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COMPLETE MINIMAL SURFACES LYING IN
SIMPLE SUBSETS OF R?

SuN Sook JIN

Abstract

In this paper, we prove the existence of orientable and nonorientable complete
minimal surfaces of R lying in a solid cylinder, a ball or a halfspace, using the Runge’s
approximation theorem and the Enneper-Weierstrass representation of minimal surfaces.

From the point of global differential geometry, the complete surfaces are the
interesting objects namely, those for which the geodesics are defined for all times.
Equivalently, every divergent path must have infinite length. In this paper, we
study the complete minimal surfaces in R*. One of the fundamental problems in
this subject is to decide about the existence of a complete minimal surface that is
contained in a simple set of R* such as a halfspace, a slab, a solid cylinder or a
ball. Notice that all the classical examples, the plane, the catenoid, the helicoid,
Scherk’s surface, Costa’s surface etc ..., are not contained in any simple set.
Therefore it is surprising in this respect that, Jorge and Xavier [J-X] constructed a
complete minimal surface lying in a slab, which is defined by a minimal immer-
sion X : D < R® defined on the unit disk in the plane. They used the Runge’s
approximation theorem, which is improving the Enneper-Weierstrass represent-
ation of X to find a way in D tending to the boundary, |z| = 1, but only such way
is fairly long with respect to the induced metric by X although the Euclidean
distance is short. Recently, Nadirashvili [N] used the Runge’s theorem in a
more elaborate way to construct a complete minimal surface of negative Gaussian
curvature which is a subset of the unit ball. This example is also a disk type,
topologically trivial, and hence there is no period problem.

Now that we have the complete minimal surfaces in a slab and in a ball, and
it is tempting to ask whether there exists an unbounded example lying in a solid
cylinder. The first goal of this paper is to answer the question in the affirmative
by proving the following theorem:

THEOREM 1. There exists a complete orientable singly-periodic minimal
surface in R® which is contained in a solid cylinder.
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We prove this theorem in Section 2, applying the method of Nadirashvili to
a minimal surface defined on an annulus in the plane. There is no need to
annihilate the period in this case. Now, the example in the theorem has the
non-zero period vector and contains a fundamental region lying in a ball of R>.
Note, it has the trivial structure topologically.

After that, in Section 3, we prove Lemma 1 which is the key lemma in this
paper. In Section 4, using the z’-type holomorphic maps and the Enneper-
Weierstrass representation of a nonorientable minimal surface in R> due to
Meeks [M], we prove that:

THEOREM 2. There exists a complete nonorientable minimal surface lying in a
ball of R®. Concretely, it is a Mdbius strip topologically.

Finally, in section 5, we consider the Enneper-Weierstrass representation of a
minimal immersion which sends the concentric circles {ze C: |z| = ¢}, 0 < ¢ < 1,
into horizontal planes of R?, and we prove the following theorem:

THEOREM 3. There exist orientable complete minimal surfaces of R* lying in
a halfspace, x3 > 0, but not a slab, which are transverse to each horizontal plane.
One of them is singly-periodic.

We conclude this section by providing with some previous results in the
subject. First, using the Runge’s theorem, Rosenberg and Toubiana [R-T] have
obtained a complete minimal surface, which is topologically a cylinder, transverse
to the planes x3 = constant, |x3| is bounded on the surface, and F. Lopez [L1]
constructed a Mobius strip type example in a slab.

By the way, Brito [B] described a new technique, together with a power
series containing Hadamard gaps, to construct disk type examples in a slab.
Afterward, using the same method Costa and Simdes [C-S] have constructed
examples of genus k and N ends in a slab, for every k=1,2,...and 1 < N < 3.

While, using the Weierstrass’ gap theory in the compact Riemann surface
theory, F. Lopez [L2] have presented an analytically clear general construction
method for hyperbolic minimal surfaces of arbitrary topology with a bounded
coordinate function, which are some deformations of the given disk type ex-
amples.

On the contrary, there are many non-existence results under the certain extra
conditions on the surface: Hoffman and Meeks [H-M] showed that a proper
complete non-planar minimal surface in R® can not be contained in a halfspace,
and Xavier [X] proved that the convex hull of a complete non-planar minimal
surface of bounded Gaussian curvature is R>.

