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ABSTRACT: Four general circulation models (GCMs) under the moderate Representative Con-
centration Pathway (RCP) 4.5 emission scenario were used to evaluate the impact of climate
change on monthly scale dune activity and desertification during the near future (2015-2035) in
Anduo on the Tibetan Plateau (TP) of China. Dune activity was estimated by an improved index
that uses the Penman-Monteith equation to account for comprehensive climate factors, including
precipitation, air temperature, wind speed, humidity, and air pressure. Lower limits were used for
the evapotranspiration values and the ratio of rainfall to evapotranspiration so that it was possible
to calculate a dune activity index in the cold and dry winter months in the TP. The GCM outputs
were transferred by statistical functions built from the control period (1966-2005), and the over-
lapping period of GCM projections and observations from 2006-2014 was used for error estima-
tion. The results show that all GCMs captured the variation in dune activity well, although large
differences in values were found. The statistical transferring of GCM outputs cannot reduce esti-
mation error. The annual dune activity index is predicted to decrease by 7 to 9% during
2015-2035, implying that sand dunes will be easily stabilized in the future, but the 4 GCMs differ
in January and February. If excessive surface disturbances can be controlled, the future environ-
ment in the studied area will be suitable for the reversal of the desertification trend, recovery of
degraded land, and improvement of the living conditions for local herders.

KEY WORDS: Dune activity index - Penman-Monteith equation - General circulation models -
GCMs - Statistical transfer

1. INTRODUCTION

The effect of climate change has been widely con-
sidered by researchers and society, and the influence
of climate change on desertification is of great
concern (Sivakumar 2007, Wang et al. 2009). The
Tibetan Plateau (TP), the highest and most extensive
highland on the Earth, is undergoing rapid atmo-
spheric warming and desertification (Yang et al. 2004,
Feng et al. 2006, Kang et al. 2010). The elevated tem-
peratures may contribute to more intense freeze—
thaw action, glacial shrinkage, hydrological drought
in the upper layer of the soil, and more aeolian mate-
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rials (Cheng & Wu 2007, Xue et al. 2009, Li et al.
2012, Yao et al. 2012). The dune activity problem on
the plateau is a continual environmental threat, espe-
cially in Anduo County near Cuona Lake, because
dunes can bury the Qinghai-Tibetan Railway and
other facilities (Fig. 1) (Zhang et al. 2012). However,
little research has investigated the response of dune
activity and desertification to future climate change
on the TP. It is not clear whether desertification will
be accelerated by future warming or restrained by
increased precipitation.

Some dune mobility indices have been developed
to express the influence of climate change on wind

© The authors 2016. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un-
restricted. Authors and original publication must be credited.

Publisher: Inter-Research - www.int-res.com



2 Clim Res 69: 1-8, 2016

|C vId ko™ >

Fig. 1. Problems caused by wind-blown sand and dune mobility in Anduo
County, Tibet. (a) Newly accumulated aeolian sands burying telegraph poles.
(b) Blown sand deposited on the Qinghai-Tibetan Railway. (c) Degraded land
becoming a bare sand surface. (d) A sand fence buried by shifting sand along

Cuona Lake

erosion potential and desertification trends in a
region. A commonly adopted index was modeled by
Lancaster (1988):

M = W/(P/PET) (1)

where M is the dimensionless dune activity index,
and W, P, and PET are, respectively, the wind, precip-
itation, and potential evapotranspiration parameters
that reflect the surface erodibility and wind erosivity
conditions. Sand dunes would trend towards being
active under the condition of a high M value. The
W and P parameters can be easily determined from
meteorological data, but PET is more complex and
critical in reflecting the land surface and climate con-
ditions. PET was originally calculated using the
Thornthwaite method, which assumes 0 evapotran-
spiration when temperatures drop below the freezing
point. This index has been adopted to study the
future changes in deserts and desertification from
Africa to China using general circulation model
(GCM) outputs (Thomas et al. 2005, Wang et al. 2009).

However, when a 0 PET is used, e.g. in the long
cold season over the TP, the denominator in Eq. (1) is
undefined. Thus, Eq. (1) is not practical. Additionally,
temperature is considered to be the only climatic fac-
tor that influences evapotranspiration in the Thorn-
thwaite method, but the complex nature of surface
dryness conditions is not fully expressed. Moreover,
the Thornthwaite method has proven to be unreli-

able for dry conditions, including NW
China (Chen et al. 2005). The dune
activity index can be improved using a
more realistic estimate of PET.

