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INTRODUCTION

North Atlantic right whales Eubalaena glacialis are
endangered. Despite protective measures, vessel col-
lisions with whales and entanglement in fishing gear
continue to pose significant risk to these animals

(Knowlton & Kraus 2001, Kraus et al. 2005). This high
level of threat is due, in part, to overlap of right whale
habitat with commercially important shipping and
fishing areas. Thus, there is an economic incentive
to resist measures, especially blanket restrictions,
designed to protect right whales from human en -
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ABSTRACT: Primary sources of mortality and serious injury to endangered North Atlantic right
whales Eubalaena glacialis are vessel strikes and entanglement in fishing gear. All management
plans depend on knowing when and where right whales are likely to be present. We tested the
feasibility of a system designed to predict potential right whale habitat on a weekly time scale.
The system paired right whale occurrence records with a collection of data layers including:
results from a coupled biological−physical model of Calanus finmarchicus (the primary prey of
right whales), satellite-derived sea surface temperature and chlorophyll, and bathymetry. Using
these data, we trained seasonal habitat models and projected them onto environmental data for
each 8 d period from January to June, 2002 to 2006. Two hypotheses were tested: (1) that right
whale environmental preferences change from season to season and (2) that modeled prey con-
centration is an important predictor of the distribution of right whales. To test H1, we trained,
tested, and compared models for 3 time periods: winter, spring, and winter and spring combined.
To test H2, we trained and tested models with and without C. finmarchicus. Predictions of habitat
suitability were highly dynamic within and across years. Our results support the hypothesis that
right whale environmental preferences change between winter and spring. The inclusion of mod-
eled C. finmarchicus abundance improved the accuracy of habitat suitability predictions.
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counters. There is an ongoing effort to find solutions
that will help to reduce risk to right whales without
placing undue restrictions on shipping and fishing
activities (Myers et al. 2007). Temporally and spa-
tially dynamic protective measures could ease some
of the tension between commercial and conservation
interests.

We know where to find right whales within large
spatial and temporal windows (Winn et al. 1986). Dur-
ing winter, females can be found giving birth in the
coastal waters of the southeast USA (Kraus et al.
2007). From winter to mid-spring, a portion of the
population can be found in Cape Cod Bay (Fig. 1) off
the northeast US coast (Mayo et al. 2004). Beginning
in mid-spring and extending into the summer, right
whales can be found in the Great South Channel
(CETAP 1982, Kenney & Wishner 1995). In the late
summer and fall, right whales can be found in the Bay
of Fundy and Roseway Basin (Brown et al. 2009). With
few exceptions (e.g. Kenney 2001, Patrician & Kenney
2010), these patterns are predictable on seasonal
timescales and at regional spatial scales. Protective
measures such Seasonal Area Management zones
(NOAA 2002), the mandatory ship reporting system
(Ward-Geiger et al. 2005), vessel speed restrictions
(NOAA 2008), and the boundaries of the USA (NOAA
1994) and Canadian (Brown et al. 2009) Critical Habi-
tats have been based upon these known distributional
patterns.

A leading hypothesis to explain the distribution of
right whales in the Gulf of Maine is that whales move
to areas with high concentrations of prey, relative to

nearby regions. The aggregation of right whales in
regions rich in late-stage Calanus finmarchicus
(hereafter Calanus) has been well documented
(Wish ner et al. 1988, 1995, Murison & Gaskin 1989,
Baumgartner et al. 2003a). Sighting records indicate
that individual right whales utilize both Cape Cod
Bay and the Great South Channel in the same year
(NARWC 2011a, P. Hamilton pers. comm.). Pendleton
et al. (2009) examined abundance of right whales
with respect to 2 groups of prey: (1) Calanus and (2)
Pseudocalanus spp. and Centropages typicus. The
authors found that regional-scale mean concentra-
tion of prey is a statistically significant predictor of
the relative abundance of right whales. Right whales
in Cape Cod Bay appeared to respond more strongly
to the concentration of Pseudocalanus spp. and C.
typicus than to Calanus. However, in the Great South
Channel, right whale abundance was more strongly
correlated with Calanus than with other prey taxa.
This suggests that (1) the environmental preferences
of right whales are dynamic and change on seasonal
time scales, and (2) the distribution and availability of
prey are important factors in determining the distri-
bution of right whales.

Pershing et al. (2009a) went on to build and
ground-truth a model of Calanus abundance through-
out the Gulf of Maine, and Pershing et al. (2009b)
found a statistically significant relationship between
modeled concentration of Calanus and the arrival
date of right whales in the Great South Channel re-
gion. Thus, modeled concentration of Calanus was
found to be a good predictor of right whale abun-

dance at regional spatial scales. Finer-
resolution estimates of where and
when right whales are likely to occur,
within and between years, are needed
so that government managers can
issue alerts to mariners regarding the
likelihood of right whale occurrence.

