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INTRODUCTION

Accurate data on population changes and stability
are vital to conservation management of threatened
species (Nichols & Williams 2006). The need for identi-
fying individual animals is essential for the under-
standing of population dynamics (see McMahon et al.
2007). Traditionally approaches have relied on the use
of synthetic marking devices such as tarsus bands or

passive integrated transponders (PIT) but gathering
long-term data sets using these techniques is labour
intensive and time consuming. As a result, good demo-
graphic data are scarce (Heppell et al. 2000).

A growing number of authors and organisations
recognise that the methods involved in animal
research and wildlife management may not be wholly
benign for the individuals or populations concerned
(e.g. Cuthill 1991, Wilson & McMahon 2006).
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ABSTRACT: Placing external monitoring devices onto seabirds can have deleterious effects on wel-
fare and performance, and even the most benign marking and identification methods return sparse
population data at a huge time and effort cost. Consequently, there is growing interest in methods
that minimise disturbance but still allow robust population monitoring. We have developed a com-
puter vision system that automatically creates a unique biometric identifier for individual adult
African penguins Spheniscus demersus using natural markings in the chest plumage and matches
this against a population database. We tested this non-invasive system in the field at Robben Island,
South Africa. False individual identifications of detected penguins occurred in less than 1 in 10 000
comparisons (n = 73 600, genuine acceptance rate = 96.7%) to known individuals. The monitoring
capacity in the field was estimated to be above 13% of the birds that passed a camera (n = 1453). A
significant increase in this lower bound was recorded under favourable conditions. We conclude that
the system is suitable for population monitoring of this species: the demonstrated sensitivity is com-
parable to computer-aided animal biometric monitoring systems in the literature. A full deployment
of the system would identify more penguins than is possible with a complete exploitation of the cur-
rent levels of flipper banding at Robben Island. Our study illustrates the potential of fully-automated,
non-invasive, complete population monitoring of wild animals.
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Evidence has emerged to suggest that placing exter-
nal devices on animals may influence their behaviour
and fitness in natural situations (e.g. Wilson et al. 1986,
Ropert-Coudert et al. 2007, Sherrill-Mix & James 2008).
This may in turn influence the validity of findings from
such studies; although many excellent population
models exist to deal with incomplete or inadequate
data sets (e.g. Hemerik & Klok 2006), the errors intro-
duced by sampling can confound analysis (see Yoccoz
et al. 2001).

The debate around the costs versus benefits of mark-
ing has been particularly vigorous when addressing
the use of metal flipper bands in penguins (see
Petersen et al. 2005 for review). Flipper banding has
made a significant contribution to our understanding of
penguin biology and has aided management since the
1950s (e.g. Sladen et al. 1968, Sidhu et al. 2007, Wol-
faardt et al. 2008). However, despite advances in band-
ing technology (Stonehouse 1999), flipper bands have
been implicated in causing higher costs of swimming
(Culik & Wilson 1991, Culik et al. 1993), increased for-
aging-trip duration (Dugger et al. 2006), lower annual
return rates to breeding colonies (e.g. Clarke & Kerry
1998), substantially lower survival in the first year after
banding (e.g. Froget et al. 1998) and severe flipper
damage from partially opened bands (e.g. Clarke &
Kerry 1998). Impacts on reproductive and fledgling
success have also been shown in some species (e.g.
Gauthier-Clerc et al. 2004), but not in others (e.g. Hin-
dell et al. 1996, Barham et al. 2008), suggesting that the
impact of flipper banding may vary with local environ-
mental conditions, band design and even between
species. Although the problem is complex, the balance
of evidence indicates that flipper bands may not be
appropriate in all circumstances and today caution is
generally employed in their use (Petersen et al. 2005).

As a result, backing for the use of non-invasive
methods is gaining momentum. One interesting ap-
proach is to utilise unique pattern configurations
within visual markings for ‘fingerprinting’ individuals.
Many species develop lifelong stable camouflage pat-
terns which, in a number of cases, are believed to orig-
inate from Reaction-Diffusion systems (Turing 1952,
Murray 1988). Since the formation of such systems is
quasi-chaotic in nature, the resulting markings often
differ widely between individuals but fit into a general
theme for the species e.g. zebra stripes or cheetah
spots (Murray 1988).