A possible substitute for the Thorn-
thwaite method for estimating PET is
the Penman-Monteith equation. This
equation has been increasingly used by
researchers to obtain a more compre-
hensive estimation of PET that considers
all parameters that govern energy ex-
change and latent heat flux (Fu & Feng
2014, Gao et al. 2015, King et al. 2015).
However, the Penman-Monteith equa-
tion does not address the cold tempera-
ture problem, and the author of the
modified equation stated that ‘the use of
PET under such conditions is of limited
value ..." (Allen et al. 1998, p. 209). Cal-
culation with this method can result in
PET values that are negative or close to
0 when longwave radiation from the
surface is large, leading to negative
or extremely large P/PET values. This
problem was avoided in some previous studies by cal-
culating the seasonal PET, but the PET and dune ac-
tivity at a finer (monthly) scale is still of great interest
because it allows the strong temporal changes in the
surface characteristics and the desertification pro-
cesses over the course of a year to be studied.

Another problem in predictive research that uses
GCM data is the prediction deviation or error in the
models. In over 40 GCMs, contrary predictions were
made for at least some variables, demonstrating that
derived predictions should not be based on a single
GCM,; additionally, some researchers have taken the
mean of the models (Collins et al. 2012, Jiang & Tian
2013, Wang et al. 2014). It has also been implied that
if individual GCM outputs are going to be used, they
should be scaled or adjusted based on historical data
(Zhang 2007). Due to the large spatial and temporal
mismatches between historical and GCM data, many
studies have been carried out to adjust or downscale
the GCM single or multi-variable historical period
data based on their statistical relationships with local
observation variables, and the relationships were
then applied to future predictions (Gunawardhana &
Kazama 2009, Selbig 2015). However, there is little
work that evaluates the efficient adjustment of future
GCM predictions in this manner. Some uncertainty
analyses add tolerance to the future data, but these
are not true error estimates of the GCM predictions
(Fu & Feng 2014).
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Here we used an improved dune activity index by
calculating the PET using the Penman-Monteith
method to study the intra-annual dune activity and
desertification trends in a near future warming dur-
ing 2015-2035 on the cold TP. Lower limits were
applied to the PET and P/PET values to avoid
extreme results in the cold and dry winter months.
Four GCM projections were downscaled to the
target location, and their deviations were consid-
ered by comparing the overlapping historical and
prediction time period values. Anduo County in
the central TP, where severe desertification has
occurred in recent years, was chosen as a case study
area.

2. MATERIALS AND METHODS
2.1. Study area description

Anduo County, located at 32°15'N, 91°40'E be-
tween the Tanglha and Nyenchen Tanglha Moun-
tains, has an altitude of approximately 4800 m,
annual mean temperature of -2.57°C, multi-year
average evaporation of ca. 1690 mm, and annual
mean wind speed of 4.03 m s~'. Records from the
local meteorological station show that multi-year
average precipitation is 446 mm, 70% of which
occurs in the summer, 20% in the autumn, 9% in
the spring, and only approximately 1% in the win-
ter. The temperature rose 0.35°C per 10 yr from
1966-2014 and 0.48°C per 10 yr from 1979-2014
according to historical records, which are almost
twice the reported global land surface air tempera-
ture increases in the CRUTEM and the Berkeley pro-
jections for the period 1951-2012 (Hartmann et al.
2013). In the winter season, the temperature in-
creased 0.59°C per 10 yr from 1966-2014 and 0.70°C
per 10 yr from 1979-2014, which was approximately
60 % higher than the yearly averages. The warming
on this remote plateau area is a clear response to the
combined effects of climatic forcing variables, with
little influence from non-climate variables, such as
urbanization and fertilizer application. Meanwhile,
precipitation has also increased during the recorded
period at a rate of approximately 19.34 mm per
decade, with some fluctuation, but <2 % of the in-
crease occurred in the winter. The wind speed record
shows a declining trend of 0.4 m s~! per decade from
1966-2014. Alpine meadow degradation and aeolian
desertification can be observed along valleys and
roads, which mostly concentrate to the east of Cuona
Lake (Fig. 1).

2.2. Dune activity index

In the dune activity index of Eq. (1), W was origi-
nally represented by the percentage of the wind
speed that was above the sand transport threshold,
but this value is not a standard element from mete-
orological records or GCM outputs. Thus, W was
replaced by U?, where U is the third power of the
mean monthly wind speed from meteorological
observations; U® has been extensively employed in
wind erosion and dune mobility research (Thomas et
al. 2005, Wang et al. 2009). The rainfall factor P= (P4
+ Py)/2 accounts for the prolonged effect of rainfall,
where P, is the amount of precipitation in the previ-
ous month and P, is the precipitation in the current
month.