1. Preliminaries

Let .# be a set of connected open annuli in the plane with Jordan curve
boundaries and containing the unit curve y:={ze C:|z| =1}. Let
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X:M<— R

be a minimal immersion defined on M € .#. Then it is a conformal harmonic
immersion, and so we can take a holomorphic map

OF = (h ) =25 € C
such that
(1.1) $i+d3+¢3=0
(1.2) 0 < [|@¥|* = [g7[ + 43| + |43] < 0.

On the other hand, if we have a holomorphic map ® on M satisfying both (1.1)
and (1.2), then we can define a minimal immersion X by

X(p) = ‘Rr @ dz+ X(py)
Po

for some pp € M. By the way, we can assume that ¢; # 0 on M and define a
holomorphic and a meromorphic function by

¢s
¢ —igy
respectively, we call (f,g) the Weierstrass data of X. In particular, the mer-
omorphic function g : M — C is the stereographic projection of the Gauss map
of X with respect to the north pole of S2, just say it the Gauss map of X.
Using the Enneper-Weierstrass representation, we have

X0 = (305704 )ta) dz + X(p0)

Po

f=¢1—ip), g= #0,

Now, we consider the several arguments:
(1) Let us denote dsy = Ax|dz| the induced metric of M by X, where

1
Ay =2 0% = §|f|2(1 +1gI*)?

and let “disty”” be the distance function of M with respect to dsy. Then we can
say that X is complete if disty(y,0M) diverges.
(2) We define the period vector of X by

(1.3) Period(X) =R JF(¢1,¢2,¢3) dz

where T is a closed curve in M, which generates a translation of the image of M
in R® by
X(e*™z) = X (z) + Period(X).
(3) Let & be a holomorphic function on M, & # 0 in M, and set
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Gy, 29
f(2) =f(2)h(2), g(Z)—@~
Then it gives us another minimal immersion X : M — R>, defined by
. Pl e .
X =9 [ (370- 3570+ )73 ds + X(p0),
Po

The period vector may vary in the deformation.
Finally, we state further notations which will be needed in later.

NotaTioN 1. « Let M € .4, then 0M consists of two disjoint Jordan curves
denoted by
oM :=0MN{|z| <1}, oM :=dMN{|z| > 1}.

Take a simple arc “b(M)” lying in M between p € ;M and ¢ € doM, then we
have a fundamental domain F(M) of M with the cut (M), that is,

b(M) = 0F (M)\OM.

We call “b(M)” the branch cut of F(M).

- Let “dist¢” and ‘““dist,:” denote the standard Euclidean distance functions
on the plane C and R®, respectively.

- If Ee C, we define a subset E;_, = E such that

distc(E, E1—;) = ¢
- Let B,={xeR’®:|x|| <r} be a ball of R®.

2. Proof of Theorem 1 (Examples in a solid cylinder)
In this section, we prove that Theorem 1 is the consequence of the following
lemma which will be showed in the next section:

LemMA 1. Let X : M — R, M e ./, be a minimal immersion with X (1) =0
and disty (y,0M) = p for some p > 1. Suppose that there is a fundamental domain
Fx(M) of M with a branch cut “by” such that

X(Fy(M)) = B,

for some r = 1. Then for every s,0 >0 with M\_s € M, there exists a minimal
immersion

Y:M <R Me.dd,
such that Y(1) =0, M, s < M = M and
disty(y,0M) =p+s
@Y —®¥| <s?/2n on M
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Y(Fy(M)) < Byyap
where Fy(M) is a fundamental domain of M with a branch cut “by” such that
distc(by N M, by) < 44.