Traditional visual identification methods usually
involve the creation of a catalogue of sketches or pho-
tographs taken by a hand-held camera (e.g. Scott
1978). The catalogue is then searched for a match by
eye each time a new sighting is made (e.g. Castro &
Rosa 2005). The effort for identifying large numbers of
animals by these means is enormous and can take

months or years of work. Automating this process can
provide a great benefit in terms of saved time and
effort (Kelly 2001). 

To date, only a few systems exist to aid the visual fin-
gerprinting of animals in a wild population (e.g. Arzou-
manian et al. 2005, Speed et al. 2007, Van Tienhoven
et al. 2007, Gamble et al. 2008). These computer-aided
approaches rely on a database of still images that must
be collected manually. In instances where the species
under study occurs in low abundance or is only sighted
infrequently (e.g. Arzoumanian et al. 2005) attaining
suitable images will generally limit the capacity of the
identification system. In contrast, for colonial breeders
like penguins, a fully-automated identification system
could potentially populate a database of known indi-
viduals quickly and effectively. This could ultimately
obviate the need for synthetic markers altogether, i.e.
provide a means for autonomous, non-intrusive popu-
lation monitoring.

The African penguin Spheniscus demersus is an
ideal candidate for the application of non-invasive
monitoring to the benefit of conservation. It is endemic
to southern Africa, where breeding occurs between
Hollamsbird Island (24° 38’ S, 14° 32’ E), off central
Namibia, and Bird Island in Nelson Mandela Bay
(33° 51’ S, 26° 17’ E), South Africa (Crawford & Whit-
tington 2005). The population has decreased by at least
90% since the turn of the 20th Century (Crawford et al.
2001) to perhaps as few as 27 000 breeding pairs today
(R. J. M. Crawford unpubl. data). Good empirical data
on the contemporary and on-going population fluc-
tuations will be vital to the continued conservation of
the species, particularly in light of the system wide
changes currently occurring in the Benguela eco-
system (e.g. Crawford et al. 2007, 2008).

African penguins are also highly suitable for
visual-identification techniques. They have high con-
trast plumage patterns with each individual develop-
ing unique features that remain stable for life (Reilly
1994, P. J. Barham pers. obs.). In addition, penguins
move slowly and often use a limited number of pre-
dictable routes between the breeding colony and
the sea, making the positioning of camera systems
straightforward and giving the potential to monitor
significant quantities of individuals with relatively
few systems.

Burghardt and colleagues (Burghardt & Campbell
2007, Burghardt 2008) have developed and tested a
prototype system capable of detecting, tracking and
identifying individual African penguins based on the
pattern of black spots that develops on the chest
plumage. The system uses real-time video captured by
a remote Ethernet camera and fed to a computer for
fully-automated visual processing. Here, we provide a
preliminary assessment of the efficacy of the system on
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a subset of the visual data collected to date and evalu-
ate the viability of the method as a population monitor-
ing tool to replace more traditional approaches.

MATERIALS AND METHODS

Study site. This work was carried out at the African
penguin colony on Robben Island (33° 48’ S, 18° 22’ E),
Western Cape Province, South Africa (Fig. 1A) from April
to May 2005 and April to August 2007. Robben Island was
the second largest colony of African penguins in both
study years, with approximately 7000 breeding pairs (Un-
derhill et al. 2006, R. J. M. Crawford  unpubl. data). 

African penguins at Robben Island move to and from
the sea along pathways, termed ‘penguin highways’.
Six major paths have been identified (T. R. Shaw
unpubl. data), which correspond to 6 main landing
beaches on the east coast of the island (Fig. 1B). These
6 pathway catchments serve the majority of the colony.
Two of the busiest highways, termed the N1 and N2
(Fig. 1B), were selected for image acquisition. The
birds at Robben Island display neophobia if novel
objects are placed on their highways (R. B. Sherley
pers. obs.). To reduce the influence of this behaviour,
the recognition system was positioned on the highway
for a number of sessions prior to the commencement of
data collection until the behaviour of the penguins
resembled that seen in the absence of the system.

