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ABSTRACT: The loggerhead turtle Caretta caretta is highly migratory and undertakes trans-
oceanic migrations. In the North Pacific, loggerhead turtles that hatch on Japanese beaches reach
the vicinity of Baja California in the eastern Pacific. As they grow, they return and recruit to the
feeding areas around Japan. By using mtDNA control-region sequences, we identified the genetic
composition of the feeding aggregation around the Sanriku coastal area (n = 107), >500 km north
of the main nesting beaches of Japan and located on the north of the Japanese mainland. Perform-
ing a mixed-stock analysis using the published data from 5 Japanese nesting rookeries (n = 279 in
total) as sources, the origin of the feeding aggregation was estimated with Bayesian statistics. The
results indicated a high contribution from the southern rookeries (mean = 82.10 %), mainly the
Yakushima rookery (mean > 51.45 %), to the Sanriku feeding aggregation, whether the number of
nests was considered as an informative prior or not. Therefore, the Sanriku coastal area is esti-
mated to be utilized by loggerhead turtles born in the southern nesting rookeries relatively far
from Sanriku. The strong connectivity between loggerheads from the Sanriku feeding aggrega-
tion and the southern Japanese rookeries suggests that loggerhead turtles in the North Pacific
generally settle in the Japanese coastal areas in the large juvenile stage, but not in the direct
vicinity of their natal sites, and some juveniles that use an oceanic feeding strategy are recruited
to the Sanriku coastal area.
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INTRODUCTION subsequent ‘lost years,” where they may circulate in

oceanic gyres and drift with the currents, but active

The highly migratory loggerhead sea turtle Caretta
caretta is a globally Endangered species (IUCN
2013), and its nesting grounds are found in temperate
and tropical regions worldwide. After hatching on
the nesting beaches, the turtles enter the ocean. Rel-
atively little is known about the location of the post-
hatchlings and small pelagic juveniles during the

*Corresponding author: nishiza@bre.soc.i.kyoto-u.ac.jp

swimming may play an important role in forming the
settlement patterns (Musick & Limpus 1997, Mans-
field & Putman 2013). Subsequent to the oceanic
stage, which may span a decade, large juveniles
enter a neritic (benthic feeding) stage, during which
they consume hard-shelled invertebrates in shallow
habitats (Bolten 2003). However, recent reports have
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indicated that oceanic habitats are also utilized by
large juveniles (McClellan & Read 2007, Mansfield et
al. 2009) or even adults (Hatase et al. 2010, Eder et al.
2012). Similar to other species of sea turtles, after
reaching sexual maturity, the adult female logger-
heads undertake seasonal breeding migrations be-
tween the feeding areas and the nesting beaches at
intervals of 1 to 6 yr (Bolten 2003, Hatase et al. 2004).

In the Pacific, nesting beaches of loggerhead tur-
tles are restricted to the western side of the ocean
basin in the Japanese Archipelago in the Northern
Hemisphere (Bowen et al. 1995, Kamezaki et al.
2003), and in eastern Australia and New Caledonia
in the Southern Hemisphere (Limpus & Limpus 2003,
Limpus 2004). Loggerhead turtles hatching on Ja-
panese beaches undertake developmental migra-
tions by using the Kuroshio Current, and some turtles
reach the vicinity of Baja California in the eastern
Pacific (Bowen et al. 1995), whereas turtles born in
eastern Australia and New Caledonia migrate to the
coasts of Chile and Peru in the southeastern Pacific
(Boyle et al. 2009). Once the loggerhead turtles near
Baja California grow to 50-75 cm in straight cara-
pace length (SCL), they return and recruit to the
feeding areas around Japan as large juveniles
(Nichols et al. 2000, Polovina et al. 2004, Ishihara
et al. 2011). When female turtles mature, they are
thought to nest in their natal regions, resulting in sig-
nificant genetic differentiation among loggerhead
sea turtles in the 5 Japanese rookeries (Hatase et al.
2002a, Watanabe et al. 2011). Rookeries in Japan and
those in the Southern Hemisphere do not share com-
mon haplotypes (Bowen et al. 1995, Hatase et al.
2002a, Boyle et al. 2009), indicating that there is little
or no gene flow between them.