For this study, we modeled the distri-
bution of right whale habitat on small
space (1 km) and short time (weekly)
scales. Our objective was to build a
model that could identify potential
right whale habitat on a weekly time
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Fig. 1. Gulf of Maine region, with Cape Cod Bay at lower left
and Nova Scotia at upper right. Bold rectangle is the region for
which habitat suitability was  estimated. Bathymetry is depicted
by shading. From light to dark, shades represent land, 0–80,
80–200, 200–1000 and >1000 m. Gulf of Maine right whale
Critical Habitats are identified by polygons: Cape Cod Bay
(CCB), Great South Channel (GSC), Bay of Fundy (BoF), and 
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scale, and that was sensitive to intra- and interannual
variability in environmental conditions. Within that
purview, we tested 2 hypotheses: H1: that right whale
environmental preferences differ between seasons,
and H2: that prey is an important predictor of the spa-
tial and temporal distribution of right whales.

MATERIALS AND METHODS

Study region and species occurrence records

Habitat suitability was modeled in 2 important
right whale Critical Habitats: Cape Cod Bay and the
Great South Channel (Fig. 1). Right whale occur-
rence records were collected during right whale aer-
ial surveys conducted by the Provincetown Center
for Coastal Studies (Mayo et al. 2004) and the US
National Marine Fisheries Service (Cole et al. 2007),
and were obtained from the North Atlantic Right
Whale Consortium database. Our study used occur-
rence records for the years 2002 to 2006. Records
from opportunistic and directed surveys to known
aggregations of right whales were excluded from our
analysis. Only records from randomized or complete
trackline surveys were used (Brown et al. 2007, Cole
et al. 2007). All occurrence records and environmen-
tal data came from the region spanning 40.5° to
42.5° N latitude and 71.0° to 67.0° W longitude. In
response to the vertical distribution of the prey, right
whales often go on extended (8 to 10 min) feeding
dives and spend a considerable amount of time
under water (Goodyear 1996). Visual surveys only
detect whales at or near the surface; therefore, true
absence cannot be inferred from visual absence. For
this reason, right whale occurrences were treated as
a presence-only dataset.

Environmental data layers

Three dynamic predictor variables and 1 static pre-
dictor variable were used to model right whale habi-
tat suitability. Dynamic predictor variables change
every 8 d, while static variables do not change.
Dynamic predictor variables included 8 d mean sea
surface temperature (SST), chlorophyll, and modeled
Calanus abundance. The static predictor variable
was a TOPEX-derived bathymetric grid, linearly
interpolated to 1 km resolution, indicating water
depth (Smith & Sandwell 1997).

SST measurements for the years 2002 and 2003
were obtained from the Advanced Very High Resolu-

tion Radiometer and were available as Level 3 cover-
ages (4 km resolution) from the NOAA-NODC
Pathfinder V5 Project. These data were downsam-
pled to 1 km resolution to match the resolution of the
majority of our satellite data. SST measurements for
the years 2004 to 2006 came from the Moderate Res-
olution Imaging Spectrometer (MODIS) instrument
on the Aqua satellite. Chlorophyll measurements
were obtained from the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS) for the year 2002. In order to
avoid periodic gaps coverage caused by SeaWiFS
outages, chlorophyll data for 2003 to 2006 were
obtained from the MODIS instrument on the Aqua
satellite, which came online in mid-2002. SeaWiFS
and MODIS-Aqua chlorophyll data sources are com-
parable (Zhang et al. 2006). SST and chlorophyll data
from MODIS-Aqua and SeaWiFS were downloaded
as Level 2 coverages (1 km resolution) from the
Ocean Color Web (http://oceancolor.gsfc.nasa.gov).
Daily satellite imagery was processed into 8 d means
using a simple arithmetic mean, and was then inter-
polated to eliminate pixels with missing data, which
were a consequence of cloud cover. We used the
interpolation procedure described by Pershing et al.
(2009a). All chlorophyll data were log10 (x + 1) trans-
formed. Values of predictor variables at each pixel
were georeferenced, and the collection of values for
each environmental variable over the model domain
is referred to as an environmental data layer.

The modeled Calanus abundance estimates used
in our study were described in detail by Pershing et
al. (2009a). Briefly, the model couples a Calanus life-
history model to output from an ocean circulation
model. For this study, we used climatological circula-
tion fields from Naimie (1996). These fields contain
realistic seasonal changes in circulation, but do not
vary from year to year. The model was initialized
with a climatological spatial Calanus distribution
from January. The abundance of Calanus in January
was adjusted in each year using data from the Gulf of
Maine continuous plankton recorder survey (Jossi &
Goulet 1993). The dynamical evolution of the Cala -
nus abundance field was then determined by satel-
lite estimates of SST, which determines development
rate (Campbell et al. 2001), and chlorophyll, which
determines egg production (Runge & Plourde 1996,
Durbin et al. 2003). The model was run from 1 Janu-
ary through 31 May. After 1 June, many Calanus
exhibit diel vertical migration, although this is highly
variable (Durbin et al. 1995). Furthermore, many
subadults (C5s) enter a state of reduced activity
known as diapause, typically below 150 m. Both the
daily and seasonal vertical migrations make it diffi-
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cult for our model, which is forced mainly by surface
data, to reproduce the dynamics of this population
during the summer. Overall, the model does a good
job capturing the seasonal development of the
Calanus population in the Gulf of Maine and repro-
ducing the interannual variability in right whale prey
(Pershing et al. 2009a).