Image acquisition. The African Penguin Recognition
System (APRS) used for image capture comprises a sta-
tic Ethernet camera, a Fast Ethernet infrastructure and
a contemporary consumer laptop running AnimalID —
a prototype, custom designed, animal recognition and
identification software package (see Burghardt 2008
for technical details). The system was housed in a
water- and dust-proof casing at all times whilst in
the colony. The camera produces an MJPEG image
stream at 6 to 8 frames per second and passes each
frame (1280 × 856 pixels resolution; Fig. 2a) to the
lap-top for processing.

Image acquisition took place on the N2 during 2005
and 2007 and on the N1 during 2007 only. The system
was placed at a predetermined location on the selected
highway just prior to the start of each session and the
camera was aligned by hand to face the appropriate
direction. Images were captured both in the mornings,
as the birds travelled from the colony to the sea to for-
age, and in the afternoon, as the birds returned to their
nest sites. At the end of each session, the system was
recovered or repositioned as appropriate.

Image acquisition was restricted by penguin behav-
iour and availability of daylight (night-vision cameras
were not used), thus the timings of sessions varied
throughout the austral winter. Where possible, morn-
ing sessions were between 07:00 and 11:00 h from
April to May and from 08:00 to 11:00 h from June to
August. Afternoon sessions were from 15:30 to 19:00 h
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Fig. 1. (A) The location of Robben Island, within South Africa, the Western Cape Province and Table Bay. (B) The 6 main penguin
highway systems of Robben Island, South Africa. The 2 penguin highways used for image acquisition, the N1 and the N2, 

are indicated
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during April and May and from 15:30 to 18:00 h during
the rest of the year. 

As each image was acquired, artificial intelligence
algorithms within AnimalID would attempt to detect
individual penguins in near frontal poses (where pen-
guins align themselves so that their chests are approx-
imately — within 20° to 30° — orthogonal to the camera
axis). Sets of such frontal detections of penguins were
stored together with the original image stream for sub-
sequent further analysis (e.g. ground truthing, individ-
ual identification). The time, date, location (highway)
and direction of travel was also saved for each detec-
tion stored by AnimalID.

Analysis of individual authentication and identifica-
tion capacity. To estimate how reliable the software
was at differentiating between individuals within a set
of images, a subset of (n = 1000) detections of 114 birds
was used to build a ground-truth data set. Each pen-
guin detection in the subset was manually assigned to
the correct individual as represented by a unique sys-
tem identity. The detections used were selected at ran-
dom from images acquired under favourable weather
and lighting conditions (e.g. not during rain, not at
dawn or dusk) during 2005.

To generate a basic benchmark, the cross-over
‘authentication performance’ was tested, i.e. the sys-
tem’s capacity to match the same individual in differ-
ent images. Based on the analysis of chest patterns
in AnimalID, each detection was authenticated
against all other detections. The system automatically
assigned either the label ‘authentic’ or ‘different’ to
each of the n(n-1)/2 = 499,500 pairs of penguin detec-
tions in the test set. 

Comparing the output of this process to the known
ground truth gives the receiver operating characteristic
(ROC). A key tool in pattern detection theory, a ROC
comprehensively quantifies the capability of a system to
perform a binary classification task: in this instance to as-
sign the labels ‘authentic’ or ‘different’ to pairs of penguin
detections. A ROC can be understood as a plot of the pro-
portion of pairs correctly determined to be ‘authentic’ (the
true positive or genuine acceptance rate) against the pro-
portion of detection pairs incorrectly labelled as ‘authen-
tic’ (the false positive or false acceptance rate) over the
whole spectrum of possible authentication thresholds.
Note that a lowered authentication threshold reduces one
type of errorpairs incorrectly assigned as ‘different’ (false
negatives) — at the expense of another — pairs incor-
rectly labelled as ‘authentic’ (false positives). The optimal
threshold in any one situation depends on the desired rel-
ative costs of the two sorts of error. 