To the first, let a@,, n=1,2,..., be a sequence of positive constants specified
later such that

(2.1 ay < 1/5,  a, > 2ay4
From the previous lemma, together with p =p,, r=r,, s=1/(n+ 1) and 6 = a,,
we have a sequence of minimal annuli
X,: A, — R?, A, e,

n=1,2,..., respectively, such that

(An)1,a” < An+1 c A,

||Period(X1)|| =1, X,(1)=0

disty,(y,04n) = pp, pp=1+1/2+4---+1/n

Xn(Fn(An))CBrna 711:2+2/22+2/32+"'+2/n2

@™ —@"|| < 1/(2n(n+1)%) on (4,)

1—-ay,

where ®" := 20X,,/0z is a holomorphic map and F,(4,) is a fundamental domain
of A4,. Let us denote “b,” the branch cut of F,(4,), and let b =
{zeA):argz=0}. By Lemma 1, we may assume that

(2.2) distc(bn N An+1,bn+1) < 4da,.
Observe that we can take an annulus 4 € .# as the limit of the decreasing
sequence: Ay > Ay > --- DA, > ---. That is,

©
A = Int Ay .
n=1

Denote K, = (An)l—za,,> then K, < K1 by (2.1). Additionally, all of K,’s, n =
1,2,..., are contained in A.

Notice that for every compact subset K of A4, there is an integer N such
that K < K, for all n > N. Recall |@""' — ®"|| < 1/(2z(n+1)*) on K,, and so
{®"|g},cn is @ normal family in Montel’s sense. Hence we can find a sub-
sequence of {®"|g}, .y Which is converging uniformly to a holomorphic map

®:4—C?

over all compact subsets of 4 as n — co. Since O satisfies the conditions (1.1)
and (1.2) clearly, we have a minimal immersion

Z:A—R
Z(1) =0, defined by
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P
Z(p) =R Jl ® dz.

Then the following holds:

(a) Recall y = (4,), , for all ne N. Therefore we have

|| Period (X,) — Period(X;)||

< " |[Period(X;) — Period(X;_1)|
i=2

IA
Alw

n ) ) 1 1 1
= O -0 |de| € s H=—=—+-+—
;L” [l < 35435+ =
and hence

1
1 < ||Period(X,)| <

EENIEN]

for all ne N. Hence, % is singly-periodic.
(b) Let us denote #(A4,) the canonical fundamental domain of A,:

F(An) ={z€4,:0<argz < 2n}

which has the branch cut “bNA4, ={z€ A4, :argz=0}". Together with (2.1)
and (2.2), we have

distc(b,, b1 NA,) <4d(ar +ax+ -+ + ay_1)

1 1
<4a1<1+2++2n—l> < 7.

It implies that % (A4,) is contained in the union of three fundamental domains:
Fo(4,)Ue™F,(A,)Ue ™ F,(4,).
Since r, =2+2/22+2/3>+---+2/n* <4 for all ne Z, we have
Xou(F (A1) < By 4| Period(x,)| < Bs-
Recall #(A4) =« #(A,) for all ne N, and so we have shown that:
Z(F(A)) < Bs.

Moreover, Z(A) is contained in a solid cylinder of R* with the axis line of the
direction Period(¥) # 0 from (a).
(c) Recall we can choose a,, n=1,2,..., satisfying that,

(23) disty, (7, 0K) = 37,

Let d,, n=1,2,..., be another sequence of constants, such that
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1

E < dn <1

0" > d,||®"|| on K,

dldz---dnﬂ% as n — o0.

Then, together with (2.3), we have for all m > n

disty, (7, 0K,) = dp—1 disty,_, (y, 0K,

m—1

> % disty, (y,0K,) >
It follows that,

. . 1
disty(y,04) = disty(y, 0K,) > 3P
Recall p,=1+4+1/2+---+1/n tends to infinity as n — oo.

As a result, Z'(A) is the complete singly-periodic minimal surface of R* lying
in a solid cylinder. Hence the proof of the theorem is finished.

3. Proof of Lemma 1

In this section we prove the previous lemma in Section 2. We will use the
method of Nadirashvili in [N]. Notice that, however, the property (16) of [N] is
not induced by the condition (10). So, we will also use the argument of Collin
and Rosenberg [C-R] who filled the gap.

To the first, denote

= supl|0]|+1, v =inf [®F].
M M
Let N > 10 be a sufficiently large number which will be specified later with
M _s < M172/N~ And let
U= UOU U[ = M\M]_z/N

where Up and U; are the outer and the inner components, respectively. Let
ri=1—i/N3 i=0,1,...,2N?, and denote

Ei=UpN (MrZi\MVZHl)’ Ei =UoN (Mr2i+l\MrZi+2)

N2-1 ~ N2-1 _
E = U Ei7 E - U El‘.
i=0 i=0

If we denote S| = JE, then it consists of (2N?2 + 1)-number of closed simple
curves. Let /1,h,... I, be the transversal lines of Up for some integer k;, and
denote
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FIGURE 1

[k1/2] 5 _ /2]
Li=EN J b, Li=EN {J b

i=1 i=1

H =L,ULUS;.

