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GROWTH OF SOLUTIONS OF AN n-th ORDER LINEAR
DIFFERENTIAL EQUATION WITH ENTIRE COEFFICIENTS

BENHARRAT BELAIDI AND SAADA HAMOUDA

Abstract

We consider a differential equation £+ A4, (2) 0D 4+ Ay (2) [+
Ao(z) f =0, where Ay(z),...,A,-1(z) are entire functions with A(z) # 0. Suppose that
there exist a positive number 4, and a sequence (z;);.y With lim;,, z; = o0, and also
two real numbers o, f (0 <f < a) such that |4g(z)] = e®5" and |4x(z)| < ef5l" as
j— 4w (k=1,...,n—1). We prove that all solutions f # 0 of this equation are
of infinite order. This result is a generalization of one theorem of Gundersen ([3],
p. 418).

1. Introduction

For n>2, we consider a linear differential equation
(1.1) SO+ A ()Y -+ AR+ Ao(2)f =0,

where Ay(z),...,A,—1(z) are entire functions with A4y(z) # 0. Let p(f) denote
the order of an entire function f, that is,

o(f) = Tim 08T S) g loglog M(r, f)

r—+w  logr r—+o0 log r

where T'(r,f) is the Nevanlinna characteristic function of f (see [6]), and
M(r, f) = max.—|f(z)].

It is well-known that all solutions of (1.1) are entire functions, and if some
of the coefficients of (1.1) are transcendental, then (1.1) has at least one solution
with order p(f) = +c0.

The question which arises is: What conditions on Ay(z),...,A,-1(z) will
guarantee that every solution f £ 0 of (1.1) has infinite order?

In this paper we prove three results concerning this question. Accord-
ing to [5], [7, pp. 199-209], [8, pp. 106-108], [9, pp. 65-67], we know that if
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Ay(z),...,Ay—1(z) are polynomials with Ay(z) # 0, then every solution f of (1.1)
is an entire function with finite rational order.
In the study of the differential equation

(1.2) S"HAG) S+ BE) =0,

where A(z) and B(z) # 0 are entire functions, Gundersen proved the following
result:

THEOREM 1.1 ([3, p. 418]). Let A(z) and B(z) £ 0 be entire functions, and
let o, B, 0, and 0, be real numbers with o >0, >0 and 0, < 0,. If

(1.3) |B(z)] = exp{(1 + o(1))a|z|"}
and
(1.4) A(z)| < exp{o(1)z|"}

as z — oo with 0y <argz < 6,, then every solution f #0 of (1.2) has infinite
order.

Remark. Theorem 1.1 was recently extented for an n-th order linear dif-
ferential equation (see [1]).

In the same paper, Gundersen also proved the following:

THEOREM 1.2 ([3, p. 417]). Let A(z) and B(z) be entire functions such that
either (i) p(A) < p(B) or (ii) A is a polynomial and B is transcendental. Then
every solution f #0 of (1.2) has infinite order.

2. Statement and proof of results
In this paper we prove the following results:
THEOREM 2.1. Suppose that there exist a positive number u, and a sequence

of points (Zj)j Ny Wwith lim;_, o, z; = oo, and two real numbers o, f (0 <f < a)
such that

(2.1) |4o(z))| = "
and
(2.2) Ai(z)| < 5" (k=1,...,n—1),

as j— +oo. Then every solution f #0 of (1.1) has infinite order.

From Theorem 2.1, we deduce the following two results:
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COROLLARY 2.2. Suppose that
(2.3) max{p(dy) :k=1,...,n—1} < p(A4p).
Then every solution f #0 of (1.1) has infinite order.

COROLLARY 2.3.  Suppose that Ai(z),...,A,—1(z) are polynomials and Ay(z)
is transcendental. Then every solution f # 0 of (1.1) has infinite order.