Although SST and chlorophyll data were used to
force the Calanus model, all 3 products were used as
predictors in our model and were treated as inde-
pendent variables for the following reasons. Due to
the long generation time of Calanus (30 to 100 d,
depending on temperature), there is a highly vari-
able and nonlinear time lag between the environ-
mental variables and the modeled Calanus distri -
bution. Temperature and chlorophyll act differently
on each life stage of Calanus. Therefore, modeled
 Cala nus abundance is not linearly related to SST or
chlo ro phyll. The relationship between SST and
chlorophyll inputs and Calanus output is further
com plicated because the Calanus life-history model
is embedded in a circulation model. Thus, the mod-
eled Calanus abundance at a particular location is a
non-linear integration of past SST and chlorophyll
conditions from a range of upstream locations.

Modeling algorithm

We used the maximum entropy method, or Maxent,
to model the relationship between right whale occur-
rence and environmental covariates. Entropy is a
measure of uniformity. The goal of the Maxent algo-
rithm, applied in the context of species distribution
modeling, is to produce an estimate of the unknown
distribution describing the relationship between the
species occurrences and a set of measured environ-
mental predictor variables (i.e. covariates). The esti-
mated distribution should maximize entropy subject
to a set of constraints representing what is known
(Phillips et al. 2006), or minimize relative entropy
(Elith et al. 2011). Here we provide a conceptual
overview of the algorithm, following Elith et al.
(2011), but refer readers to additional publications for
detailed explanations (Phillips et al. 2004, 2006,
Phillips & Dudik 2008).

The core of the Maxent algorithm is an estimate of
the ratio of the conditional density of the covariates at
the occurrence locations to the unconditional density
of covariates across the study area as measured by a
random sample of the background. Maxent chooses
the conditional density such that the distance
between it and the unconditional density is mini-

mized, subject to a set of constraints, e.g. that the
mean temperature in the conditional density be close
to the mean temperature across occurrence locations.
The resultant Maxent model has an exponential
form. Elith et al. (2011) provided a detailed yet acces-
sible description of the Maxent algorithm. We imple-
mented the algorithm using the Maximum Entropy
Species Distribution Modeling Software v3.3.1g
using default options and the logistic output. The
logistic output format provides habitat suitability val-
ues that can be interpreted as the probability of spe-
cies presence, conditioned on the environmental
variables (Phillips & Dudik 2008).

In many applications of Maxent there is 1 data
layer for each environmental variable. In such cases,
background data (Hirzel et al. 2002) consist of a ran-
dom sample of points from the study area, with asso-
ciated values of all the environmental variables. In
our study there was 1 data layer for each environ-
mental variable for each 8 d period. Therefore, back-
ground data for each model that we trained was
taken from 10 000 randomly chosen location−time
pairs (latitude, longitude, and time measured in 8 d
periods) from the model training dataset (Phillips &
Dudik 2008). The quantity 10 000 has been experi-
mentally determined to be a sufficient number of
background samples to ensure that the area under
the receiver operator characteristic (ROC) curve
(AUC; see ‘Model Evaluation’ section below) no
longer changes as the number of background sam-
ples is increased (Phillips & Dudik 2008), and it is the
default number used in Maxent software. Each back-
ground sample has the values of each environmental
variable at that location and time, as do the right
whale presence samples. Background data therefore
represent a sample of conditions across space and
time that the whales were choosing from. If no
whales were sighted during a particular 8 d period,
then environmental data from that period were
excluded from the data available to be sampled to
generate the background dataset.

Experimental design

Environmental and species occurrence data (span-
ning 1 January to 1 June for the years 2002 to 2006)
was temporally partitioned into 5 subsets to facilitate
a cross validation procedure in which 4 yr of data
were used to train a model and the fifth year (the test
year) was used to test the model. For example, the
model trained with data from the years 2003 to 2006
was projected onto environmental data from all 8 d
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periods in 2002, yielding 1 habitat suitability map for
each 8 d period in 2002. Each right whale occurrence
from 2002 was then associated with the prediction of
habitat suitability for the time (8 d period) and loca-
tion of the occurrence. Then, performance of the
model in the test year was measured (see ‘Model
Evaluation’ section below).

To address H1, that right whale habitat preferences
are dynamic, we conducted 3 experiments. In the
first experiment, we trained and tested models with
data from winter (1 January to 21 March), in the sec-
ond experiment we used data from spring (22 March
to 1 June), and in the third experiment we used data
from winter−spring (1 January to 1 June). The yearly
cross validation scheme was used for each of these
experiments, yielding 5 models (1 for each test year)
for each experiment. A difference in the relative
influence of predictors in winter versus spring exper-
iments would suggest that the habitat preference of
right whales changes on a seasonal basis.

To address H2, that prey is an important predictor
of right whale habitat preferences, we compared the
predictive accuracy of models trained with and with-
out modeled Calanus for each season outlined above.
This doubled the number of experiments (and there-
fore the number of models). A subscript C, e.g.
 winter− springC, was used to label experiments that
included the modeled Calanus predictor variable.
Statistical significance was determined by estimating
confidence intervals using the delete-d jackknife
procedure described below. Non-overlapping confi-
dence intervals indicated a statistically significant
difference.

