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1.  INTRODUCTION

Land-use changes (LUCs) affect surface tempera-
ture by modifying vegetation-soil-atmosphere ex -
changes of water and energy (Kalnay & Cai 2003).
The impacts of historical LUCs (such as deforesta-
tion, urbanization, and increasing or decreasing
crop land) on surface temperature changes have been
extensively evaluated (e.g. Hahmann & Dickinson
1997, Fu 2003, Sen et al. 2004, Yoshida et al. 2012).

At a regional scale, a method frequently used for
the assessment of LUC-induced surface temperature
changes is the use of a regional climate model (RCM)

with various land-surface boundaries (e.g. Yoshida et
al. 2012). Although RCMs can be used for physics-
based assessments, their high computational costs
hinder the application of RCMs to uncertainty ana -
lysis (e.g. Mariotti et al. 2011) when computer re -
sources are limited. Uncertainty analyses requires
many climate downscaling simulations with various
LUC scenarios and multiple climate projections,
which are derived from different global climate mod-
els (GCMs) and different greenhouse gas and aerosol
emission scenarios.

When computer resources are limited, the impact-
function method (also known as statistical emulation)
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can be used as an alternative to uncertainty analysis
with a computation-heavy model. The impact-func-
tion method develops a statistical model that mimics
the response of a complex model to a given forcing
change (Murphy et al. 2007, Hanasaki et al. 2007,
Iizumi et al. 2009, Good et al. 2012, Ramankutty et al.
2013). When using the impact-function method, a
selected number of sensitivity analyses are con-
ducted with a complex model. In addition, a database
of the model’s responses to forcing changes is cre-
ated. Next, a statistical model is fit to the simulated
data. Iizumi et al. (2009) used this method to simulate
changes in paddy rice yield in Japan for different cli-
mate change scenarios. According to Iizumi et al.
(2009), the impact functions for paddy rice in Japan
can accurately approximate a computationally heavy
crop model for different temperatures, solar radiation
values, planting dates, and CO2 concentrations. This
approach allows for integrated assessment without
embedding the complex crop model into an inte-
grated assessment model. This concept has been ap -
plied to estimate the climate change impacts on crop
yields (e.g. Sheehy et al. 2006, Schlenker & Lobell
2010, Ruane et al. 2013).

The objectives of this study include the following:
(1) to create impact functions for the summer mean,
maximum, and minimum surface temperatures (Tave,
Tmax, and Tmin) in response to a given LUC by apply-
ing the impact-function method to a RCM; (2) to val-
idate the developed impact functions by comparing
them with RCM simulations (referred to as the RCM
method); and (3) to estimate the range of possible
regional surface temperature changes in different
LUC scenarios using the developed impact functions.
The objective variables in the impact functions
included changes in Tave, Tmax, and Tmin at specified
spatial and temporal scales. In addition, the ex -
planatory variables included changes in land-
use/land-cover (LULC; represented by the following
 land-surface parameters: surface albedo, evaporative
efficiency, roughness length, heat capacity and ther-
mal conductivity). A nonhydrostatic regional atmo -
spheric model (Japan Meteorological Agency non-
hydrostatic model, JMA-NHM; Saito et al. 2007) was
used as an example of a RCM. The island of Shikoku,
which is located in western Japan (Fig. 1), was stud-
ied be cause the historical LUC-induced surface
warming in this area was recently evaluated using
the RCM method (Yoshida et al. 2012). In addition,
paddy fields in the Shikoku area have been decreas-
ing more rapidly (20.3% in 2006 relative to 1987;
MAFF 2007) than in other parts of Japan (16.1%
based on the national average), which makes this

area suitable for study. Fig. 2 shows the geographical
distributions of LULC across the island of Shikoku.

2.  DATA AND METHODS

The procedures that are involved in the different
methods are illustrated in Fig. 3.

The derived impact functions were evaluated with
the RCM method to determine their ability to simu-
late LUC-induced summer temperature changes
across Shikoku between 1987 and 2006. Next, an un -
cer tainty analysis was conducted to estimate the
spread of the possible temperature changes in the
area during the LUC scenarios. The uncertainty
analysis method is described at the end of this
 section.