We denote H| the open 1/8N3-neighborhood of Hj, then Up\H/ consists of
2N?k;-number of compact subsets. Let w; i=1,...,k;, be the union of
segments Uy N/; and those components which have nonempty intersection with
Up N1, respectively.

Similarly, repeat this processing on the inner component Uy, together with
the ky-number of transversal lines, to take the compact subsets wy,+; = Uy, j =
1,...,k;. We may assume that

(3.1) % < diame(o]) <

1

where ! is an open 1/8N3-neighborhood of w; and i=1,....k with k=
ki + ky. (see Figure 1).

ProposITION 1 ([N]). If ds = J|dz| is a metric on M such that

A>1 on M

k
A=N* on ) o]
i=1
then for all smooth curves a connecting y and 0M, the arc length of  with respect
to ds is larger than N.
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Proof. Let o; be a segment of ¢, which meets the subset M,,\M,,,, for
somei=0,1,...,N>—1. If g; transverses coj’ for some j =1,...,k, then we can
show that:

1 N
ds>N*— =—.
J; S=NANT T2

i

If not, that is, g; does not meet every w!, j=1,...,k, except a very small area,
then the Euclidean length of o; is more than 2/N, by (3.1). Hence the arc length
of g; is at least 1/N. Therefore, since 0 =opUa U --- Uay2_;, we have

1
ds> N?>— = N.
L =Ny =

ProposITION 2 ([N]). For all constants T > 0, where i =1,...,k, there is a
holomorphic function h; defined on M, hi(z) #0 in M, such that

1
|h,~—1|<T on M\

1
|h[—T\<T on ;.

Proof. Denote the Riemann sphere by S> = CU{o}. Observe that the
complement of the union of two compact subsets M\w, and w; in S? is either
connected or composing of two components. By virtue of the Runge’s theorem,
for every & > 0 there exists a holomorphic or meromorphic function 4; on the
plane, with only one pole at zero, such that

|| <& on M\o,
lhi—InT| <& on ;.

Let us define

hi(z) := exp(hi(2))

then the restriction of 4#; on M is a holomorphic function, because that 0 ¢ M.
Together with a sufficiently small € > 0, we evidently have

\hi—1|<% on M\w!
|hi = T| < 1 on w;
T
as required. O

Now, we prove the following assertion, which plays the crucial role of this
proof of Lemma 1:
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ASSERTION 1. There is a sequence of minimal immersions
Yo=X,Y\,....Y: M — R?
such that all of 1,5, ..., # hold:

&

@' —d ! < Ni O M\o]
: \
()< 12 = N on o
|| > %N” on w;

where ®':=20Y;/0z and ¢ > 0 is a sufficienlty small constant.

Proof  First, we assume that ®°,... ®! are already defined such that
H, ..., are all true. Since o < M\(wjU --- Uw/_ ), we have
i1
-0 < S o -0 < = g
[ I= 3 <+ ono
It follows, together with large N, that
5 _
(3.2) §V <@ <u on w.
Let G, : M — S? be the Gauss map of Y; ;. Then by (3.1) and (3.2), we can
say that

Tu

(3.3) diam: (G2 () < 2, diamgs (Y1 () <

where @] is a fundamental domain of ] such that
(3.4) @ NFy(M) # ¢.

Now observe that, after a rotation, we may assume the following; if
dists (0, Yi_1(®])) = 1/V/N, then

(3.5) (s, Yo (@) <~
N
and
. S 1
(3.6) distg:(+ &3, Gy (0])) > Nk

where &; = (0,0,1) € R®. (see Figure 2).
Let (f;_;,gi-1) be the Weierstrass data of the minimal immersion Y;_;, and
set

fi(2) = fia1(2)hi(z),  ¢i(z) = giil(Z)




COMPLETE MINIMAL SURFACES 157

FIGURE 2

where /; is the holomorphic function in the Proposition 2. Now we have
another minimal surface Y;(z) = R [~ ®'({) d{ such that:

o' = <%fi(1 - g?%gﬂ(l + g?),ﬁgz—)