Corollary 2.2 and Corollary 2.3 were proved by Z.-x. Chen and S.-a. Gao in
[2]. In this paper, we give another proof.
In the proof of Theorem 2.1, we need the following lemma:

LemmA 2.4 ([4, p. 89]). Let w be a transcendental entire function of finite
order p. Let T ={(ki, j1),(ka, j2),. .., (km, jm)} denote a finite set of distinct pairs
of integers satisfying k; > j; >0 for i =1,...,m, and let ¢ > 0 be a given constant.
Then there exists a set E < [0,2n) with linear measure zero such that, if €
[0,27) — E, then there is a constant Ry = Ro(W,) > 1 such that for all z satisfying
arg z =y, with |z| = Ry and for all (k,j)eT, the following estimate hold:

W(k) ( Z)

(k=) (p~1-+2)
Wz = i :

Proof of Theorem 2.1. Suppose that f #0 is a solution of (1.1) with
p(f) < +o0. We can write (1.1) as

1 f<n>+"*1 Ai(z) ﬁ__l
Ao(z) f & A(z) f

Then by Lemma 2.4, there exists a set E < [0,27) with linear measure zero such
that, if ¥, € [0,27) — E, then there is a constant Ry = Ry(i}) > 1 such that for all

(2.4)

z; satisfying arg z; = y,with |z;| > Ry and for all k =1,2,...,n, we have
f<k)(zj) ke

2.5 - < k=1,....n, c=p—1+¢).
23) et T )
Then by (2.1), (2.2) and (2.5), we obtain that

Ak(z)] [P (z) 1 ke _
QO |4 [7) | = domrr Al k= Len =1 e=p=1o)
Since

. 1 ke _ _
]B?@WVA —0 (kfl,...,l’l—l, Cfp—1+8),

we see

tim [4(2)
j=+e|Ao(z))

SOE)| _ 3
’f(zj) =0 (k=1,....,n—-1).
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We have also from (2.1) and (2.5) that

1

(27) e |Zj|nc (C =p— 1+ 8)7

which implies

o im 2960 o

Jj—+oo A()(Z])

Letting j — 400 in the relation
IAGIE) I~ W) WAICh B
Ao(z) f(z) = Ao(z) f(z) ’

we get a contradiction. Thus every solution f # 0 of (1.1) has infinite order.

Next, we give two examples that illustrates Theorem 2.1.

Example 1. Consider the differential equation

@9) fr=r=e¥f=0.
In this equation, for z =z, = j — o0, we have
|Ao(z))| = |—€%1| = ¥ = &,

A41(z)] = 1 < ",

It is easy to see that the conditions (2.1) and (2.2) in Theorem 21 are sat-
isfied. The two linearly independent functions fi(z) = e¢ and fs(z) = e ¢ are
solutions of (2.9) with p(fi) = p(f2) =

Example 2. Consider the differential equation
(2.10) f" = (34667 f" + (2+6e” + 11e¥)f" —6e* f = 0.
In this equation, for z =z; = (1 +i)j — oo, we have

|[4o(z)| = |_65’3:f = 6e¥ > eV = 3 (vV2/2) \Zj\

41 ()] = 2+ 6¢7 + 1127 < 19¢¥ < /2 = SV
and
142(z)] = |—(3 + 6e7)| < 9/ < &5/ = V2,
Hence the conditions (2.1) and (2.2) of Theorem 2.1 are verified. The three

linearly independent functions f(z) = e¢, fz( )—e2 and f3(z) = are
solutions of (2.10) with p(fi) = p(f2) = (f3)

We now give a generalization of Example 2.
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Example 3. Consider the differential equation
(2.11) FW 4 P (5) "D 4o Pi(eF) f 4 e’ f =0,

where o e R with « >0, e C*, and Py,...,P,_; are polynomials such that
max|<r<,—1 deg(Px) < . It follows from Theorem 2.1 that every solution f # 0
of (2.11) has infinite order.

Proof of Corollary 2.2. Let max;<x<n{p(4r)} =b < p(49) =a. Then for
a given ¢ 0 <e¢ < (a—b)/2, we have

(2.12) Ac(2)| < e (k=1,...n—1)
and
(2.13) |4o(z)] > elI""

for sufficiently large |z|. Then by (2.13), there exists a number o > 1 such that
(2.14) Ao ()] > e

for sufficiently large |z|. By making use of (2.12), (2.14) and Theorem 2.1, we
get our result.

Proof of Corollary 2.3. As in the proof of Corollary 2.2, we obtain
immediately Corollary 2.3.
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