bahamas, queen conchs
have been primarily associated with seagrass habitat
(Hesse 1979, Stoner et al. 1996, Stoner 2003); how-
ever, some studies have found selectivity for coral
rubble as well, areas which often represent impor-
tant foraging grounds (Randall 1964, Stoner & Sandt
1992). Here, queen conchs also moved greater dis-
tances when placed in seagrass than in coral rubble,
and there was a greater positive relationship be-
tween activity levels and distance moved. This would
suggest that either (1) queen conchs were moving
more linearly in seagrass, presumably in search of
more preferred coral rubble habitat, or (2) movement
was more efficient in seagrass than in coral rubble.
Coral rubble is more rugose than seagrass, but dense
seagrass would also likely pose challenges for move-
ment, so it is unclear which of the above explana-
tions, or a combination of both, accounts for this pat-
tern. Future research on the energetics of movement
through diverse habitat types could provide insight
into the space use of this species, especially in the
context of the ‘energy landscapes' framework (Wil-
son et al. 2012).

A lack of strong evidence for within-individual
consistency in this study does not preclude the exis-
tence of behavioural types in this species, especially
given the short time period of this study and the chal-

lenges posed to these animals. For example, displac-
ing queen conchs to the less preferable seagrass
habitat triggered a range of behavioural responses —
some individuals became more active, many of which
were able to return to the coral rubble (~10 m away)
within 24 h of displacement, while others responded
by becoming relatively inactive (Fig. 4). This could
reflect proactive and reactive coping styles (Koolhaas
et al. 1999). Proactive individuals tend to be bolder,
recover from stress more quickly (i.e. from handling),
and explore new environments more readily than
reactive individuals (Sih et al. 2004). Similarly, cop-
ing styles could influence the response of conch pop-
ulations to environmental changes or anthropogenic
stressors. Highly mobile individuals are more likely
to be dispersers and thus play key roles in the colo-
nization of new habitats. These individuals might
also be more resilient to environmental change, such
as habitat loss and degradation. However, prolonged
inconsistent environmental conditions might favour
more reactive individuals in the long term (Sih et al.
2004).

Understanding the potential role of behavioural
types in queen conch population dynamics and ha-
bitat use is an important avenue for future research.
For example, queen conchs form distinct foraging
aggregations that move through a diversity of sub-
strates, yet Stoner & Ray (1993) found that they
only occupy a small proportion of seemingly suit-
able habitats. Individual differences in activity
might reflect an underlying behavioural mechanism
tied to differences in spatial distributions, which
are highly dynamic in this species. More active
individuals may disperse further and exploit the
higher resource availability outside the population
core, but, in doing so, they may also experience
higher predation risk (Stoner & Ray 1993). With
tradeoffs between higher food availability and higher
predation risk at aggregation edges, behavioural
types could be tightly linked with the diversity of
the life-history characteristics observed in this spe-
cies (Appeldoorn 1988).

With increasing harvest pressure, reductions in
habitat quality and quantity, and declining popula-
tion numbers, the interest in queen conch popula-
tion, habitat, and harvest management is increasing
(Stoner 2003, Delgado et al. 2004). Here we have
demonstrated that queen conchs exhibit a diversity
of behavioural patterns, which may have important
implications for conservation efforts. For example,
Delgado et al. (2004) explored the potential for re-
locating queen conchs to more suitable habitats
when faced with habitat degradation. Behavioural
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responses could influence the success of such initia-
tives in the long term. For example, more active,
bolder individuals could respond better to these
types of displacement and might fare better when
colonizing new areas.

Queen conchs exhibited significant inter-individ-
ual variability in activity levels across habitat types
and diel periods. Further, queen conchs showed
selectivity for coral rubble habitat (from which they
were collected) during this study; relocating them to
less preferable seagrass habitat revealed a diversity
of behavioural responses which might reflect individ-
ual coping styles. This diversity may have important
implications for population dynamics and spatial
ecology, particularly in the face of increasing anthro-
pogenic and environmental stressors. Given the high
variability in behavioural patterns observed in queen
conchs in this study, future research should aim at
examining the potential of behavioural types in this
species, which may have important implications for
ecological and evolutionary processes, as well as in
situ and ex situ conservation efforts.
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