To estimate PET, we replaced the original Thornth-
waite method with the Penman-Monteith equation as
described above. The Penman-Monteith equation
has been recommended by the Food and Agriculture
Organization of the United Nations as a standard
method to calculate PET, with its principles and pro-
cedures fully provided, following Allen et al. (1998):

_ AR, —G)+pacp o 2)
PET = A +y(1+5))

where A is the slope of saturation vapor pressure, R,
is the net radiation, G is the soil heat flux, p, is the
mean air density, ¢, is the specific heat of air, e;—e, is
the saturation vapor pressure deficit, ry and r, are the
surface and aerodynamic resistances, respectively, A
is the latent heat of vaporization, and yis the psychro-
metric constant.

The equation can be rewritten and simplified to dif-
ferent forms, which usually involve a wind speed at a
height of 2 m (Fu & Feng 2014). However, because
meteorological data are typically obtained from a
height of 10 m and a log transformation would lead to
a larger PET result, the original form of Eq. (2) was
retained to remove any numerical errors. In total, 7
monthly climatic variables from meteorological re-
cords and GCMs, including precipitation, near-
surface wind speed, maximum and minimum air tem-
peratures, near surface relative humidity, total cloud
fraction, and surface air pressure are needed to calcu-
late the parameters on the right of Eq. (2).

To prevent 0 or negative PET monthly values from
frozen surface soil and large longwave radiation in
the cold months, a lower limit of 0.4 mm d~' meas-
ured from a high-latitude cold area was used for PET
(by Allen et al. 1998). The actual value can be less
than 0.4 because a net condensation of water from
the atmosphere on the ground is possible. Moreover,
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there were very low or 0 P values in the dry winter
season over the TP, with no precipitation for more
than 2 consecutive months, leading to extremely low
P/PET and high M values. Thus, a lower limit of 0.05,
which is the lower boundary of P/PET for arid re-
gions, as recommended by the United Nations Envi-
ronment Program, was set for the P/PET values to
avoid extreme results (UNEP 1992).

2.3. Climate data preparation

The monthly historical climate records since 1966
are available from Anduo meteorological station and
were downloaded from the China Meteorological Data
Sharing Service System (https://pcmdi.llnl.gov/search/
cmip5). The outputs from 4 GCMs, viz. the Hadley
Centre Coupled Model (HadCM3), the Geophysical
Fluid Dynamics Laboratory Coupled Physical Model
(GFDL-CM3), the Institute Pierre Simon Laplace-
Coupled Model 5A-Medium Resolution (IPSL-CMS5A-
MR), and the new Meteorological Research Institute
Coupled GCM (MRI-CGCM3), which have fine spa-
tial resolutions and extensive applications, were se-
lected; the spatial resolutions of the 4 projections are
3.75° (longitude) x 2.5° (latitude), 2.5° x 2°, 2.5° x
1.27°, and 1.125° x 1.12°, respectively. The Represen-
tative Concentration Pathway (RCP) 4.5 emission sce-
narios were used to represent the moderate tempera-
ture increase at the end of the 21st century, in which
their historical run and observed records from 1966—
2005 were used as controls, the ‘past’ future run from
2006-2014 was used to estimate errors, and the near
future run from 2015-2035 was used to predict with
relatively high confidence.

Estimation of uncertainty is important for any future
climate change research. Many uncertainty analyses
are based on projected but not historical data, and the
predicted parameter value or results can fluctuate to a
certain level. The comparison of historical records and
GCM runs from 2006-2014 would give a true estima-
tion of the prediction error for each model.

In this study, all 7 GCM variables were spatially
downscaled to the meteorological station location by
first smoothing its 4 nearby grid values using an
inverse distance weighting method (Li et al. 2011).
This is necessary because the Anduo meteorological
station is located far from the grid center of any of the
GCMs. The spatially smoothed data from the GCMs
still differ from the historical records, e.g. the precip-
itation value, which is usually one of best-predicted
parameters in GCMs (Fig. 2). The precipitation quan-
titatively simulated using the MRI-CGCM3 model is
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Fig. 2. Precipitation data (observed and simulated by
general circulation model, GCM) Anduo from 1966-2014

in closest simulated agreement with the historical
data, the IPSL-CM5A-MR model underestimates the
historical data by approximately 30 %, the HadCM3
model overestimates the data by approximately 100 %,
and the GFDL-CM3 model overestimates the histori-
cal data by 180 %.