Although there are several studies on the post-
nesting migration and feeding areas of female log-
gerhead turtles nesting in Japan (Kamezaki et al.
1997, Sakamoto et al. 1997, Hatase et al. 2002b,
2007), there is little knowledge about how large juve-
nile loggerhead turtles use the available feeding
areas around Japan after returning from Baja Califor-
nia and how these turtles migrate to the nesting
beaches when they mature. While sea turtles nest
only in tropical or subtropical regions, some individ-
uals may at least seasonally migrate to feeding areas
in higher latitudes (Hawkes et al. 2007, Mansfield et
al. 2009). Around the Japanese Archipelago, large
juvenile or mature loggerhead turtles (56 to 105 cm
SCL) appear in the coastal areas of Muroto (Kochi
prefecture), and Shimakatsu (Mie prefecture) (Ishi-
hara & Kamezaki 2011, Ishihara et al. 2011), located
relatively close to their main nesting beaches in

Japan (Fig. 1). On the other hand, the northern San-
riku coastal area, located more than 500 km away
from the main nesting beaches in Japan, also pro-
vides feeding areas for large juvenile loggerhead tur-
tles (Fig. 1; Narazaki et al. 2009, 2013).

When loggerhead turtles recruit to the feeding
areas at the end of their developmental migration as
large juveniles, they are hypothesized to settle in
suitable feeding areas they have encountered, possi-
bly in oceanic habitats (Hatase et al. 2010, Eder et al.
2012). On the other hand, loggerhead turtles in the
large juvenile stage are known to settle in feeding
areas in the vicinity of their natal beaches (Bowen et
al. 2004), and once sexually mature, the female
adults appear to have high site fidelity to feeding
areas (Broderick et al. 2007). The Sanriku coastal
area is one of the most productive areas because the
Kuroshio Current from the south and the Oyashio
Current from the north interact and enhance primary
production (Sugimoto & Tameishi 1992), attracting
juveniles that encounter this area to settle despite the
distance from the rookeries. Therefore, the composi-
tion and origin of the northern feeding aggregation
in the Sanriku coastal area is important for estimat-
ing how the large juvenile turtles recruit to the feed-
ing area and how these turtles migrate to the nesting
beaches when they mature.

The origins of juvenile loggerhead sea turtles have
been difficult to elucidate. However, recently, the
examination of differences in mitochondrial DNA
(mtDNA) haplotype frequency that are caused by
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Fig. 1. Caretta caretta. Geographical locations of the Sanriku
coastal area and major nesting rookeries for loggerhead
turtles in Japan (®). Shimakatsu and Muroto, where other
feeding aggregations of loggerheads are observed, are also
shown (O). Larger grey circles indicate the northern and
southern rookeries. The arrow indicates the direction of the
Kuroshio Current
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genetic isolation among nesting rookeries (e.g.
Bowen et al. 1994, Encalada et al. 1998, Hatase et al.
2002a) has afforded an opportunity to link feeding
aggregations back to their nesting region of origin
and to estimate the contribution of genetically differ-
entiated nesting rookeries to feeding aggregations
by using mixed-stock analysis (MSA; Pella & Masuda
2001, Bolker et al. 2003). The significant genetic dif-
ferentiation of loggerhead turtles in Japanese rook-
eries (Hatase et al. 2002a, Watanabe et al. 2011) pres-
ents an opportunity to link the feeding aggregation
to specific Japanese rookeries by using mtDNA hap-
lotypes and MSA.