Model evaluation

AUC is a standard performance metric for pres-
ence-only species distribution models, and for many
other classifiers (Hanley & McNeil 1982, Swets 1988,
Fawcett 2006). Although AUC is sensitive to sample
size and other aspects of model structure (Hernandez
et al. 2006, Wisz et al. 2008), it is an important metric
for measuring model performance. We calculated 1
AUC score for each seasonal model in each test year,
for a total of 30 scores. The ROC curve is a plot of the
true positive classification rate (sensitivity) versus the
false positive classification rate (1-specificity). The
total area of the plot is equal to 1. A ROC curve that
is a diagonal line from the lower left to the upper
right corner is the theoretical ROC curve for a ran-
dom model and produces an AUC = 0.5. A higher
AUC score indicates better predictive accuracy of the

model. For example, an AUC of 0.8 indicates that
there is an 80% chance that the predicted habitat
suitability for a randomly drawn species presence
will be higher than that of a randomly drawn absence
(Fawcett 2006). In a presence-only model there are
no species absences, so computing a false positive
rate is not possible. Rather than distinguish presence
from absence, we distinguished presence from ran-
dom or background data, also known as pseudo-
absence data (Ferrier et al. 2002, Phillips et al. 2006,
Phillips & Dudik 2008).

Commonly, a single model is applied to a single set
of data layers, and a single AUC score is calculated.
In our study, we applied a single seasonal model to
many sets of environmental data layers, generating
10, 9, and 19 habitat suitability maps for experiments
from the winter, spring, and winter−spring periods,
respectively. To deal with this, we concatenated
habitat suitability maps from all 8 d periods within
each experiment and test year and calculated 1 AUC
score. For example, we calculated 1 AUC score for
winter 2002. To accomplish this, all habitat suitability
maps for 8 d periods in test year 2002, during which
right whales were observed, were layered to create 1
array. Time periods with no right whale sightings
were ecluded to bring the bias of the background
data into closer agreement with the bias of the aerial
survey data (Phillips et al. 2009). From the layered
array, 10 000 coordinate locations, in dexed by i, were
chosen uniformly at random with replacement. The
value of habitat suitability, S(i) ∈ [0, 1], at each of
those locations was stored, and these S(i) were the
pseudo-absence background data. For a series of
threshold values, t ∈ [0, 1], t = 0, 0.05, 0.01, …, 1,
1-specificity was calculated as the percentage of
S(i) ≥ t. The true positive classification rate (TPR or
sensitivity) was calculated as the fraction of right
whales occurring at locations where the habitat suit-
ability value was ≥t. TPR was then plotted as a func-
tion of 1-specificity to generate the ROC curve. Intu-
itively, the quantity 1-specificity can be thought of as,
and is nearly the same as (Phillips et al. 2006), the
proportion of pixels predicted to be suitable given
the threshold value t. The area under the ROC curve
was then summed to calculate the AUC score.

We used the delete-d jackknife resampling proce-
dure (Efron & Tibshirani 1994) to generate 90% confi-
dence intervals around each AUC score. The proce-
dure was implemented in the following way: from the
total of n occurrence locations for each season / test
year combination, a subset of size n − d, where d = �n�

rounded up to the nearest integer, was drawn ran-
domly and without replacement. This procedure was
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repeated 100 times for each season and test year. One
hundred Maxent models were then fit, and 100 AUC
scores were calculated. For consistency with original
experiments, pseudo-absence background data were
sampled in the manner described above. Confidence
intervals were plotted by ranking the AUC scores and
plotting the 5th through the 95th greatest values
(Fig. 2). Confidence intervals for models fit with and
without Calanus in each test year were compared to
determine whether there was a statistically sig ni fi -
cant difference in AUC, with non-overlapping inter-
vals indicating a significant difference.

To assess the capacity of seasonal models to gener-
ate consistent predictions regardless of test year, we
calculated the variance in true positive rate (here-
after TPR variance). TPR variance is measured di -
rectly from the data in ROC plots, and it is the vari-
ance in TPR across the 5 ROC curves (1 for each year)
for each experiment. TPR variance was measured at
all threshold values, t ∈ [0, 1], t = 0, 0.05, 0.01, ..., 1,
and was plotted as a function of 1-specificity. The
advantage of calculating TPR variance versus vari-
ance in AUC scores is that TPR variance provides
information on how predictions vary as the threshold
for good habitat varies, and that information is lost
when an AUC score is calculated. If the TPR variance
for a set of models (i.e. spring) was low and the asso-
ciated AUC scores were high, it means that models
trained for that season made consistently good pre-
dictions in all years. If the TPR variance was low and
the associated AUC scores were low, it means that
the models trained for that season made consistently

poor predictions. Thus, low TPR variance among
models is associated with low interannual variability
in predictive accuracy.

RESULTS

AUC

All AUC scores (Table 1) obtained were above 0.7.
Thirty percent were between 0.7 and 0.799, 53.33%
were between 0.8 and 0.899, and 16.67% were
between 0.9 and 1.0 (Table 1). Mean AUC for the
winter period experiments was higher than for the
winter−spring period experiments, and the score for
the winter−spring period experiments was higher
than for the spring period experiments. The mean
AUC score for the winter−spring models using Ca la -
nus (winter−springC) was higher than the models
without Calanus (winter−spring). The mean AUC for
the spring models with Calanus (springC) was also
higher than the models without Calanus (spring).

