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Abstract

Let M be an n-dimensional complete minimal submanifold in R"*”. Lei Ni proved
that if M has sufficiently small total scalar curvature, then M has only one end. We
improve the upper bound of total scalar curvature. We also prove that if M has the
same upper bound of total scalar curvature, there is no nontrivial L> harmonic 1-form
on M.

1. Introduction and theorems

Let M" (n > 3) be an n-dimensional complete immersed minimal hypersur-
face in R"*!.  Cao, Shen and Zhu [2] proved that if M is stable, then M has only
one end. Recall that a minimal submanifold is stable if the second variation of
its volume is always nonnegative for any normal variation with compact support.
Later Shen and Zhu [8] showed that if M is stable and has finite total scalar
curvature, then M is totally geodesic. On the other hand, there are some gap
theorems for minimal submanifolds with finite total scalar curvature in R"7.
Recently Lei Ni [6] proved that if M has sufficiently small total scalar curvature
then M has only one end. More precisely, he proved the following.

THEOREM ([6]). Let M" be an n-dimensional complete immersed minimal
hypersurface in R"™?, n>3. If

1/n )
(J 4] dv) <C = c1,
M n—1

then M has only one end. (Here Cs is a Sobolev constant in [4].)

In Section 2 we improve the upper bound C; of the total scalar curvature as
follows.
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THEOREM 1.1. Let M" be a complete immersed minimal submanifold in R™7,

n>3 If
1/n n
A|" = e
UM"“> <Moo,
then M has only one end.

It is well-known that a minimal submanifold with finite total scalar curvature
and one end must be an affine n-plane ([1]). Combining this fact, we have

COROLLARY 1.2. Let M" be a complete immersed minimal submanifold in

R™P, n>3 If
1/n
n
Al" d v/ C1
(JM|| U) Sl v

then M is an affine n-plane.

Moreover, we study L? harmonic 1-forms on minimal submanifolds in R"*”.
In [7], Palmer proved that if there exists a codimension one cycle C in a complete
minimal hypersurface in R"™!, then M is unstable, by using the existence of
a nontrivial L?> harmonic 1-form on such M. Miyaoka [5] showed that if M is
a complete stable minimal hypersurface in R"*!, then there are no nontrivial
L? harmonic 1-forms on M. Recently Yun [10] proved that if M is a complete

minimal hypersurface with ([, [4]" dv)'" < C; =/C-!, then there are no

nontrivial L?> harmonic 1-forms on M. We extend Yun’s theorem to higher
codimensional cases as follows.

THEOREM 1.3.  Let M" be a complete immersed minimal submanifold in R"?,

n>3 If
1/n n
n -1
(Lﬂ“ M) <t e,

then there are no nontrivial L*> harmonic 1-forms on M.

2. Proofs of the theorems

Before proving Theorem 1.1, we need some useful facts.

LemMa 2.1 ([4]). Let M" be a complete immersed minimal submanifold in
R"™? n>3. Then for any ¢ € Wol’z(M) we have

(n=2)/n
(J |¢|2n/(n72) dl)) < CSJ |V¢|2 dv,
o M

where C; depends only on n.
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Lemma 2.2 ([3]). Let M" be a complete immersed minimal submanifold in
R"™?.  Then the Ricci curvature of M satisfies

Ric(M) >

Now let u be a harmonic function on M. Using normal coordinate system
{x'} at pe M, we have Bochner formula

SA(VU®) = g + Ric(Vu, Vu).
Then Lemma 2.2 gives
n—1
—A (Vul>) = > uf - . —— |4 Vul?.

We may choose the normal coordinates at p such that u;(p) = [Vul(p), u;(p) =0
for i > 2. Then we have

ZM,‘L{,"
V]|VM| = Vj( Zulz) = |Vu| Y — uy;.

Therefore we obtain |V|Vul|* = Zulz] On the other hand, we know

1
5A(|Vu\2) = |VulA|Vu| + |V|Vul |*.
Then we have
, n—1 5 9 2
uij_T|A| |Vu|™ < |VulA|Vul| + E ui-

Hence we get
|Vu|A|Vul + |A| |Vu| Zui - Zufj

= Zufl +Zu12,

i#1 i#1

S zuﬁ ()
i#1 i#1

> U
n— 1 1 n—1

where we used Au =3 u; =0 in the last inequality. Therefore we get
-1 1
(2.1) IVul AV +”T AP [Vul’ = — |VIVul = 0.

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Suppose that M has at least two ends. First we
note that if M has more than one end then there exists a nontrivial bounded
harmonic function u#(x) on M which has finite total energy ([2] and [6]). Let
f =|Vul. From (2.1) we have

o, n—1 . 1
SAf + =411 =z — Vf)”
n n—
Fix a point p € M and for R > 0 choose a cut-off function satisfying 0 < ¢ < 1,

1
p=1 on BP(R),‘ ¢ =0 on M\B,(2R), and |Vg| < 7 Multiplying both sides by
¢ and integrating over M, we have

J O fAS dv +EJ 0| A|*f? dv >
M n M n—l

j v/ 12 do.
M

Using integration by parts, we get
: . . -1 .
[ wrPet o2 rocir ey a2 pars o
M M noJm

1

L] i
n—1 M

Applying Schwarz inequality, for any positive number a > 0, we obtain

22) "t

1
J 0 |A*f? dv+_J 2|Vol? dvz(L—G)J PV do.
M alm n—1 M
On the other hand, applying Sobolev inequality (Lemma 2.1), we have
(n—2)/n
M M