Statistical techniques with an intuitive and effective
use of the transfer function were developed to match
the historical and GCM predictions (Zhang 2005,
2007, Cheng et al. 2008, Gunawardhana & Kazama
2009, Zhang et al. 2011). However, the statistical
transfer of 7 parameters involves a large error,
whereas ideally it would have the same outcome as
the transfer of the final M values. Another advantage
of transferring the M values is that the variability of
several climate factors within 1 GCM was retained.
Here, we fitted 2-parameter univariate transfer func-
tions to the M results for each month and each GCM
(12 mo x 4 models) to reduce their differences com-
pared to the observations for the baseline period from
1961-2005. One nonlinear or linear function was built
based on quartile plots, where the observational re-
sults were plotted on the y-axis and the GCM predic-
tion results were plotted on the x-axis, meaning that
the historical and GCM projections were ranked by
pair according to their quartiles instead of their calen-
dar year. The logic behind this representation is that
the GCMs predict the trends or extremes of the cli-
mate rather than specific values at specific times.

The LAB-fit Software (Universidade Federal de
Campina Grande, Brazil) was adapted to automati-
cally search through a pool of 208 functions and pro-
duce a list of the top regressions; the regression with
the best determination coefficient (R?) was selected.
The R? values are higher than 0.94 for all 48 regres-
sions. For each GCM, we could obtain the hindcast
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errors with and without transfer functions at 12 mo
and their average as a total error. The transfer func-
tions were then applied to the GCM prediction data
for the test period from 2006-2014 and to the future
period from 2015-2035. The adjusted and unad-
justed GCM results in the test period were compared
with historical data to obtain the estimation errors.
The 12 monthly dune activity indices in a year were
summed together to obtain an annual value. Finally,
the trend in the dune activity in Anduo over the TP
was estimated according to the results from the 4
GCM future predictions compared to the baseline
period.

3. RESULTS AND DISCUSSION
3.1. Historical period estimations

For the historical baseline period from 1966-2005,
all 4 GCMs captured the intra-annual characteristics
of the M value, which is low in the summer and much
higher from late autumn to the following spring, but
the results differ by up to 2 orders of magnitude
(Fig. 3). The January M value ranged from 77 to
2069, and the July M value ranged from 3 to 107. Pre-
cipitation mainly occurred in the summer, the season
with the lowest M value and the only season in
the study area with a temperature above 0°C. The
HadCM3 and GFDL-CM3 models underestimate M
for all months, while the IPSL-CM5A-MR and MRI-
CGCM3 models overestimate M from June to Octo-
ber. At an annual scale, the MRI-CGCM3 model has
the least error compared with the historical records.

10000 3
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—e— HadCM3
1 —&— GFDL-CM3
1000—E —v— IPSL-CM5A-MR
] —e— MRI-CGCM3
= 100 4
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Fig. 3. Intra-annual variation in mean monthly M (dimen-

sionless dune activity index) in historical observations and

general circulation model (GCM) projections during the
control period 1966-2005

The results show that the GCMs used in this study
could be used to analyze dune activity trends. How-
ever, a quantitative study is not feasible even using
the averages, because of the large differences be-
tween their values.

3.2. GCM downscaling error

All 4 GCMs reported >82 % error compared to his-
torical records, and the transfer functions signifi-
cantly reduced prediction error to <30% (Fig. 4a).
However, when the functions were applied outside of
the period for which they were built (i.e. 2006-2014),
large estimation errors with an average of 190 %
were reported for the 4 GCMs (Fig. 4b). The errors
after statistical transfer were larger than in those
without transfer functions for 3 of the models; the
exception was the MRI-CGCM3 model. This could

4.0

| a: Baseline, 1966-2005 Y

s

T T T T T T T I T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovDec Avg

18 { b:Test, 2006-2014

16__ Original Transferred

14l == —=— HadCM3
--e-- —e— GFDL-CM3

124 --a- —a—]JPSL-CM5A-MR
--v--  —v— MRI-CGCM3

T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovDec Avg

Fig. 4. Differences in M (dimensionless dune activity index)
values predicted by the general circulation model (GCM)
from historical records in (a) the baseline (1966-2005) and
(b) test (2006-2014) periods for each month and their aver-
ages (Avg), with and without regression transferring
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be because the test period was short and the GCM
projections could be outside the baseline ranges.
This may have been the case for the IPSL-CM5A-MR
model, but it also indicates that the confidence on
downscaling or adjusting GCM predictions based on
their statistical relations with historical data may be
false due to the irregular nature of climatic factors.
Thus, if the functions were applied to GCM future
estimations, there would be no quantitative guaran-
tee on the accuracy of the results.