In this study, we identified mtDNA control-region
sequences of turtles from the feeding aggregation
around the Sanriku coastal area and estimated the
contribution of each Japanese rookery to the feeding
aggregation. The specific objectives were (1) to esti-
mate whether the Sanriku coastal area is utilized by
turtles originating from rookeries near Sanriku, and
(2) to hypothesize how loggerhead turtles in the
North Pacific migrate in the large juvenile and adult-
sized stages.

MATERIALS AND METHODS
Sample collection

Samples were collected from a total of 107 logger-
head turtles (bycaught in set nets) during June to
September at the Sanriku coast in Japan (Otsuchi
Bay between Miyako and Ofunato: 38° 55" to 39°40' N,
141°40' to 142°05'E, Fig. 1). Small pieces of tissue
(ca. 5 mm in diameter) were collected while punch-
ing the flippers for tagging and were stored in 99 %
ethanol. All sampled turtles were identified by the
attached tags, avoiding the risk of pseudoreplication.
Samples were collected in 2005 (n = 1), 2006 (n = 1),
2007 (n = 9), 2008 (n = 27), 2009 (n = 43), 2010
(n = 21), and 2012 (n = 5). The SCL of the turtles
ranged from 49.5 to 88.4 cm.

DNA analysis

DNA was extracted from a small amount of tissue
and prepared for polymerase chain reaction (PCR)
analysis by using the Blood and Tissue Genomic DNA
Extraction Miniprep System (Viogene). An 817 bp
segment of the mtDNA control region was amplified
using PCR with the primers LCM15382 (5'-GCT TAA
CCC TAA AGC ATT GG-3') and H950 (5'-GTC TCG

GAT TTA GGG GTT TG-3') (Abreu-Grobois et al.
2006). Typically, 3.0 pl of template was used in a 20 pl
PCR reaction volume containing 2.0 pl of 10x PCR
buffer, 2.0 pl of deoxynucleoside triphosphates
(dNTPs) (at 2 mM), 0.8 pl of MgSOy, (at 25 mM), 1.5 pl
each of the forward and reverse primers (at 2.0 pM),
and 0.4 pl of KOD-Plus (Toyobo). PCR conditions
were as follows: 2 min at 94°C, followed by 35 cycles
of 15 s at 94°C, 30 s at 58°C, and 20 s at 68°C. Alter-
natively, 1.0 to 2.5 pl of the template was used in a
15 pl PCR reaction volume containing 1.5 pl of 10x
PCR buffer, 1.2 pl of dNTPs (at 2 mM), 0.6 pl each of
the forward and reverse primers (at 2.0 pM), 0.2 pl of
bovine serum albumin, and 0.1 pl of Ex Taq poly-
merase (Takara) under the following conditions:
3 min at 94°C, followed by 35 cycles of 94°C for 30 s,
55°C for 60 s, and 72°C for 70 s, and a final extension
at 72°C for 3 min. The amplification was verified
using electrophoresis in 1% agarose gel, and a sec-
ond round of PCR was conducted when the bands
indicated a low yield. The PCR products were puri-
fied using ExoSAP-IT (GE Healthcare Bio-Sciences
K. K.). The sequencing reactions (forward and re-
verse) were performed using the BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems).
Cycle sequencing was performed in 5 pl reaction vol-
umes with 0.5 to 2.3 pl of the PCR product (diluted up
to 1:5 depending on the results of the electrophore-
sis), 1.0 pl of 5x sequencing buffer, 1.2 pl of 2.0 pM
primer, 0.8 1l of sterilized water, and 0.5 pl of dye ter-
minator at 96°C for 1 min, followed by 30 cycles of
denaturing at 96°C for 10 s, annealing at 56°C for 5 s,
and extension at 60°C for 1 min. The products were
purified using ethanol precipitation and run through
a 3130xl sequencing analyzer (Applied Biosystems).