Based on the extraction of spot locations (see
Burghardt 2008), three techniques were tested and
compared for chest pattern matching. (1) Rigid align-
ment via Procrustes analysis (Kendall 1984) was per-
formed to normalise globally for pattern shift, scale
and rotation before calculating the mean square error
(MSE) between all closest landmarks. (2) The tech-
nique of shape contexts (Belongie et al. 2000) was used
to create polar histograms of spot neighbourhoods
before matching the histogram sets between individu-
als using the Hungarian method (Kuhn 1955). (3)
Finally, distortion-specific distribution contexts (Burg-
hardt 2008) were applied in order to extend Shape
Contexts by explicitly modelling the uncertainty of
landmark locations governed by skin distortions.
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Fig. 2. (A) Representative frames of passing African penguins as captured by the field camera system; (B) sample identifications
of chest patterns in the population database
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In addition, the system’s ‘identification capacity’ was
estimated by quantifying the APRS’s ability to match
individuals correctly against a small sample population
database. M = 80 of the 114 test individuals were rep-
resented as database entries (Fig. 2b), by specifying
one detection of each individual as a master profile
(M). The remaining 34 ind. acted as distractors (very
similar non-target objects; Duncan & Humphreys 1989).
The remaining 920 detections not used as master pro-
files were then authenticated by the system against all
entries in the database, yielding either an identity via a
‘match’ or a ‘failure to match’. Overall M(n-M) = 73 600
test comparisons were performed. A comparison of the
validity of the output to the ground truth provided a
ROC curve for each of the three matching techniques
tested. These curves describe the detailed matching
capacity of the APRS for identifying individuals.

It should be noted that all the above considerations
apply to the matching of patterns and not to the enrol-
ment of new penguins.  Enrolment of new birds is a
separate process — it is not simply a matter of assum-
ing that any unmatched pattern is that of a bird not
already in the database.  

Analysis of field monitoring capacity. To comple-
ment the data on identification performance, sample
footage from the 2007 field season was analysed to
determine the success and failure rates of detection.
That is, whether or not an individual was detected as a
species member in the first place while passing
through the field of view and moving in the direction of
the camera: termed making a ‘camera pass’. Data from
14 sessions were selected at random, totalling ~400 000
raw images. Sessions were categorised by direction of
travel (‘to sea’ or ‘to colony’), location (‘Highway N2’ or
‘Highway N1’) and weather conditions (‘sunny’ or
‘cloudy’). For each session the number of individual
penguins that passed the camera was counted. In addi-

tion, the 6917 detections captured by the APRS during
the sessions were examined to determine the percent-
age of individuals that were detected amongst all cam-
era passes. The results were summed over all sessions
to yield an average likelihood that any given camera
pass would result in at least one detection of the pass-
ing bird.

Finally, detections were assigned to individuals to
ascertain what proportion of the individual birds
passing had produced at least one detection suitable
for individual recognition processing. To ensure the
correct assignment of identity to all passing birds
(establish ground-truth individuality), the detections
were assessed by eye. A detection was deemed
acceptable if both sides of the chest band were
clearly visible and all spots in the pattern were visi-
ble, i.e. the bird’s chest was within ~20° to 30° of lay-
ing orthogonally to the sensor and was not occluded.
Consideration was also given to the lighting condi-
tions in the detection, particularly to areas of high
dynamic range. It is possible that the method pro-
duced an underestimate of the number of detections
that would result in individual identification data as
the AnimalID software is able to correct for some
lighting variance (Fig. 3) and therefore may have pro-
cessed some of the detections that were deemed
unsuitable by eye. Again, the results were summed
over all detections to yield an average likelihood that
any given camera pass would result in at least one
detection suitable for individual recognition.