2.1.  RCM method

Using the RCM method (Fig. 3a), 2 types of climate
downscaling simulations were performed with the
5 km mesh JMA-NHM model for the entire Shikoku
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Fig. 1. Location of Shikoku and the calculation domain used
in the Japan Meteorological Agency nonhydrostatic model
(JMA-NHM) simulations. (a) The outer domain was 61 ×
61 cells with a cell spacing of 20 km; (b) the inner domain 

was 81 × 81 cells with a cell spacing of 5 km
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area for 72 d (from 5 June to 15 August) of each year,
between 1987 and 2006 (Table 1). The analysis pe -
riod was the same as in a previous study (Yoshida et
al. 2012), which estimated the impacts of historical
LUCs on surface warming in the Shikoku area. One
type of climate downscaling simulation used the
 historical LUCs from the National Land Numerical

Information data (NLNI; MLITT 2012). The other
type of simulation used a constant LULC condition
identical to the conditions in 1987. The initial and lat-
eral boundary conditions of the 2 simulations were
based on the Japanese 25 yr Reanalysis (JRA-25;
Onogi et al. 2007) and National Oceanic and Atmo -
spheric Admini stra tion (NOAA) Optimum Interpola-
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tion Sea Surface Temperature data (Reynolds et al.
2002). Additional details regarding climate downscal-
ing simulations are available in Yoshida et al. (2013).

2.2.  Impact-function method

The impact-function method consists of the follow-
ing 3 steps (Fig. 3b): (1) sensitivity analysis of the
JMA-NHM model for various LULC conditions, (2)
derivation of the impact functions, and (3) simulation
of the LUC-induced surface temperature change
with the derived impact functions.

2.2.1.  Sensitivity analysis of the JMA-NHM model

In the JMA-NHM model, the LULC condition for a
given grid cell was specified by a set of 5 land-
surface parameters, including surface albedo, evapo-
rative efficiency, roughness length, heat capacity, and
thermal conductivity. The LULC data from the Global
Land Cover Characterization data (with a 1 km grid
size) (GLCC; Loveland et al. 2000) were averaged
based on the allocation of the LULC data point within
a 5 km grid cell to obtain a single set of land-surface
parameter values. Although a different LULC data
source was used for the impact-function method
(GLCC) relative to the RCM method (NLNI), the dif-
ference in value of the present-day LULC between
the 2 LULC datasets are not important for this study,
because a range of land surface parameter values
perturbed in the sensitivity analysis is far larger than
the difference between the 2 LULC datasets.

The sensitivity analysis of the JMA-NHM model
was conducted by independently perturbing the

land-surface parameter values for the Shikoku area
(Fig. 3b). The range and interval of each parameter
value are shown in Table 2. Each parameter range
was determined for all possible LULC conditions (e.g.
forest, paddy field, bare soil) in the study area based
on Kondo (1994). When the value of an intended
parameter was modified, the values of the remaining
parameters were set to their default  values, which
were obtained from Kondo (1994) and were based on
the spatial LULC distribution of the GLCC data. Five
levels were used for all para meters, other than evap-
orative efficiency. Six levels were used for the evap-
orative efficiency because the preliminary results
suggested that the summer temperatures in the study
area were more sensitive to this parameter than to
the others. All land-surface parameters, except for
those in Shikoku area, were maintained at their
default values during the sensitivity analysis.