An 817 bp fragment was used in the analyses of the
Sanriku samples, but a shorter 350 bp fragment,
trimmed from the 817 bp fragment, was used for all
other analyses, including published data from the
nesting rookeries (Bowen et al. 1995, Hatase et al.
2002a, Watanabe et al. 2011). Sequence alignments
were performed using CLUSTALW in MEGA v5.1
(Tamura et al. 2011). An unrooted haplotype network
was created using TCS v1.21 (Clement et al. 2000),
and nucleotide diversity (n) and haplotype diversity
(h) were estimated. For examining temporal varia-
tion, differences in haplotype frequencies among the
years were examined by using the exact test (Ray-
mond & Rousset 1995) with 817 bp fragments. Since
only 1 sample was collected each year in 2005 and
2006, these years were excluded from the compar-
isons. A total of 42 and 80 of the 107 loggerhead tur-
tles were smaller than the minimum size for nesting
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loggerhead turtles in Japan reported by Kamezaki et
al. (1995) (SCL < 69.1 cm) and Hatase et al. (2002b,
2004) (SCL £ 74.0 cm), respectively. In order to assess
these reported values for the minimum size at matu-
rity during nesting, we tested differences in haplo-
type frequencies among the following 3 size classes
by using the exact test (Raymond & Rousset 1995)
with 817 bp fragments: (1) SCL <69.1 cm (defined as
‘juveniles’; n = 42), (2) 69.2 cm < SCL < 74.0 cm
(defined as 'recruits’; n = 38), and (3) 74.1 cm < SCL
(defined as ‘adults’; n = 27). For the above estimates
and tests, we used Arlequin v3.5 (Excoffier & Lischer
2010) and set 500 000 steps in the Markov chain with
a 100 000-step dememorization for exact tests. For all
tests that required estimates of sequence divergence,
we used the Tamura-Nei model of nucleotide substi-
tutions, which was designed for control region se-
quences (Tamura & Nei 1993).

Mixed-stock analysis

Bayesian computation coupled with the Markov
chain Monte Carlo (MCMC) estimation procedure
was used for estimating the relative contributions to
the Sanriku feeding aggregation of (1) each of 5
Japanese nesting rookeries reported in previous
studies (Fig. 1; Hatase et al. 2002a, Watanabe et al.
2011), and (2) 2 geographic groups of these rook-
eries, the northern rookeries, i.e. Minabe and Ka-
mouda, and the southern rookeries, i.e. Miyazaki,
Yakushima, and Fukiagehama. In this study, we used
the program BAYES (Pella & Masuda 2001) for ana-
lyzing the stock mixtures, and used the regional
grouping option implemented in BAYES for the con-
tribution to the Sanriku feeding aggregation from the
northern and southern groups, respectively. Haplo-
types not observed in the rookeries were removed
from this analysis, discarding 2 of the 107 samples.
Only Japanese nesting rookeries were used as
sources of the feeding aggregation because the con-
tribution of the rookeries of eastern Australia and
New Caledonia (Boyle et al. 2009) was extremely low
(mean < 0.8 %) when they were included as sources.
For each potentially contributing rookery, we ran the
MCMC with 5 chains, each with 50 000 iterations, of
which the first 25 000 were regarded as burn-in and
discarded. The convergence of MCMC sampling was
assessed using the Gelman-Rubin shrink factor (Gel-
man & Rubin 1992). This shrink factor provides an
indication of convergence by comparing the varia-
tion within a single chain to the total variation among
all the chains. Shrink-factor values greater than 1.2

indicate lack of convergence (Pella & Masuda 2001).
Initially, individual chains were started with 95 % of
the mixed sample contributed by each of the source
rookeries, and the rest were divided equally among
the remaining rookeries. The Dirichlet prior distribu-
tion was set in 2 ways: a noninformative prior, in
which the proportions of each rookery in the mixture
are assumed to be equal; and an informative prior, in
which the number of nests in each rookery (Watanabe
et al. 2011) is taken into consideration. To estimate
the possible factors relating to the contribution to the
feeding aggregation, we tested the correlation be-
tween the contributions estimated with the noninfor-
mative prior and (1) the number of nests in each
rookery or (2) the distance between each nesting
rookery and the Sanriku coastal area, by using R
v2.12.2 (R Development Core Team 2011).