To determine whether the APRS performed differ-
ently in various situations, with the aim of guiding
improvements in the monitoring capacity, a binary
logistic regression was used to compare the proportion
of acceptable detections produced in the three differ-
ent categories: direction of travel, location and weather
conditions.
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Fig. 3. Top: original penguin detection images stored by the African Penguin Recognition System (APRS); bottom: z-score lighting
corrected images. Corrections can normalise for some lighting changes and should improve the ability to capture images in

a field scenario
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RESULTS

Authentication capacity

Fig. 4A visualises the authentication performance
results in the form of a ROC curve. It can be seen that
a genuine acceptance rate (GAR) above 90% can be
traded for a false acceptance rate (FAR) of about 3
in 10 000 (0.03%) when distribution contexts are em-
ployed. Pinpointing a practically acceptable trade-off
between sensitivity and incorrect authentication, a
working area on the ROC curve was stipulated at a
false accept rate of 0.1%. At this point the matching
software can autonomously perform at about 92%
sensitivity, i.e. in 8 % of all cases authentication was
falsely denied.

Identification capacity

Fig. 4B shows the ROC curve for
identification against a sample data-
base containing master profiles. It
clearly illustrates that a controlled
master database increases accuracy
and that the resulting identification
system proved more robust. At an
operating sensitivity of 96.7%, less
than 1 in 10 000 authentications to
master profiles were flawed after test-
ing the validity of all MP + MN = M
(n–M) = 73 600 authentication opera-

tions. At this rate of 0.01% false acceptance, which was
chosen for operation in the field, the system labelled
only 7 of 72 803 negative comparisons (MN) as positives
(wrongly authenticated) whilst 26 of 797 true positives
(MP) were incorrectly rejected as matches.

Field monitoring capacity

Screening demonstrated that each time an individ-
ual penguin passed the sensor, the probability of a cor-
responding species detection was 0.44 with some vari-
ation seen depending on the location (Table 1). Of the
1453 birds that passed the camera during the selected
sessions, 193 ind. produced detections deemed accept-
able for further processing (individual identification).
This represents an average probability of 0.13 for
enrolling (extracting a spot pattern for matching) an
individual into a population database on any given
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Location of sensor No. penguins No. individuals Proportion detected
(penguin highway) passing sensor detected as species member

N1 482 232 0.48
N2 971 409 0.42

Total 1453 641 0.44

Table 1. Results of manual screening to ascertain the likelihood that any given
penguin would be recognised as a species member on any given enrolment
attempt (movement past the camera). Images from 2 different locations
were analysed separately; counts were then combined to produce the total 

estimated proportion

Fig. 4. African Penguin Recognition System (APRS) benchmarks for individual authentication by chest pattern. (A) Receiver oper-
ating characteristic (ROC) curves for cross-over authentication — APRS performance benchmark for matching pairs of chest
image detections; (B) ROC curves for authentication against master profile — APRS performance benchmark for matching chest

images against a sample population database. MSE: mean square error
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camera pass, assuming that all individuals are approx-
imately similar in their behaviour when passing the
camera. To ascertain whether there were any differ-
ences that would allow for simple improvements to the
system, the proportion of acceptable detections pro-
duced in the three different categories (direction of
travel, location and weather conditions) were com-
pared.

Enrolment proportion (binary logistic regression,
minimally adequate model) was significantly greater
on days when the weather was cloudy than on days
when the weather was categorised as sunny or vari-
able (coefficient estimate = –0.40, z = –2.17, p = 0.030).
For example, the modelled enrolment probability for
birds travelling towards sea on the N2 in sunny
weather (0.086) was 69.4% of the corresponding prob-
ability when conditions were cloudy (0.124). Differ-
ences were similar for the other levels of the explana-
tory variable (Fig. 5). Direction of travel also had a
significant influence on enrolment (coefficient esti-
mate = 1.77, z = 6.46, p < 0.001) with higher modelled
probabilities when birds were travelling to sea as
opposed to when they were travelling towards the
colony (Fig. 5). The interaction between highway and
direction of travel was also highly significant (coeffi-
cient estimate = –1.63, z = –4.53, p < 0.001; Fig. 5) prob-
ably as a result of greatly increased enrolment on the
N1 when the birds were travelling to sea in both sunny
and cloudy weather (Fig. 5). All other interactions and
main effects failed to reach significance.