In the original model predictions, the HadCM3
model reported the least error for both the baseline
and test periods, followed by the GFDL-CM3 model,
whereas the MRI-CGCM3 model showed the largest
error between the baseline and test periods. These
results indicate that the HadCM3 model captures
the best overall climatic parameters on a monthly
scale.
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Fig. 5. Predictions (a) without and (b) with transfer functions

of the future M (dimensionless dune activity index) values

by the 4 general circulation models (GCMs) and their aver-

ages in the period 2015-2035 from the baseline period
1966-2005

3.3. Future changes in the dune activity index

Although the original and transferred GCM pre-
dictions are significantly different from each other
quantitatively, both estimations predict that the dune
activity indices will decrease. The original average
annual reductions in M values from the future period
2015-2035 to the baseline period 1966-2005 are 35,
16, 11, and 18 % for the HadCM3, GFDL-CM3, IPSL-
CMS5A-MR, and MRI-CGCM3 models, respectively
(Fig. 5a). The transferred predictions are 2 to 10%
larger (Fig. 5b). This indicates a generally lower
annual aeolian activity and desertification pressure
in the studied area. Using the original predictions,
multiplying the historical monthly M values for the
baseline period by the average changing rates for the
4 GCMs resulted in a 9 % reduction in annual M dur-
ing 2015-2035; a 7% reduction was obtained with
the transfer functions. This can be explained by the
decline in surface wind speed and increase in precip-
itation over the TP (Xu et al. 2008, You et al. 2014). A
reduction in the future M value indicates that in the
future, there will be more suitable conditions for veg-
etation and a lower desertification tendency. Taken
together with increasing precipitation, the future bio-
logical environment will likely improve.

However, the predictions differ at a monthly scale.
The HadCM3 model estimates a continuous reduction
in M values. The GFDL-CM3 model estimates an in-
crease from January to March; the IPSL-CM5A-MR
model shows a continual increase to April; while the
MRI-CGCM3 model predicts an increase in M from
April to June in the spring season. As a result, the an-
nual aeolian surface activity potential is certain from
the 4 GCM models, but its seasonal characteristics are
uncertain. The dune activity index is likely to increase
in cold and dry January and February, although an
overall decreasing annual trend is predicted.

Seasonal variance is important for the desertifica-
tion and sand dune mobility in this area because sur-
face degradation is most significant in the dry winter
and spring, while rainfall is concentrated in the sum-
mer which has a limited effect in weakening the
annual wind-blown sand activity. The possible accel-
eration of wind erosion, dune activation, and deserti-
fication in the winter is difficult to offset naturally in
this harsh local ecosystem.

4. CONCLUSIONS

In this study, the future monthly and annual dune
activity indices in an area in the Tibetan Plateau
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were estimated by replacing the Thornthwaite evapo-
transpiration method with the Penman-Monteith
equation to reflect more comprehensive environ-
mental conditions. Limits on the PET and P/PET
values were added to avoid extremes in the calcula-
tions for the long cold and dry seasons.

All of the selected GCMs could hindcast the varia-
tions in the dune activity index, but their predicted
values had large quantitative errors. The statistical
relationships derived from historical records also
resulted in large errors, and were not fully applicable
to future predictions, so that there is low confidence
in adjusted GCM future data. After calculating the
average of the 4 GCMs, the final trends with and
without statistical transfer for the 2015-2035 future
period were close to the 1966-2005 baseline period.
It is not necessary to adjust the GCM parameters if
multi-models and variables are used in similar trend
analysis studies.

The average of the 4 GCMs used in the moderate
RCP4.5 scenario indicated a 7 to 9 % reduction in the
annual dune activity index in the near future before
2035 due to the changing climatic factors including
increasing precipitation and declining wind speed.
Thus, environmental conditions such as surface de-
gradation and desertification will likely improve in
Anduo County, despite the possibility of increased
dune activity in the dry and windy winter. It can be
inferred that problems of active wind erosion and
wind-blown sand in some spots over the TP is a con-
sequence of human disturbance, e.g. road construc-
tion and overgrazing, which is reversible if excessive
human activities can be managed and reasonable
environmental protection policies including enclo-
sure of fragile meadows and rotational grazing can
be fully executed. Increases in precipitation and tem-
perature in the future will increase the likelihood of
success of remedial practices such as artificial vege-
tation restoration.
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