In all models trained with data from the winter−
spring period, except 2006, the inclusion of Calanus
significantly improved AUC scores (Fig. 2a). Inclu-
sion of Calanus made the AUC score for the year
2006 significantly worse. There was no significant
effect of Calanus in predictions of models trained
with data from the winter period (Fig. 2b). Three out
of 5 models trained with data from the spring period
were significantly improved by the inclusion of
Calanus (Fig. 2c). As with the winter− spring period,
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Fig. 2. Confidence intervals (90%) on the area under the receiver operator characteristic (ROC) curve (AUC) scores for each
model, generated with the delete-d jackknife resampling procedure. Models are (a) winter−spring and winter−springC, (b)
winter and winterC, and (c) spring and springC. Subscript C indicates models in which Calanus was included as a predictor
variable. Years are separated by dashed lines. Dots are original model AUC scores shown in Table 1. Data on the left side of
each column (i.e. year) are for the model trained without Calanus, and data on the right side of columns show models where
Calanus was included as a predictor variable. Non-overlapping confidence intervals in each test year indicate that there was a
significant difference between models trained with versus without Calanus. Note that vertical axes show approximately half of 

the full range [0 1] for AUC
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the spring period model for test year 2006 was made
significantly worse by adding Calanus. To alleviate
concerns over the potential impact of sample size on
AUC (Hernandez et al. 2006, Wisz et al. 2008), we
performed a linear regression between AUC and the
number of occurrence records used in training or
testing of each model. No relationship was found.

One of the primary objectives of this study was to
produce a model that could make good predictions of
habitat suitability, not only within each year, but also
from year to year. We were therefore interested in
models for which AUC scores (Table 1), and shape of
ROC curves, were similar from year to year. As was
reported above, AUC scores for individual test years
were generally good. The main exceptions were the
scores for winter−springC and springC models for test
year 2006 (Table 1), which were low in comparison
with others.

Ideally, the modeled relationship between species
and environment should provide accurate results
even as environmental conditions change from year
to year. We assessed the capacity of models to pro-
vide consistent performance across test years by plot-
ting TPR variability (Fig. 3). Lower variability corre-
sponds to more consistent model performance across
test years. Variability in the winter period experi-
ments was more than 5 times higher than for the win-
ter−spring and spring period experiments. To aid
examination of the low variance results, we removed
the higher variance results (Fig. 3c,d). Removing the
results for 2006 (Fig. 3a,c) allowed for comparison of
TPR variance in winter−spring and spring period
experiments with and without Calanus. The degree
of consistency in model performance, from greatest
to least after removing the results for 2006, is win-
ter−springC, springC, winter−spring, and spring. Pre-
dictions from models trained with Calanus had
greater consistency across years than models trained
without Calanus.

Habitat suitability maps

The results presented in Figs. 2 & 3 are quantitative
summaries of 380 habitat suitability maps. We pre -
sent a small subset of these maps in Fig. 4, which
shows hindcasted habitat suitability (from the winter−
springC experiment) for all 8 d periods in 2002 during
which whales were sighted. General patterns ob -
served across all predicted habitat suitability maps
are reported below.

A visual examination of right whale habitat suit-
ability maps confirms what is reflected in the AUC
scores. Years with high AUC tend to have more
sightings in areas of high habitat suitability, and
years with relatively low AUC tend to have fewer
sightings in areas of high habitat suitability. The
transition of whales from Cape Cod Bay to the Great
South Channel, a well known phenomenon which
has been documented in several studies (CETAP
1982, Winn et al. 1986, Kenney & Wishner 1995, Ken-
ney et al. 2001), was best reflected in maps from the
winter−springC experiment. Maps from winter period
experiments clearly showed that Cape Cod Bay is an
area with high habitat suitability from 1 January to
21 March, but they did not capture the transition to
the Great South Channel due to their short time span.
Maps from the spring period experiments (22 March
to 1 June) showed the shift in highly suitable habitat
from Cape Cod Bay to the Great South Channel as
habitat suitability in Cape Cod Bay declined, but that
transition was less pronounced than that seen in
maps from the winter−spring period experiments.

Habitat preferences

We used the relative influence of predictor vari-
ables (Table 2) in each model as a proxy for habitat
preferences of right whales. Calanus was the most
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Test year         Winter−spring       Winter−springC            Winter                  WinterC                  Spring                    SpringC

2002               0.876 (133, 856)      0.900 (133, 856)     0.950 (18, 188)      0.961 (18, 188)     0.872 (115, 668)     0.867 (115, 688)
2003               0.770 (143, 846)      0.810 (143, 846)      0.771 (7, 199)        0.728 (7, 199)      0.784 (136, 647)     0.823 (136, 647)
2004               0.838 (227, 762)      0.885 (227, 762)     0.931 (120, 86)      0.924 (120, 86)     0.727 (107, 676)     0.808 (107, 676)
2005               0.821 (271, 718)      0.850 (271, 718)     0.884 (43, 163)      0.875 (43, 163)     0.823 (228, 555)     0.854 (228, 555)
2006               0.758 (215, 774)      0.711 (215, 774)     0.833 (18,188)      0.839 (18, 188)     0.740 (197, 586)     0.707 (197, 586)