With the average likelihood of being enrolled on any
given approach to the camera known, it is possible to
predict the population coverage that the APRS should
be able to achieve. Any individual’s probability of oc-
curring in the database can be considered as a factor of

the average failure to enrol on any occasion (1 – the av-
erage enrolment rate) and the number of times the bird
passes the camera. Therefore the probability (P) of at
least 1 enrolment (or resighting if the individual can be
matched in the database) over any number of passes is 

Pn[enrolment] = 1 – (P[not enrolled per pass]n)

where n is the number of camera passes (Table 2).

DISCUSSION

The presented data provide a set of parameters that
quantify the probability and reliability of automatic
individual identifications produced by the APRS.
Although the sensitivity score for the authentication
sits well above the benchmarks for human voice
and facial identification systems (see Ruggles 2002,
Biometric Technical Assessment. www.bio-tech-inc.
com/Bio_Tech_Assessment.html), penguin chest pat-
terns lack the richness in unique information seen in
some of the strongest entities exploited by human bio-
metrics. The human iris and retina, for instance, con-
tain thousands of features and can be used to confi-
dently authenticate millions of individuals (Jain 2005).
This level of performance will remain beyond the
reaches of the APRS.

The performance outlined here represents a coarse
approximation with respect to all possible application
scenarios. The presented benchmarks depend on the
creation of master profiles and will degenerate to some
degree if the central database of individuals grows by
several orders of magnitude (Jain 2005). To produce a
robust performance projection for truly large-scale
populations, a manual annotation of millions of sam-
ples is required.

Despite these caveats, the results from the controlled
test sets provide clear evidence for the suitability of
the implemented algorithms to produce an individual
‘fingerprinting’ of African penguins using computer-
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No. of passes Coverage if FTE Coverage if FTE
rate = 0.87 rate = 0.75

5 0.5 0.76
10 0.75 0.94
20 0.94 0.997
40 0.996 0.9999

Table 2. Predicted population coverage of the African Pen-
guin Recognition System at the measured failure to enrol
(FTE) rate of 0.87 and a theoretical FTE rate of 0.75. The
coverage is dependent on the number of passes an individual
makes and the FTE rate at each presentation to the camera.
The coverage is shown as a proportion of birds using one

highway

Fig. 5. Modelled probability (derived from a binary logistic re-
gression) that a camera pass by an African penguin would re-
sult in an individual enrolment in the African Penguin Recog-
nition System (APRS) during acquisition on the N1 highway,
under two different weather conditions and both while birds 

walked towards the sea and towards the colony
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vision techniques. The recorded matching sensitivity
of 92 to 96.7% compares well with computer-aided
animal biometric recognition systems currently in the
literature. Such systems usually require some level of
user control, either at the input level (the user must
label the features to be matched by hand) or at the out-
put level (the user is asked to select the correct match
from a ranked list of images suggested by the algo-
rithm). Where a manual choice must be made from a
ranked list of between 3 and 10 potential matches, the
correct individual is contained within the image sub-
set in 84% (Ranguelova et al. 2004) to 100% of cases
(e.g. Kelly 2001). However, when such systems are
asked to find the 1 correct match (with no user choice),
as AnimalID is asked to do, the matching accuracy
drops to a low of 60.8% (Ranguelova et al. 2004) and a
high of 92 to 93% (Arzoumanian et al. 2005, Van Tien-
hoven et al. 2007).

Obtaining high quality images that are of constant
lighting and free of artefacts or shadows is, by defini-
tion, difficult in the field. Consequently, image quality
is likely to be a major constraint for all visual biometric
systems. For example, the inclusion of poor quality
images increased false-negative matches from 6.5 to
33% in work to identify cheetahs Acinonyx jubatus
(Kelly 2001), while Whitehead (1990) found that the
probability of correctly matching two images of sperm
whale Physeter macrocephalus flukes increased from
59 to 80% when low quality images were excluded. 