Observe that the following holds:
+ On the domain M\w!, for a sufficiently large 7,

) . 1 1
@ — &Y = 5\f;>1| |h; — 1] +§|fi—lgi2—1|

1
1——
i

1 2
S}lllp |fict| + 2T-1) SlAllp |fiz19il

1
< —
2T
£
Nk’
« Recall g; 1 : M — C is a stereographic projection of G, ; with respect to
the north pole of S?, and hence by (3.6) we have

2 VN
— <|gi-1| £ =

JN 2

on the domain ] by (3.6). It follows that on w/, we also have

T

<

i 1 |gi—1\2
= — . - > . .
1] =51/ Ih,|<1 + ) = lfic1llgil

v

|gi—1| i—1
(o > .
ol Ll v

=l e
1+ |gi1]

4
— || D
5\/N||
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« Similarly, on w;

L 1
@] > §|fi—1| hi| = §|fi—1|(T_ 1)

L ()
1+ |gii] N+4
Sv v
>~ (T-1)>-N*
~2(N+4) ( )= 2
for large N.
Until now, we have shown that #; also holds. By induction, we finish the
proof of Assertion 1. O

Now let us define a new minimal immersion by:
Y = Y — Yi(1)

then @ := ®F, Y(1)=0, |Y — Y|| <¢/N. Observe that Assertion 1 leads us
that

k ) ) k
(3.7) |oF — @) < EZHQ'AwDFW|g:% m1A4\\k)w;
i=1 i=1
Additionally, for large N,
(3.8) H(DY—CDXH <s?/2n on M;_s
since M;_5 < M\(a)1 - Uawy).
By the way, sine w/ c M\U il co’ we have
OF|| > ||@|| — || @* - > L onw
@) > '] - | N R
|@W2%N”—% on w.
It follows that,
ok on M
94 = 57
(3.9) y
OF|>N*—= on ;U Uay.
94 = N4 ¢

Thus, by Proposition 1, we can show that

disty(p,0M) > N——=>p+s

\/_

for a sufficiently large M.
Now take a fundamental domain My of M, defined by
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k
My = (F w\ Yo ) Ul
see (3.4). Then, from (3.3), we can say that

(3.10) |1 X (z)] < r+7ﬁ’u for all ze M.

Let M denote a subset of M such that,
(3.11) disty(y,0M) =p+s

then dM is the union of smooth curves in M, since the Gaussian curvature of a
minimal surface is nonpositive. Observe M € .Z. Set a fundamental domain of
M by

F Y(M ) = A~/[ nNM F

then
(3.12) diste(by N M, by) < % <49
where “by”, “by” are the branch cuts of Fy(M) and Fy(M), respectively.

Now we show the following assertion. Recall, together with (3.8), (3.11)
and (3.12), it leads us to prove that the restriction of ¥ on M, denote by Y again:

Y: M — R
is the required map. Hence we completes the analysis of the proof of Lemma 1:
ASSERTION 2. Y (Fy(M)) < B, 5.
Proof. We consider the two cases:

Case 1. Let ze d(Fy(M \U @/, then by (3.7) and (3.10),

1 Tu 1
(3.13) ||Y(z)\|£||X()H+—< +N+N<r+23

for a sufficiently large M.

Case 2. Letzed(Fy(M))Na@|, for some i =1,...,k. Then, it is clear that

€
3.14 Y(z) - Y < —

(3.14) 1Y(2) = Yol <

for &! =« M F\U, oy cb Take a geodesic curve 7 in M connecting from z to the
curve 7, such that

J dsy =p+s.
"
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Let # meet 0@/ at a point zeMF\U @, then

(3.15) 1Yic1(2)]| < V—|—N7 c1 > 0.

Recall the Euclidean distance between y and dM;_y is less than (3v/N/v)(p + s)

by (3.9), and hence by (3.7),
disty (y,z) = disty(y, 5M1_2/N)

e 3WN
> disty (y, 0M _y/n) — N —(P +5)
2u 3e
>p- - T (p+
N V\/N(p )

It follows, together with (3.7) and (3.9) again, that

. 2
disty(z,2) < L dsy —disty(y,2) <s+ ﬂ+v\/_( s).