                                                                  Outer domain                                                                    Inner domain

Model                                                       JMA-NHM (Saito et al. 2007)                                          Same as outer domain

Center                                                       33° 36’ N, 133° 24’ E                                                          Same as outer domain

Domain                                                     1220 × 1220 km                                                                405 × 405 km

Grid size                                                   20 km with 61 grid cells                                                   5 km with 81 grid cells

Time step                                                  60 s                                                                                     15 s

Initial and boundary conditions             JRA-25 (Onogi et al. 2007)                                               Results of 20 km calculation

Vertical layer                                           38 layers stretching over a grid of 40−1120 m               Same as outer domain

Sea surface temperature (SST)               NOAA Optimum Interpolation SST                                Same as outer domain

Moist process                                           Kain-Fritsch scheme (Kain 2004) and cloud                  Same as outer domain
                                                                  microphysical processes

Turbulent process                                    Improved Mellor-Yamada level 3                                   Same as outer domain
                                                                  (Nakanishi & Niino 2004)

Table 1. Common experiment design. JMA-NHM = Japan Meteorological Agency nonhydrostatic model; NOAA = National 
Oceanic and Atmospheric Administration; SST: sea-surface temperature

Parameter                    Parameter value at each level
                                   L1       L2       L3       L4       L5     L6

α (Dimensionless)     0.0       0.2       0.4      0.6      0.8       
β (Dimensionless)     0.0       0.1       0.2      0.4      0.6     1.0
z0 (m)                        10−4     10−3     10−2     10−1     100       
cρ (106 J m−3 K−1)      0.2       1.2       2.2      3.2      4.2       
λ (W m−1 K−1)             0.1       0.6       1.1      1.6      2.0

Table 2. Values of the 5 land-surface parameters (α: surface
albedo; β: evaporative efficiency; z0: roughness length; cρ:
heat capacity; and λ: thermal conductivity) that were used
for the Japan Meteorological Agency nonhydrostatic model
(JMA-NHM) model sensitivity analysis. Note: the set of pa-
rameter values (α, β, z0, cρ, λ) that were used for some of the
major land-use/land-covers are as follows: forest = (0.1, 0.3,
0.95, 1.0 × 106, and 0.7), paddy = (0.1, 0.8, 0.03, 2.3 × 106, and
1.6), and building lots = (0.13, 0.05, 1.0, 3.0 × 106, and 2.1)
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For each set of land-surface parameter values, a
1-summer simulation was performed for 5 different
years with the JMA-NHM model (1985, 1990, 1995,
2000, and 2005). A calculation period of 72 d (from
5 June to 15 August) was used for each year. This
simulation was performed 26 times with different
para meter sets (5 levels × 4 parameters + 6 levels ×
1 parameter). Although the simulation period was
ex actly 72 d yr−1, the total number of calculations
corresponded to a 9750 d (approximately 27 yr) sim-
ulation. Due to the heavy computational burden, we
did not conduct a 20-summer sensitivity analysis
simulation for each parameter set. In addition, we
were unable to account for any cross-parameter
effects. For each simulation, the results from the
first 10 d (considered as the spin-up period) were
discarded. The simulated Tave, Tmax, and Tmin values
were averaged over the summer season (from 15
June to 15 August) and over 5 yr periods for each
5 km grid cell. These averages were used to de -
termine the impact functions. Other parts of the
JMA-NHM model, including the initial and lateral
boundary conditions, were the same as the values
used in the RCM method.

2.2.2.  Derivation of the impact functions

For each grid cell, parameter, and variable (Tave,
Tmax, and Tmin), a cubic spline function was fitted to
5 (or 6) samples of the simulated 5-summer mean
temperatures (Fig. 4). Because of its flexibility, we
selected a cubic spline function to mimic the gra -
dual increase or decrease in value of the tempera-
ture variables associated with the change in value
of land surface parameter as shown in Fig. 4 (how-
ever, note that other nonparametric functions could
be alternatives). The resulting spline functions should
represent the typical responses of Tave, Tmax, and
Tmin in each grid cell to changes in a given land-sur-
face parameter value. By applying these functions,
we derived the surface air temperature responses to
land-surface parameter changes as follows:

(1)

where ΔTa is the surface air temperature change (Ta:
Tave, Tmax, and Tmin) that results from a land-surface
parameter change (Δpi), and pi is the land-surface
parameter (1: surface albedo, 2: evaporative effi-
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ciency, 3: roughness length, 4: heat capacity, or 5:
thermal conductivity). The partial differential coeffi-
cient (δTa/δpi) was derived from the cubic spline
functions.