The problem is made all the more acute when using
automated image capture. The APRS is greatly influ-
enced by heterogeneity in light intensity over short
periods of time and at present artificial intelligence
algorithms cannot respond to environmental changes
as quickly or appropriately as a human photographer.
During cloudy conditions the lighting was even, of low
intensity and far less variable over short time spans.
Shadows were also much less prominent on the birds
and, consequently, probability of enrolment was much
higher. 

While some post hoc corrections can be performed
on an image to normalise the effects of high dynamic
range in lighting (Fig. 3), dirt patches and strong shad-
ows will still cause the penguin detection algorithm
within AnimalID to fail or will obscure spots, leading to
a failure to match (Burghardt 2008). The detailed
experimentation needed to physically model the spe-
cific causes of matching failure and to develop the tools
needed to overcome them is outside the scope of this
paper. However, this research constitutes one focal
area of our current and future work. Note that
advancements in camera technology may also reduce
the issue of shadow-caused pattern corruption, espe-
cially with the development of high-dynamic-range
cameras for the field and object-sensitive aperture

control systems. Despite these efforts, we predict that
coping with the high image variability seen during
environmental acquisition will remain one of the
biggest challenges for automatic animal identification
to overcome in the short term.

The behaviour of the animals being observed can
also constrain the capacity of a monitoring system. If
animals are cryptic, difficult to observe or infrequently
encountered, then visual monitoring and automated
image capture may be inappropriate. With the current
incarnation of the APRS, individuals must appear in
front of a camera, in near frontal pose and under
appropriate lighting conditions. This immediately
limits the population coverage to individuals using the
2 monitored highways and to those moving during
daylight. 

Observations in the field show that only about 40%
of the birds that pass along a highway during a 24 h
period do so during daylight (J. G. Underhill unpubl.
data). It is not currently known whether specific indi-
viduals always restrict their movements through the
colony to daylight hours or whether individuals may
alter their time of arrival and departure. Whatever the
case, 24 h monitoring would improve the system, either
allowing for the inclusion of additional individuals in
the database, or by reducing the timeframe within
which individuals are resighted. Developments to
modify the APRS to use infrared illumination during
darkness are currently underway. This could simulta-
neously increase the number of birds that can be
enrolled and reduce some of the problems associated
with lighting, through the introduction of a control-
lable illumination source.

One way in which behaviour can affect the APRS
was shown in the high level of potential recognition in
the ‘N1–towards sea’ category. This seems to result
from the penguins being forced to pass through a small
PIT gateway just before they reached the camera. This
gateway is designed to channel the birds so that they
pass close to a transponder reader and it seems to have
the benefit of making the birds approach the camera
more directly, resulting in an increased likelihood of
detection and enrolment. Without the influence of the
PIT gateway, the probability of enrolment (or resight-
ing) falls to about 0.10 on each camera pass for the
other highway-direction scenarios. This suggests that
it is worth considering, even where efforts are being
made to monitor in a non-invasive manner, that small
or benign modifications of natural behaviour may yield
great benefits in terms of increased capacity when
visual monitoring is employed.

Overall, the assessment of the capacity of our system
in the field suggests that, even at an early stage of
development, the APRS is capable of functioning as a
useful tool for monitoring African penguin populations.
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It has been shown that, on average, 13% of penguins
can be enrolled or resighted each time they pass the
camera under present operating conditions. This fig-
ure probably represents an expected lower bound for
the population coverage of the system (although see
discussions above about the PIT gateway) as it does not
take into consideration continued monitoring over
time. If the fact that birds are likely to pass the camera
on more than one occasion is considered, then the like-
lihood of enrolling an individual over a given time
frame increases. 