From (3.14), it implies that
(3.16) disty,(z,2) < s+c—]\2], ¢ > 0.
Now, suppose that distgs(0, Yi_1(®])) < 1/v/N, then

A 1<>||<7+7—”

by (3.3). From (3.14), (3.16), we can say that

o +1
N

(3.17) 1Y)l < [ Yi(2)l +% < [1vi@l +s+

o+ 1
N

&
<Y Gl + 5 +s+
<r+2s%

On the other hand, if distes(0, ¥;_1(®])) = 1/v/N. Then by (3.5),

. Tu - Tu c
IV @) < S Y ()] < ﬁ<’+ﬁl)

where 7 : R — R? is the orthogonal projection along the (xi,x;)-plane.

Y} =Y?,, we have

=Y < l2(Yia DI + [ Yi(2) = Yia (D) <= —=

C4

%

for some ¢4 > 0, as well as, by (3.16)

Since
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=
VN’

By the Pythagorean theorem, together with the fact:

|z(Y:(2)| < s+ cs > 0.

&
1@ = 1Y@ <7+

it implies that

2
Cs &\2
Y:(2)|]* < — =)
1Y) < <s+\/ﬁ> +(r++)
Since r > 1, by (3.14) again, we have for large N,
(3.18) 1Y ()] < Vi?+s2+s?

< VP2 4218 + 54 + 57 =1+ 257
As a result of (3.13), (3.17) and (3.18), we have shown that
Y(0Fy(M)) € By.ag.

By virtue of the maximum principle of the minimal surface, it implies that

Y(Fy(M)) < Byyay
as desired. O

4. Proof of Theorem 2 (Nonorientable examples in a ball)

Recall, independently, Martin and Morales [M-M] have also generalized
the technique of Nadirashvili in a minimal immersion on an annulus. On the
contrary, their interest is on the construction of a bounded complete example
with non-trivial topological structure. To annihilate the period, they used the
z2-type holomorphic maps. In this section, we prove the existence of a non-
orientable bounded complete minimal surface, using the z?-type holomorphic
maps again and the Enneper-Weierstrass representation of nonorientable minimal
surface in R due to Meeks [M].

First, we have some notations:

NoraTtioN 2. - Let I: C — C be the inversion defined by I(z) = —1/Z.

« Let /" :={Me.#:1(M)= M} be the set of annuli invariant under the
inversion.

- We say that a holomorphic map ® : M — C>, M € ., is z%-type, if there
is a holomorphic map ¥ such that:

®(z) = ¥(z?) for all ze M.

If X: M — R>, Me ./, is a minimal immersion and ®* := 20X )0z is z2-type,
then Period(X) =0 and X(z)+ X(—z) is constant. We denote it by S(X) :=
X(z)+ X(—2).
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. Let us denote the subset E!=¢ of E = C such that
E'"* =[(E'"*), distc(0Eo,0EL ") =¢

where 0Ep, and 6E5‘€ denote the outer components of dE and 0E'*, that is,
both are contained in {|z| > 1}, respectively.

PROPOSITION 3 ((M]). Let X : M — R* M e .V, be a minimal immersion
with Period(X)=0. Then it is the double covering of a nonorientable minimal
surface if and only if

(4.1) g(1(2)) = 1(9(2))
2 fU(G)

where (f,g) is the Weierstrass data of X and I is the inversion. The nonorientable
surface is, concretely, the Mobius strip M /{1,I}.

Now, using Lemma 2 in the end of this section, we have a sequence of
double coverings of minimal Mobius strips, X, : 4, — R A,e N , where n =
1,2,..., such that,

(1) Arlziun c Ay < A4y

X, .
(2) ®":=2 5. 1 2type, S(X,)=0

. 1
(3)  disty, (7, 04,) = 1 +5 4+

2 2
(4) X”(AH)CBI',,7 r’1:2+?+”.+ﬁ <4

(5) X1 — Xl <

1
5 on A,
(n+1)
where a, > 0 is specified later with a, > 2a,.;.