Thus applying Schwarz inequality again, we have for any positive number b > 0,

(n=2)/n
(2~3) (l + b)J (p2|Vf|2 dv > C;l (J (fga)Zn/(n—Z) dv)
M M

1
- (1 +> J 1|Vo|* dv.
b) Jm
Combining (2.2) and (2.3), we get

n
—da n—2)/n
n—1 2 412 42 (”1 ) 1 J 2n/(n=2) (
| wars s e (| g0 a

1 no1 “ 2 2
o JMf |Vo|” dv.
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Using Hoélder inequality, we have

2 2,2 n 2 - \2n/(n—2) (=2
| oty dvs(] |A|) (J (fo) dv) |
M M M

Hence we have

n

(_n — a) c!
n—1 s n—1 (J n )2/;1 (J 2n/(n—2) )(n2)/n
— A|" dv fo dv .
— Rz (o)

By assumption, we choose ¢ and b small enough such that

n
<——a>C.1 o
_ s -1
n-l ! (J |A|”dv) > &> 0.
M

b+1 n
Then letting R — oo, we have f =0, ie., |Vu| =0. Therefore u is constant.
This contradicts the assumption that u is a nontrivial harmonic function. []

Proof of Theorem 1.3. Let w be an L? harmonic 1-form on minimal
submanifold M in R""”. We recall that such w means

Aw=0 and J || dv < 0.
M

We will use confused notation for a harmonic 1-form w and its dual harmonic
vector field w#. From Bochner formula we have

Alw]* = 2(|Vo|* + Ric(w, »)).
We also have

Al = 2(|o|Alo] + [V]o] ).

Since Vool > %ww 2 by [9], it follows that

. 1
|o]Alo] - Ric(w, ) = Vol - Vo] |* = 1Vl %

By Lemma 2.2, we have
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1
@w@—;jW@Wsz@@z—

Therefore we get
—1 1
jwlAlo] + == 140> - ——|V|o| > > 0.
n n—1

Multiplying both sides by ¢? as in the proof of Theorem 1.1 and integrating over
M, we have from integration by parts that

1
(2.4) OSJ plolAlo] + 2L p2laPlof - _1¢W@H%h

n
:—zj ¢|w|<w,V|w|>dv——j Vo] | do
M n—1)y

n—1
Jr

J 42|00 do.
M

On the other hand, we get the following from Holder inequality and Sobolev
inequality (Lemma 2.1)

2/n (n—2)/n
| |A|2|w|2<o2dvs(j |A|”dv) (j (ploof) 22 d)
M M
2/n
gcs(j |A|”dv) IR
M M

2/n

CY(J |A|”dv)
M

x (JM 021902 + o2 IV]e]  + 2010l <V, Vo] dv).

Then (2.4) becomes

(2.5) 0s—2j PV, V]w]> d —LJ Vo] |2 dv
M n— M

1
_1 2/n
+ 2 Q(J|m"m)
n M

(] 10190l + V10 + 2010199, Vol o).
M

Using the following inequality for & > 0,

2
ZU oolVo. Vil dif < 3| gViol P o+ | (ol Vel d,
M M &M
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we have from (2.5)

Since ([, |4|" dv)'/" < n%

n n—1 2 n—1 2/n
el J A" dv) - £ 1+—CSJ 14]" do
n—1 n M 2 n M

XJ P[] |? dv
M

2 1 2/n 1 2/n
<{=(14” (J |A|”dv> +2 c(J |A|"dv)
& n M n M

« J 2|Vl do.
M

] C;! by assumption, choosing &> 0 sufficiently

small and letting R — oo, we obtain V|w| =0, i.e., || is constant. However,
since [, lo|* dv < oo and the volume of M is infinite, we get w = 0. O

[1]
[2]
[3]
[4]
[5]
[6]

(9]
(10]

REFERENCES

M. T. ANDERSON, The compactification of a minimal submanifold in Euclidean space by the
Gauss map, Inst. Hautestudes Sci. Publ. Math., 1984, preprint.

H. Ca0, Y. SHEN AND S. ZHU, The structure of stable minimal hypersurfaces in R"™*!, Math.
Res. Lett. 4 (1997), 637-644.

P. F. LEUNG, An estimate on the Ricci curvature of a submanifold and some applications,
Proc. Amer. Math. Soc. 114 (1992), 1051-1063.

J. MICHAEL AND L. M. SmmMON, Sobolev and mean-value inequalities on generalized submani-
folds of R", Comm. Pure. Appl. Math. 26 (1973), 361-379.

R. Mivaoka, L2 harmonic 1-forms on a complete stable minimal hypersurface, Geometry
and global analysis, Tohoku Univ., Sendai, 1993, 289-293.

L. N1, Gap theorems for minimal submanifolds in R"*!, Comm. Anal. Geom. 9 (2001),
641-656.

B. PALMER, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), 185-188.

Y. SHEN AND X. ZHU, On stable complete minimal hypersurfaces in R""!,  Amer. J. Math.
120 (1998), 103-116.

X. WANG, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), 671-685.

G. Yun, Total scalar curvature and L?> harmonic 1-forms on a minimal hypersurface in
Euclidean space, Geom. Dedicata 89 (2002), 135-141.

Keomkyo Seo

SCHOOL OF MATHEMATICS

KOREA INSTITUTE FOR ADVANCED STUDY, 207-43
CHEONGNYANGNI 2-DONG, DONGDAEMUN-GU
SeouL 130-722

KOREA

E-mail: kseo@kias.re.kr