The theoretical development of the population cov-
erage suggests that a high percentage of birds using a
monitored highway would have been captured by the
APRS at least once, after they have made between 30
and 40 camera passes. If we assume (1) that all birds
behave similarly as they pass the camera, (2) that they
go to sea at least every other day during the breeding
season and (3) that the system can be adapted so that
birds using the highways during the hours of darkness
can be included (see above), then a resighting fre-
quency of about 1 observation every 1 or 2 calendar
months could be expected for any individual in the
population. This is probably a best case scenario and
several factors can potentially limit the total population
coverage. For example, with spatially fixed cameras,
individuals are likely to be highly heterogeneous in
their detection probability. This would limit the indi-
vidual resighting frequency that the system could
achieve and would need to be considered in sub-
sequent data analysis (Borchers & Efford 2008, Royle et
al. 2009).

Even with the limitations outlined above, the total
population coverage that could be achieved by the
APRS is likely to be significantly higher than the cover-
age possible with flipper banding. In 2007, only around
13% of birds at Robben Island were marked with a
flipper band (R. B. Sherley unpubl. data) and, even
assuming a perfect human observer and no band loss,
this figure cannot be greatly increased unless further
large-scale banding events take place. Using natural
markings should also greatly reduce or eliminate the
errors associated with band loss in historical capture-
mark-recapture (CMR) studies based on banding,
while the use of computer matching should reduce the
errors associated with human observers, such as the
misreading of band numbers. Errors in matching will
occur with the APRS, particularly as the central data-
base develops, but it should be possible to quantify
these in a way that is not always possible with band
reading errors. Continuous assessment of the perfor-
mance parameters reported in this paper should lead
to improvements in subsequent survival and pop-
ulation movement analyses by allowing known error
rates to be fed into advanced CMR models, as has been

done for DNA-based CMR studies (e.g. Lukacs &
Burnham 2005).

In addition, biometric monitoring has the advantage
of being non-invasive, which may mean a benefit from
reduced human presence in the colony (e.g. Ellenberg
et al. 2006), the removal of any risk associated with
synthetic markers and the potential bias to results
associated with repeated capture of animals (see Gau-
thier-Clerc & Le Maho 2001). Obtaining high quality
data with minimum costs to the species under study
should be the ideal in animal science (Bateson 1986,
Cuthill 2007) and for species in steep decline, being
able to reduce the impact of monitoring may make a
valuable conservation contribution in itself.

Automated biometric monitoring may well have the
capacity to revolutionise terrestrial population and
behavioural ecology. Visual identification techniques
are widely applicable and several authors are already
recognising the potential to gain data on the abun-
dance of difficult to monitor species (e.g. Jackson et al.
2006), population dynamics (e.g. Holmberg et al. 2009)
and causes of mortality (e.g. Speed et al. 2008) as well
as individual behaviour (e.g. Marnewick et al. 2006).
Data can be captured with something as simple as a
digital camera and, as the technology improves, so the
boundaries of the technique will expand. Indeed, some
of the computer recognition systems currently in
existence have already been adapted to studies
beyond their original target species (e.g. Speed et al.
2007, Van Tienhoven et al. 2007, Burghardt 2008) and
spots are not essential to the process. The algorithms
underpinning APRS, for example, have already been
trialled successfully on plains zebra Equus quagga
(Burghardt 2008).

However, the method is unlikely to be a panacea.
The APRS system, and animal biometrics as a whole,
are still in the early days of their development and for
the foreseeable future they will probably remain
largely restricted to monitoring in terrestrial environ-
ments. The necessary process to confirm the multi-
year stability of natural pattern on a large sample size
and validate it against an unambiguous individual
identifier (see Bansemer & Bennett 2008) is still ongo-
ing for the APRS. Furthermore, any new monitoring
technology should be measured against an existing,
accepted technique to ensure the reliability of the
identifications in a real-world scenario — as has been
done with PITs in the past (e.g. Clarke & Kerry 1998).
The use of animal biometrics in conjunction with other
innovative assessment and monitoring methods in the
ecology tool kit, such as biotelemetry and forensic
techniques should lead to improvements in the data
available to decision makers, allowing them to track
changes in populations much more closely, more accu-
rately and over shorter time frames. These advances
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may make the difference in our challenge to reverse
the global decline of many animal species by allowing
decisive actions to be taken more quickly in the future.
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