Define 4 = Int((),_, 44), then 4 e .4 Notice that {X,[,} is a Cauchy
sequence on every compact subsets of 4, and hence we have the minimal surface

Z:A— R

as n — oo. Observe that 2 is also a double covering of a minimal Md&bius strip,
such that

(a) Period(Z) =0
(b) Z(4) < By
(c) disty(y,04) = 0.
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Hence 2 defines a complete nonorientable minimal surface lying in a ball of R?,
and the analysis of the proof of Theorem 2 completes.

LEMMA 2. Let X : M — R*, M €./, be a double covering of a minimal
surface such that X(1) =0, ®* is z2-type, S(X) =0, disty(y,0M)=p and
X (M) < B, for some p,r>1. Then for every 6,5 >0 with M'=% e V', there
exists a double covering of a nonorientable minimal immersion

Y:M <R, MexN
such that Y(1) =0, ®Y is z%-type, S(Y) =0, M'° <« M < M and
disty(y,0M) =p+s, Y (M) c B,.pp
|Y - X|| <s* on M.
Proof. Let us denote the outer subset of M by:
Mo :={zeM:|z| > 1}.
Similar to the previous section, we can take the disjoint compact subsets

01,2, ..., = Mo N (M\M'~1/)

for some k € N, which satisfies (3.1) and Proposition 1. To prove this lemma,
we assume that

W3 = —W2j—1, i:1727"'7k
and let
! ! /!
Q= w1 Uwy, £ :=w, | Uwy,.

Now, we take a similar modification of a minimal surface to that of the
previous section with respect to Q;. To precise, suppose that there are double
coverings of minimal Mdbius strips, Yo =X, Y1,...,Y; 1 : M — R3, such that
all of o7,..., #_; hold:

: aY; .
O :=2""" is z>-type
0z

(A)Q | — 0| < on Mp\Q,.

1
Nk

|| on Q, || > §N3-5 on Q;

v
>
~2VN

where v < ||®*| < u—1 and large N. Then observe,

ISCY )| = [ Yir (1) + Yig(=1)]| < %
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After the rotation, we may assume that:

o g 1 8u
4.3 if distps (0, Y; 1(Q))) > —, then /(+&3, Y, 1(Q)) < —(—
( ) R3( 1( 1)) \/N ( 3 1( 1)) \/ﬁ
1
4.4 as well as distg2(+¢3,Gi_1(Q)) > —.
( ) SZ(— 3 1( z)) \/N

Note, the similar conditions (3.6) and (3.5) of them are the crucial role of the
proof of Assertion 1 and Assertion 2 in the previous section.

By the Runge’s theorem again, there is a holomorphic function H; on M
such that

|Hi(z*)| <& on M\w,
|Hi(z*) —log T| <& on w;

for all 7 >0 and ¢> 0. Set

ho(z) = — SSRUL(E) + Hi(=2%)
T epHUE) + A1)

then it is a z2-type holomorphic function on M, never vanishing and
hi(1(z)) = —1(hi(z))
1
lhi — 1| < 7 on Mo\Q]

1
|hi_T|<T on Q;

with the sufficiently small e&. Now let (f;_;,¢;-1) and (f;,g;) be the Weierstrass
data of Y; ;| and Y;, respectively, such that f; = f; | and g; = g;_1/h;. Then the
holomorphic map @’ of Y; is also z>-type and Period(Y;) = 0. Notice that

1oy = 910 E) _1(gia(2) _ ()
91G) ="T10@) ~ 1) ~ 5a)
)

= I(gi(z)
N2 = (291(2))* _ —fili(I(2)) (1 (2))
(zgi(2))” = (/’l[(Z))Z = (2 hi(z)
—fill(2)

i(2)

which follows, by (4.1) and (4.2), that Y; is also a double covering of a non-
orientable minimal surface. Similar to Assertion 1 in the previous section,
together with a sufficiently large 7, we can show that . also holds. Define
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n+l

Qe Q2n
FIGURE 3
S(Yy
Y =Y — V(1) — (2")

and M e ./ such that
disty (y,0M) = p +s.

Then M'° =« M, M e ./ and ||Y — Y| is very small. Repeat the processing
of Assertion 1 and Assertion 2, together with (4.3), (4.4), then we can show that

Y: M<— R®

is the desired minimal surface. O

5. Proof of Theorem 3 (Examples in a halfspace)

In this section, we construct complete minimal surfaces of R® lying in a
halfspace, x3 > 0, but not a slab, which are transverse to every horizontal plane,
similar to [R-T], lying in a slab.