RESULTS

We found 10 haplotypes by screening for polymor-
phisms within the 817 bp mtDNA control-region
fragment of the 107 turtles (Fig. 2, Table 1). In the
817 bp fragment, 6 polymorphic sites outside the
350 bp fragment (Bowen et al. 1995) were detected.
These polymorphic sites divided haplotypes B and C
(Bowen et al. 1995) into 5 haplotypes (CcP-2.1, CcP-
2.2, CcP-2.3, CcP-2.6, and CcP-2.7) and 2 haplotypes
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CcP-2.3

CcP-2.6 CcP-2.7

== CcP-7.1
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Fig. 2. Caretta caretta. The haplotype network for the San-

riku feeding aggregation based on an 817 bp fragment. The

diameter of each circle is proportional to the number of indi-

viduals found for each haplotype. The solid bars indicate
single nucleotide substitutions
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Table 1. Caretta caretta. Frequencies of mtDNA haplotypes (GenBank accession numbers are shown in parentheses) in the

Sanriku feeding aggregation and in the nesting grounds (Minabe, Kamouda, Miyazaki, Yakushima, Fukiagehama), Japan.

Haplotype names for Sanriku (CcP system) are based on an 817 bp fragment and those for the nesting grounds (A, B, and C)

are based on a 350 bp fragment. The haplotypes from the nesting grounds were obtained from Hatase et al. (2002a) (Minabe,

Miyazaki, Yakushima, and Fukiagehama) and Watanabe et al. (2011) (Kamouda). Nests per season are the medians of the
values from Watanabe et al. (2011) and were used as a prior for the mixed-stock analysis

Haplotype (GenBank no.) Feeding site Nesting ground
Sanriku Minabe Kamouda Miyazaki Yakushima Fukiagehama

A CcP-1.1 (AB830477) 1 0 0 0 1 0
B CcP-2.1 (AB830478) 74

CcP-2.2 (AB830479) 4

CcP-2.3 (AB830480) 8 99 19 33 77 21

CcP-2.6 (AB831106) 1

CcP-2.7 (AB831107) 1
C CcP-3.1 (AB830481) 15

CcP-32  (AB830482) 1 } 3 1 13 11 1
CcP-7.1 (AB831108) 1 0 0 0 0 0
CcP-10.1 (AB831109) 1 0 0 0 0 0
Total 107 102 20 46 89 22
Nests per season 189 18 550 1100 72

(CcP-3.1 and CcP-3.2), respectively. One haplotype,
CcP-1.1, contained the same 350 bp region as haplo-
type A (Bowen et al. 1995). We detected 2 additional
polymorphic sites in the 350 bp fragment that differ-
entiated CcP-7.1 or Cc-P10.1 from CcP-3.1. These
haplotypes were deposited in GenBank (accession
numbers: AB830477 to AB830482 and AB831106 to
AB831109).

Haplotype diversity (h) and nucleotide diversity ()
estimates for the Sanriku feeding aggregation were
h = 04992 + 0.0543 and © = 0.002992 + 0.001812.
There were no significant differences in haplotype
frequency among the years (exact test, p > 0.05 in all
comparisons) or among size classes (exact test, p >
0.05 in all comparisons). Therefore, all

though the lower limit of contribution from the non-
informative prior (which assumed the same nesting
population size) was 0.05%. In the group estimation,
the 95% CI of the contribution from the southern
rookeries to the Sanriku feeding aggregation was
more than 0.00%, and the mean values of the con-
tribution were 82.10% (95% CI = 26.57 to 99.99 %)
with the noninformative prior, and 95.69% (95%
CI = 62.82 to 100.00%) with the informative prior
(which considered the nesting population size)
(Fig. 3b). There was a significant correlation be-
tween the estimated mean contribution with the
noninformative prior and the number of nests in the
rookery (r = 0.955, p = 0.0114), but not between the