Mean AUC            0.813                       0.831                     0.874                     0.865                      0.789                       0.812

Table 1. Area under the curve (AUC) scores, calculated from receiver operator characteristic (ROC) curves of habitat suitabil-
ity maps in each test year for each experiment: winter−spring and winter−springC (1 January to 1 June), winter and winterC

and (1 January to 21 March), spring and springC (22 March to 1 June). Subscript C indicates models in which Calanus was in-
cluded as a predictor variable. Numbers in parentheses are the number of right whale occurrences used in model testing and 

training, respectively
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influential predictor in the winter−springC experi-
ment followed in importance by bathymetry, chloro-
phyll, and finally SST. The ranking was the same for
the springC experiment in all years except 2004. The
influence of Calanus was greater in the springC than
in the winter−springC experiment. When Calanus
was not included as a predictor variable, in winter−
spring and spring experiments, the ranking of vari-
able importance was bathymetry as the most influen-
tial, followed by chlorophyll and SST. The winter
period experiments showed the opposite pattern:
SST was the most influential predictor, followed by
chlorophyll, bathymetry, and Calanus when it was

included as a predictor variable. The winterC 2006
model was an exception to this ranking, with ba thy -
metry (22.9%) slightly more influential than chlo -
rophyll (22.6%).

Predicted habitat suitability at whale occurrences
during winter−spring

There were clear differences in the value of envi-
ronmental variables at the time and place of right
whale occurrence. Modeled Calanus abundance
was <10 ind. m−3 at 95% of winter right whale
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Fig. 3. Eubalaena glacialis. Variance in true positive rate (TPR) of right whale classification for each experiment, as a function
of 1-specificity (pseudo-absence derived false positive rate), calculated from receiver operator characteristic (ROC) curves.
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Calanus was included as a predictor variable. Legend is the same for all subplots
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occurrences (Fig. 5a). A portion of spring right
whale occurrences were in areas of low Calanus;
however, for a large portion of occurrences (65%)
modeled Calanus was >10 ind. m−3. There was a
positive trend between predicted habitat suitability

and modeled Calanus abundance during spring.
Chlorophyll at right whale occurrences was gener-
ally higher in winter than in spring (Fig. 5b). Almost
all of the whale occurrences during winter (75%)
were associated with chlorophyll values >0.5 (log10
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Test year       Predictor variable          Winter−spring         Winter−springC       Winter          WinterC         Spring        SpringC

2002                       Calanus                            na                            35.3                     na                 10.8                na              45.1
                           Bathymetry                        42.6                           32.5                   23.2                20.7              54.3             34.3
                           Chlorophyll                        33.7                           19.6                   33.8                26.9              24.0             12.1
                                  SST                               23.7                           12.6                   43.0                41.7              21.7              8.4
2003                       Calanus                            na                            37.6                     na                 17.6                na              44.4
                           Bathymetry                        44.4                           28.5                   28.2                21.1              57.3             35.6
                           Chlorophyll                        29.0                           18.5                   30.3                26.2              21.7             11.2
                                  SST                               26.6                           15.4                   41.6                35.1              21.0              8.8
2004                       Calanus                            na                            36.9                     na                 18.7                na              35.7
                           Bathymetry                        48.4                           31.8                   26.3                22.7              56.7             38.6
                           Chlorophyll                        27.7                           18.0                   30.0                24.6              22.9             14.2
                                  SST                               23.9                           13.4                   43.7                34.0              20.4             11.4
2005                       Calanus                            na                            33.2                     na                 15.4                na              42.5
                           Bathymetry                        45.0                           31.6                   26.7                20.6              60.6             39.0
                           Chlorophyll                        35.0                           19.2                   27.9                24.3              21.4             11.4
                                  SST                               25.0                           16.0                   45.3                39.6              18.1              7.1
2006                       Calanus                            na                            40.9                     na                 16.9                na              46.3
                           Bathymetry                        47.7                           31.0                   26.5                22.9              61.4             34.9
                           Chlorophyll                        27.8                           15.8                   31.4                22.6              20.7             11.6
                                  SST                               24.4                           12.3                   42.1                37.6              17.9              7.1

Table 2. Percent variable contribution for all model test years 2002 to 2006, for all experiments: winter−spring and winter−
springC experiments (1 January to 1 June), winter and winterC and (1 January to 21 March), spring and springC (22 March to
1 June). Subscript C indicates models in which Calanus was included as a predictor variable. The greatest contribution to each 

model is shown in bold. SST: sea surface temperature, na: not applicable

Fig. 4. Eubalaena glacialis. Hindcasts of right whale habitat suitability for all 8 d periods in 2002 during which right whales
(squares) were sighted. White area at left is Cape Cod, Massachusetts. Per the color bar, black is low and white is high habitat 

suitability. All hindcasts are from the winter−springC experiment
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[x + 1]), while 74% of spring right whale occur-
rences were associated with chlorophyll <0.5. Dur-
ing winter there was a cluster of whale sightings at
SSTs less than 3°C and a steep decline thereafter
(Fig. 5c). Eighty-eight percent of winter right whale
sightings were associated with SST below 4°C.
Eighty-five percent of spring right whale sightings
were associated with SST between 4 and 12°C.
There was no discernible trend in the temperature
at whale occurrences during summer. There was a
large cluster of winter right whale occurrences at a
depth of less than 50 m. Ninety-one percent of win-
ter right whale occurrences were in water less than
63 m depth (the maximum depth of Cape Cod Bay),
and 56% of spring right whale occurrences were in
water greater than 63 m depth.