Let D:={zeC:|z| <1} and D*:=D\{0}. And let Q, be a compact
sliced annulus contained in {#,-; < |z| < 1,}, 0 < 1) <, < --- < 1, where deleting
two antipodal pieces centered at the imaginary axe when »n is even, and the real
axe when n is odd. (see Figure 3). Moreover, {Q,} converges to the boundary
circle |z| =1 as n — 0. Denote ¢, = —Ins,, n=1,2,..., where s, is the width
of Q,. Then, by the Runge’s theorem again, we can take a holomorphic
function 2 on D such that

(5.1) |h—cy] <1 on Q,

for all n=1,2,..., respectively.
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Let us define a minimal surface X : D* < R* X (1/2) =0, which has the
Weierstrass data (f,g) and sends the concentric circles {|z| = ¢}, 0 < ¢ < 1, into
horizontal planes of R®. Then the third coordinate function X > is harmonic on
D* and X3 | ) = constant. By the uniqueness of solutions to the Dirichlet
problem, we have X3(z) = alog|z| + b for some real constants a,h. Let a = —1
and b =0, then ¢g(z)f(z) = 20X3/0z = —1/z and hence

P~ /1 —i (1 ~1
— B I _
X(p) RL/2<2Z (g g)’Zz <g+g>’ Z)dz

by the Enneper-Weierstrass representation. Moreover, we define the induced

metric ds of X by
1
ds = — < + |g|) |dz|.
|z[ \lg]

Now let us take such minimal surfaces X and X>, with the Gauss maps g;
and g, defined by:

912 =1 exph(), ga(2) = exp h(z)

respectively, where / is given in (5.1). Observe that it leads us to prove Theorem
3 by following:

(a) Recall g; and g, are all holomorphic on D* and never vanishing, and
hence X;(D*) and X»(D*) are transverse to every horizontal plane.

(b) It is clear that X{ = X3’ = —log|z| >0 on D*, and hence X;(D*) and
X,(D*) are contained in a halfspace x3 >0 of R but not a slab.

(c) Denote @V :=20X;/0z = (¢, 5 2Xf, 3X/) Then both ¢;" and ¢," are z>-
type, and ¢3 = —1/z has no real re51due. It follows that:

Period(X;) =0

and X; is well-defined, not periodic. On the other hand, we compute that:

mJ o dz+i‘J{J $32 dz
y y

-1 1
:J — dz—J — dz-m(Reso —+Res0 @>
) 229> 2z
= ri(exp(—h(0)) +exp /1(0)) # 0
where y = {|z| = 1}. It follows that
Period(X2) # 0

clearly, and hence X, is singly-periodic.
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(d) Now let fe D* be a piecewise differentiable curve. We call it a di-
vergent curve, if either it has infinite Euclidean length or it has finite Euclidean
length but tends to the origin or the boundary curve |z| = 1. In order that X;
and X, are complete, each divergent curve has the infinite arc length with respect
to dsy, dsp, respectively. We consider the following three cases of the divergent
curve f:

« Let § has infinite Euclidean length. Recall |z] <1 on D*, and so

L) = | do - Li' <g§ o) ) e
> 2Jﬂ|dz| =ow, j=1,2.

- If fp tends to the origin of the plane, then we have

1
Li(p) = ZJ —l|dz| = 0, j=1,2.
‘ g2l

- Let f tend to the boundary curve |z| =1 with the finite Euclidean length,
and let §:= {z2|ze€ f}. By the hypothsis of Q,’s, both f and f must cross all
but a finite number of Q,, or all but a finite number of Q,,_;. Since

h

1 . , ,
lg1(2)] = — |e“] ")~ > ¢! for all 22 € Q,,

2]

the either case, we have a number N such that:

Ll(ﬁ) = Jﬁ%|q1(z)| |dZ| > Z rnec,,fl — o,

‘ | n>N, even or odd

Similarly, since

—1
> e” for all z e Q,,

l92(2)] = e |e")

and hence L,(f) = 0.
Therefore X; and X, are all complete, and we have shown Theorem 3.
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