samples were pooled in the subse- 1001 5 1b
quent mixed-stock analysis. 1
Bayesian estimates of the nesting _ 80 *

colony origins of the Sanriku feeding = T
aggregation are provided in Fig.3. § g0
The Gelman-Rubin shrink factors E ¢
were 1.03 or less, indicating conver- g 40
gence among the MCMC estimates. &
This result demonstrates that the 95 % o 20 o
credible interval (CI) of the contribu- . . *
tion from the Yakushima rookery P
alone to the Sanriku feeding aggre- 0 - - - - L

. Minabe Miyazaki Fukiagehama Northern  Southern
gation was more than 0.00 %, whether Kamouda Yakushima rookeries  rookeries

the informative prior was considered
(mean = 72.93%, 95% CI = 13.43 to
99.98 %) or not (mean = 51.45%, 95%
CI = 0.05 to 98.61%) (Fig. 3a), al-

Fig. 3. Caretta caretta. Estimated contributions (%) of (a) each nesting rookery

and (b) groups of rookeries to loggerhead turtles in the Sanriku feeding area.

Results obtained using () uninformative priors and (M) informative priors are
represented. Bars indicate the 95 % credible interval



90 Endang Species Res 24: 85-93, 2014

estimated mean contribution and the geographic
distance between Sanriku and each rookery (r =
0.674, p > 0.05).

DISCUSSION

In the Atlantic, the waters of Virginia and North
Carolina in the USA are major habitats of large juve-
nile loggerhead turtles, and the juveniles seasonally
migrate between them (Mansfield et al. 2009). Some
post-nesting adults are also reported to migrate
during summer to forage at the higher latitudes in Vir-
ginia and North Carolina (Hawkes et al. 2007). The
Sanriku coastal area is located at a latitude similar to
that of the Virginia coast (Chesapeake Bay, 38°35'N)
and is considered to be utilized by large juveniles dur-
ing the summer (Narazaki 2009). In the present study,
39.3% of the turtles had an SCL shorter than 69.2 cm,
which is the minimum SCL of Japanese nesting log-
gerhead turtles reported by Kamezaki et al. (1995);
74.8 % had an SCL shorter than 74.1 cm, which is the
minimum SCL reported by Hatase et al. (2002b, 2004);
and 98.1 % had an SCL shorter than 82.1 cm, which is
the mean SCL at maturity (Ishihara & Kamezaki
2011). Although the size of sea turtles at maturity is
variable among individuals (Musick & Limpus 1997,
Bjorndal et al. 2013), the wide size range of the indi-
viduals indicates that the feeding area in Sanriku may
include both juveniles and adults.

The age of juvenile loggerhead turtles at recruit-
ment to the coastal habitats is estimated to be 6 to
12 yr (Bjorndal et al. 2000, Scott et al. 2012). In addi-
tion, because the SCLs of the individuals in this study
were longer than 49 cm, the loggerhead turtles in the
Sanriku coastal area were estimated to be older than
10 yr, based on the age estimates outlined by Zug et
al. (1995). These individuals are thought to probably
migrate to the Sanriku coastal area after the trans-
oceanic migration from Baja California. The popula-
tion genetic structure in the Japanese rookeries was
determined from the samples collected in 1994 to
1999, except those from Kamouda (Hatase et al.
2002a, Watanabe et al. 2011). Most of the samples in
the present study were collected in 2007 to 2012, 8 to
18 yr after the sampling at the rookeries. Therefore,
the data from these Japanese rookeries (Hatase et al.
2002a, Watanabe et al. 2011) provide temporally ade-
quate sources for estimating the stock composition of
the feeding aggregation, despite shared haplotypes.
The number of nests per season in Japan varies
among years (Kamezaki et al. 2003), possibly leading
to the fluctuations in the results. However, no signifi-

cant differences in haplotype frequencies were
detected among the sampling years in the rookeries
(Hatase et al. 2002a) and those in this study, support-
ing the stability of stock composition.