DISCUSSION

We found that weekly habitat suitability for North
Atlantic right whales, a highly migratory marine
mammal, can be hindcasted with reasonable accu-
racy using a species distribution model. In the vast
majority of applications, species distribution models
have used multi-year climatologically averaged pre-
dictor variables, such as those from the WorldClim
database (Hijmans et al. 2005), yielding estimates of
the absolute range or habitat suitability of a species.
In such predictions, year-to-year variability is aver-
aged out. While there has been some work on sea-
sonal models (Suárez-Seoane et al. 2008), we believe
our work to be the first application of a species distri-
bution model on the weekly timescale.
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H1: right whale habitat preferences are dynamic

Differences in the influence of predictor variables
on model results for winter/winterC and spring/
springC experiments (Table 2) suggest that the habi-
tat preferences of right whales are not static. Results
from models of the winter period suggest that the
winter distribution of right whales is determined pri-
marily by SST. The significance of ocean tempera-
tures to right whales is not well understood. SST has
been documented to be an important predictor of
right whale distribution in certain areas. The distri-
bution of SST at right whale occurrences in the
southeast US right whale Critical Habitat is non-
 random (Keller et al. 2006), with right whales being
found in waters cooler than 22°C (Good 2008). In the
northern habitats such as the Bay of Fundy and Rose-
way Basin, where feeding is common, the influence
of temperature on the distribution of right whales is
less clear. Woodley & Gaskin (1996) found signifi-
cantly higher surface temperatures where right
whales were present than where they were absent in
the lower Bay of Fundy. Baumgartner et al. (2003b)
found some indication that the SST gradient could
explain interannual variability in right whale occur-
rence in Roseway Basin, adjacent to the Bay of
Fundy. However, in that same area, Patrician & Ken-
ney (2010) did not find a relationship between SST
and right whale abundance. Differing spatial and
temporal scales of investigation confound compari-
son of these studies. The strong influence of temper-
ature in our winter models may be a proxy for an
environmental variable not considered in our study.
The copepods Pseudocalanus spp. are important
winter prey for right whales (Mayo et al. 2004), but
temperature has not been found to impact the abun-
dance of Pseudocalanus spp. (DeLorenzo Costa et al.
2006, Turner et al. 2011). It is also important to note
that satellite-derived SST provides the temperature
in only the first ~1 mm of the ocean, and right whales
spend a considerable amount of time at depth where
temperatures are typically different.

Models for the winter−spring and spring periods
were most heavily influenced by Calanus, with that
variable being more important in models of spring
than of the winter−spring period. An increased influ-
ence of Calanus as the year progresses agrees with
what we have observed empirically: during winter in
Cape Cod Bay, right whales feed on Pseudocalanus
spp. and possibly Centropages spp. (Mayo & Marx
1990), after which they transition to a diet of Calanus
as that prey taxon becomes more abundant (Pendle-
ton et al. 2009). Our results support the findings of

several other studies that have found or inferred
Calanus to be a major component of the right whale
diet (Murison & Gaskin 1989, Mayo & Marx 1990,
Wishner et al. 1995, Beardsley et al. 1996, Woodley &
Gaskin 1996, Baumgartner & Mate 2003).

Right whales have been found in a wide range of
depths. On the calving grounds in the southeast
USA, right whales are commonly found in water 10 to
20 m deep, which is consistent with calving activity
in that region (Garrison 2007). Our study found right
whales in water with depths of 8 to 257 m in the Gulf
of Maine. Aggregations of right whales regularly
occur over the deep basins of the lower Bay of Fundy
and Roseway Basin in waters 100 to 200 m deep. It is
likely that bathymetric features give rise to physical
and/or biological processes that are important to
right whales.

Relative to other predictor variables, chlorophyll
had a moderate influence on model results. Chloro-
phyll provides a reasonable proxy for phytoplankton
abundance, which is directly related to Calanus egg
production. The time lag between a phytoplankton
bloom and increases in Calanus abundance mean
that weekly chlorophyll data may not be a good indi-
cator of Calanus, and thus right whale distributions.
Hlista et al. (2009) found that a 2 yr lagged index of
chlorophyll concentration (measured when right
whales are expected in Cape Cod Bay, the Great
South Channel, and the Bay of Fundy feeding habi-
tats) was positively correlated with annual right
whale calving numbers. Thus, on longer time scales,
chlorophyll is an important variable to consider in
right whale habitat models. Temporally lagged or
longer-term averages of chlorophyll concentration
may have provided a stronger predictor than the
weekly averages used in our models.

We modeled the distribution of right whale habitat
based upon only 4 predictor variables. It is widely
thought that several other factors may influence right
whale distributions, including thermal fronts and the
bottom mixed layer (Baumgartner et al. 2003b),
abundance of other prey species such as Pseudo-
calanus spp. and Centropages spp. (Mayo & Marx
1990, Pendleton et al. 2009), and bottom type (Good
2008).