The reliability of the RCM outputs increases with
the increasing average temporal and spatial do -
mains, which suggests that a particular spatial scale
potentially provides the most accurate impact func-
tions. To determine this scale, we examined various
spatial scales as a function of the number of 5 km grid
cells (e.g. 5, 10, 20, and 40 km). In this calculation,
impact functions for Tave, Tmax, and Tmin were created
similarly as described above after box-averaging. For
example, for the 10 km grid, each grid cell is com-
posed of four 5 km grid point values (GPVs) that were
averaged to obtain a single value for the 10 km grid
cell. The GPVs for the other scales were computed in
a similar manner.

2.3.  Validation of the impact-function method

For the validation purpose, the composed impact
functions were compared with the LUC-induced sur-
face warming for the period 1987−2006 simulated by
the RCM (Fig. 3). In the RCM method, historical and
fixed LUC scenarios were converted to land surface
parameters and inputted separately to the JMA-
NHM model. Surface warming was estimated by tak-
ing their differences. In the impact function method,
land surface parameters were first converted to the
difference between historical and fixed LUC sce -
narios (i.e. Δpi) and then were applied to Eq. (1). The
validation was conducted for each spatial scale of the
impact function.

2.4.  Uncertainty analysis of the LUC-induced
surface temperature change

After validating the impact functions, an uncer-
tainty analysis was performed to estimate the poten-
tial LUC-induced surface temperature spread across
Shikoku that resulted from the different LUC sce -
narios. While there are many sources of uncertainty,
we focused the uncertainty of surface warming asso-
ciated with different scenarios of LUC by means of
the intensity and geographical distribution of LULC
relative to the reference LULC. For the uncertainty
analysis, the Monte Carlo method was used to gener-
ate a number of artificial LUC scenarios. Of the many
scenarios generated, this study focused on 6 LUC
conversion types, including (1) forest to paddy, (2)

forest to building lots, (3) paddy to forest, (4) paddy to
building lots, (5) building lots to paddy, and (6) build-
ing lots to forest. These conversion types were cho-
sen because the dominant LULCs (74.6% in 2006) in
the study area involve forested land. In addition,
urbanization is known to cause significant warming.
Furthermore, in recent decades, the dominant LUC
in the study area involved the conversion of paddies
to building lots (Yoshida et al. 2012).

The uncertainty analysis was performed as follows.
(1) To account for various LUC types and geo -
graphical distributions, a random number of samples
were obtained from a uniform distribution between 0
and 1 for a given 5 km grid cell. (2) If the sampled
value was <0.5, no LUC was set for the grid cell. In-
stead, another random number was generated from a
uniform distribution that varied between 1 and 6 (this
number corresponds to the LUC types mentioned
above, e.g. ‘1’ means the conversion of forest to
paddy). (3) The sampled LUC was ap plied to any of
the 100 m mesh NLNI data from 2006 that were lo-
cated within the selected 5 km grid cell of the impact
function. (4) A set of land-surface parameter values
for the grid cell and the sampled LUC were computed
(Fig. 3b). (5) For a given grid cell, the responses of
Tave, Tmax, and Tmin to changes in each land-surface
parameter value were derived from the corresponding
cubic spline functions. The applied resolution of the
impact function was decided by its performance in the
validation. The resolution that most accu rately simu-
lated Shikoku-mean surface temperature was used
across Shikoku. Next, the temperature  responses to
the 5 land-surface parameters were summed linearly.
(6) Steps (1) through (5) were repeated for all grid
cells that were located within the Shikoku area. In ad-
dition, the simulated changes in temperatures across
the grid cells were averaged where each of the 6 LUC
scenarios (1−6) occurred (however, these values were
not the average temperature changes across the
Shikoku area). (7) These procedures were repeated
10 000 times to account for multiple LUC scenarios.
This procedure resulted in various LUC scenarios
with different geographical patterns and intensities.
We averaged the simulated temperature change for
each LUC scenario (but not over the Shikoku area) to
isolate the LUC-induced temperature changes in
 residential (urban and rural) areas relative to  non-
residential areas (e.g. forest). Based on these LUCs,
the temperature responses were calculated and aver-
aged across Shikoku for each of the 6 LUC scenarios.
We used the  high-resolution NLNI data rather than
the coarse resolution GLCC data to take into account
the actual spatial LULC distribution at a smaller scale.
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3.  RESULTS