Most haplotypes detected in the Sanriku coastal
area were consistent with haplotypes B and C (Bowen
et al. 1995), dominant in the Japanese rookeries.
Only 1 sample contained haplotype A, which has
mainly been observed in the southwestern Pacific
(Bowen et al. 1995, Boyle et al. 2009), but has also
been detected in the Yakushima rookery (Hatase et
al. 2002a). Two haplotypes, CcP-7?.1 and CcP-10.1,
have not been detected in previous studies (Hatase et
al. 2002a, Boyle et al. 2009), indicating the existence
of undersampled or unsampled rookeries. However,
the present study estimated that there was little or no
contribution from the rookeries in the Southern
Hemisphere (data not shown), supporting the argu-
ment that all of the loggerheads inhabiting the North
Pacific are derived from Japanese rookeries (Hatase
et al. 2002a). The MSA estimated a high contribution
from the southern rookeries of Japan, mainly from
the Yakushima rookery, to the Sanriku feeding ag-
gregation, although the distance between the south-
ern Japanese rookeries and Sanriku is greater than
the distance between the northern rookeries and
Sanriku. The estimation of a high contribution from
the Yakushima rookery might have been driven by
haplotype A being detected in 1 sample from San-
riku. When haplotype A was removed from Sanriku,
the MSA assigned a higher contribution from Miya-
zaki and a lower contribution from Yakushima, but
the high contribution from the southern rookeries
was valid (data not shown). Therefore, the Sanriku
coastal area appears to be utilized by loggerhead tur-
tles born in the southern Japanese rookeries rela-
tively far from Sanriku. Both the MSAs using the
informative prior (considering the number of nests)
and the noninformative prior (assuming the same
number of nests among the rookeries) showed a high
contribution from the southern rookeries, supporting
the validity of the results.

The MSA results highlight the contribution from the
southern rookeries to Sanriku, but the contribution
from the northern rookeries is not rejected. The
higher contribution from the southern rookeries re-
flects the larger number of nests there, particularly in
Yakushima, where the largest number of loggerhead
turtles nest in Japan (Kamezaki et al. 2003, Watanabe
et al. 2011), which might mask the contribution from
the northern rookeries. In fact, the contribution from
the Yakushima rookery was high when the number of
nesting turtles was considered as a weighting factor.
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In addition, the significant correlation between the
contribution estimated with the noninformative prior
and the number of nesting females supports this idea.

From the MSA results, 2 hypotheses can be pro-
posed about the settlement and migration of large
juvenile loggerheads to Japanese coastal areas. The
first is that loggerhead turtles originating from the
southern rookeries settle widely around Japanese
coastal areas, including Sanriku, and move to the
southern feeding areas near their natal beaches as
they grow up. In the Atlantic, loggerhead turtles in
the large juvenile stage are known to settle in feed-
ing areas in the vicinity of their natal beaches, but the
contribution of the southern nesting rookeries of log-
gerheads (South Florida) to the northern feeding
aggregation (Virginia coastal area) has also been
estimated (Bowen et al. 2004). The degree of philo-
patry in loggerhead turtles may increase with age
(Bowen et al. 2005). This hypothesis is supported by
the fact that the SCL of loggerhead turtles in Sanriku
(mean + SD: 70.9 + 6.4 cm, range: 49.5 to 88.4 cm) is
smaller than that in southern Muroto (mean + SD:
75.7 + 6.7 cm, range: 56.3 to 105.0 cm; Ishihara et al.
2011).