Our training data sets were constructed by associ-
ating each whale occurrence with average environ-
mental conditions for the 8 d period in which the
whale was observed. Right whales can travel a con-
siderable distance in 1 wk (Mate et al. 1997); there-
fore, the approximation of environmental conditions
at the time of whale occurrence probably introduced
some inaccuracy. A more precise model could be
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made by associating occurrences of non-transiting
right whales with daily values of environmental con-
ditions. Our results are based upon statistical rela-
tionships between known right whale presences and
the value of predictor variables associated with those
presence records. As with all results of correlative
studies, our results are not necessarily indicative of
physical or biological processes.

H2: prey data improve predictive accuracy

Torres et al. (2008) found that predictive accuracy
was not improved with the inclusion of prey data in a
generalized additive model of bottlenose dolphin
Tursiops truncatus habitat. In the present study, in 2
of the 3 time periods examined (winter−spring and
spring), the inclusion of modeled prey abundance
improved overall predictive accuracy (Fig. 2, Table 1),
sensitivity to interannual environmental variability
(Fig. 3), and the ability to discriminate good from bad
habitat (i.e. greater range in habitat suitability values
makes it easier to delineate differences). Because we
are modeling right whale habitat suitability in areas
where whales are known to feed much of the time
(Mayo & Marx 1990, Wishner et al. 1995), it makes
sense that the availability of prey would be an impor-
tant predictor of the distribution of whales.

Right whales feed on ultra-dense patches of cope-
pods (Watkins & Schevill 1976, Wishner et al. 1988,
Mayo & Marx 1990, Beardsley et al. 1996, Baum -
gartner et al. 2003a), often occurring at the scale of 1
to 10s of meters. It is therefore interesting that our
estimates of copepod abundance at 1 km resolution
served as an important predictor of the distribution of
potential right whale habitat, given that the modeled
copepod fields do not contain patches. This, along
with the studies of Pendleton et al. (2009) and Persh-
ing et al. (2009b), reinforce the view that high
regional-scale mean abundance of copepods in -
creases the likelihood of formation of ultra-dense
patches of copepods. Under this view, adding SST,
chlorophyll, and bathymetry to the habitat model
may indicate the physical conditions that encourage
patch formation.

Interannual variability

Interannual variability was well captured in results
from the winter−springC experiment (Fig. 3). At the
other end of the spectrum were the models of the win-
ter period, which performed well in some years and

poorly in other years. The high variability in winter
models (Fig. 3a,b) may be an indication that we are
missing an important environmental variable, such as
Pseudocalanus spp., a winter taxon which is thought
to be an important resource for right whales during
winter (Mayo & Marx 1990, Pendleton et al. 2009).

Another important consideration is the influence of
sample size on AUC. Hernandez et al. (2006) and
Wisz et al. (2008) found that models trained with
fewer presences have a lower AUC. Our models of
the winter season were trained on considerably
fewer presence locations than models for winter−
spring or spring periods. However, the lowest num-
ber of presences used in any of our models (N = 86 in
winter 2004 and winterC 2004) was well above the
number of presence locations that produced artifi-
cially low AUC values in Hernandez et al. (2006) and
Wisz et al. (2008). There were relatively few pres-
ence locations available for testing winter 2002 (N =
18) and winter 2004 (N = 7) (Table 1). Using a small
number of test points to construct a ROC curve will
result in a curve with fewer nodes or points to con-
nect. This could result in an over- or underestimate of
the AUC that would have been calculated with a
large number of test points.

Models fit with Calanus from the winter−spring
and spring periods for 2006 did not perform well
(Table 1). This, along with the fact that models fit
with data from winter and tested in 2006 (with and
without Calanus) were not far from average leads us
to believe that the modeled distribution of Calanus in
the spring was responsible for the poor predictions.
Alternatively, right whales may have had a strong
response to an environmental covariate that we did
not model, such as Pseudocalanus spp., or right
whales may have been drawn to a more suitable
habitat outside of our model domain (and outside of
the typical range of right whales in winter and
spring). We analyzed the spatial and temporal pat-
terns of sighting data in 2006 versus 2002 to 2005 and
found that the distribution of whales in 2006 was not
unusual in comparison to 2002 to 2005. An examina-
tion of environmental variables revealed that mod-
eled Calanus abundances were anomalously high
between late March and late May of 2006. This
means that the models trained with data from 2002 to
2005 were informed by relatively low springtime
abundances of modeled Calanus and were tested in a
year with relatively high springtime abundances of
modeled Calanus. This difference in training and
testing levels of Calanus probably contributed to
below average performance of winter−springC and
springC models for 2006.
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CONCLUSIONS

We have found that right whale habitat suitability
can be estimated on a weekly timescale with only 4
predictor variables. Models that incorporated data
from both winter and spring seasons were more
accurate and provided more consistent performance
than winter-only or spring-only models. Our results
confirmed empirical observations that right whale
habitat preferences change on a seasonal timescale.
The inclusion of prey as a predictor variable im -
proved predictive accuracy of models. The frame-
work presented here is an important step toward the
goal of having a near real-time habitat modeling sys-
tem that could be used to answer ecological ques-
tions and assess risk to endangered species by pro-
posed management actions. Our approach could also
be extended to other populations of highly mobile
animals, both on land and in the ocean.
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