The second hypothesis is that the utilization of the
Sanriku coastal area by individuals born in the south-
ern rookeries reflects the feeding strategies of log-
gerhead turtles. When loggerhead turtles recruit to
coastal feeding areas at the end of their developmen-
tal migration as large juveniles, they are hypothe-
sized to settle in suitable feeding areas that they have
encountered, possibly in oceanic habitats (Hatase et
al. 2010, Eder et al. 2012). Some individuals may shift
from oceanic to neritic habitats with age when they
encounter better feeding areas (Eder et al. 2012). As
there are no genetic differences between neritic for-
agers and oceanic foragers within Minabe and Yaku-
shima rookeries, the difference in feeding strategy is
assumed to indicate phenotypic plasticity (Watanabe
et al. 2011). Juveniles that use the oceanic feeding
strategy after the transoceanic migration, originating
from the southern rookeries and possibly from the
northern rookeries, are considered to migrate along
the Kuroshio Current, as do some oceanic post-
nesting adults nesting in Japan (Hatase et al. 2002b,
2007), analogous to the juveniles in the Atlantic
migrating along the Gulf Stream (Mansfield et al.
2009). When juveniles that are transported to the
north in the Kuroshio Current encounter the Sanriku
coastal area, they settle or at least opportunistically
forage in this area because of its high productivity.
The smaller size of individuals in Sanriku may indi-
cate that they have used the oceanic feeding strategy

(Hatase et al. 2002b). These 2 hypotheses are not
mutually exclusive. An analysis of the southern feed-
ing aggregations of loggerhead juveniles in Japan
(e.g. Muroto) will facilitate better understanding of
their migration and provide validation for these
hypotheses.

As there are some mature-sized loggerhead turtles
in the Sanriku coastal area, the results might provide
insight into the migration of adults. The absence of
significant differences in haplotype frequencies
among the size classes indicates that the composition
of the aggregation does not change with size. As the
females appear to have high site fidelity to feeding
areas (Broderick et al. 2007), it may indicate that
adults go back to the Sanriku coastal area after their
breeding migration. According to tag-recapture data
(Kamezaki et al. 1997), the post-nesting females that
nest in Yakushima migrate mainly to Japanese coastal
areas and the East China Sea, whereas, according to
satellite telemetry (Hatase et al. 2007), some small
adults migrate following the Kuroshio Current to the
pelagic Pacific after nesting. These adult-sized log-
gerhead turtles migrating along the Kuroshio Cur-
rent after their breeding migration may recruit to the
Sanriku coastal area.

The shared haplotypes among the Japanese rook-
eries probably result from the bottlenecks (Hatase et
al. 2002a) limiting the resolution of the MSA, espe-
cially because the 350 bp fragment data were used for
the MSA. However, by using the 817 bp fragment, ad-
ditional polymorphic sites have been detected in At-
lantic (Monzo6n-Argtello et al. 2010, Shamblin et al.
2012) and Mediterranean loggerhead turtles (Yilmaz
et al. 2011, Saied et al. 2012, Clusa et al. 2013). Al-
though the haplotypes CcP-2.1 and CcP-3.1 were ob-
served in most samples in Sanriku (69.2 and 14.0 %,
respectively), there were some variations in the tradi-
tional haplotypes B and C (e.g. CcP-2.2, CcP-2.3) that
may characterize the Japanese nesting rookeries.
Therefore, reanalysis of the population structure of
nesting rookeries in Japan using the 817 bp fragment
may enhance the resolution of the MSA.

Although the shared haplotypes limit the resolu-
tion, there was a strong contribution from the south-
ern nesting rookeries of Japan to the northern San-
riku coastal area. The strong connectivity between
loggerheads from the Sanriku feeding aggregation
and the southern Japanese rookeries suggests that
loggerhead turtles in the North Pacific generally set-
tle in the Japanese coastal areas at the large juvenile
stage, but not in the direct vicinity of their natal sites,
and some juveniles that use an oceanic feeding strat-
egy are recruited to the Sanriku coastal area.
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