3.1.  Derived impact functions

The typical responses of Tave, Tmax, and Tmin to the
land-surface parameter changes are shown in Fig. 4.
These responses were obtained from the sensitivity
analysis for the entire Shikoku area. The major char-
acteristics of the Tave, Tmax, and Tmin responses for
land-surface parameter changes were similar to each
other. However, the sensitivities differed among the
3 temperatures. For example, the slope of the Tmax

spline function in the high albedo area (0.6 < α) was
steeper than the slope of Tave and Tmin (Fig. 4a). This
result suggested that Tmax was more sensitive to sur-
face albedo than the other variables. In addition, the
response of Tmax was more sensitive to the evapora-
tive efficiency (β), especially in the lower evaporative
efficiency area (β < 0.4; Fig. 4b). In contrast, the
responses of Tmax to changes in the remaining param-
eters (roughness length, heat capacity, and thermal
conductivity) were weak relative to the responses to
the surface albedo and evaporative efficiency param-
eters. However, Tave and Tmin were more sensitive to
heat capacity and thermal conductivity (relative to
Tmax) (Fig. 4d,e). Furthermore, a comparatively lower
sensitivity to roughness length change was observed
for all variables (Fig. 4c).

3.2.  Performance of the impact-function method

Fig. 5 depicts the LUC-induced warming over
Shikoku between 1987 and 2006 that was simulated
with the RCM and impact-function methods. The
same historical LUC data were applied for 2
 methods. For the RCM method, the simulated tem-
perature differences between the 2 simulations (the
historical LULC run minus the fixed-LULC run; Fig.
3a) represent the historical LUC impacts on warming.
The warming values that were simulated with the
RCM method were +0.041, +0.050, and +0.039°C
20 yr−1 for Tave, Tmax, and Tmin, respectively. The
warming mainly resulted from the deforestation that
occurred be fore 2000, the reforestation that occurred
after 2000, and the conversion of paddies to building
lots and roads throughout the study period (Yoshida
et al. 2012).

The historical LUC-induced warming that was
obtained from the impact-function method corre-
sponded to the RCM method. However, the root-
mean-square error (RMSE) between the 2 methods
varied with the grid size of the impact functions

(Fig. 5). The impact functions for Tave at a grid size of
10 km and 20 km had lower RMSE (0.004°C 20 yr−1)
values than the impact functions at other grid sizes
(0.017 and 0.005°C 20 yr−1 for 5 km and 40 km). Sim-
ilarly, for Tmax and Tmin, a lower RMSE was found for
the 10 km and 20 km impact functions relative to
other impact functions. For all variables, the 10 km
and 20 km impact functions matched the RCM me -
thod results with an RMSE of 10−15% relative to the
RCM method results throughout the analyzed period.
Although the 10 km and 20 km impact functions
showed the same value in RMSE, the absolute value
of mean error (impact-function minus RCM) was
smaller for the 10 km impact functions (0.001°C
20 yr−1) than the 20 km impact functions (−0.003°C
20 yr−1).
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3.3.  Spread of the LUC-induced warming

Fig. 6 shows the spread of the LUC-induced tem-
perature changes that were associated with different
LUC scenarios. Here, we used the 10 km grid im -
pact functions because they were the most accurate
across different scales. The extent of the observed
temperature change varied substantially between
the different LUC scenarios depending on the vari-
ables. The spreads of the Tave, Tmax, and Tmin values
were −0.4 to 1.2°C, −1.1 to 0.5°C, and −0.1 to 2.3°C,
respectively (based on the median value of each box
plot). The conversion of forest lands to building lots
(F→B) increased the temperatures of all variables. In
contrast, the conversion of forest lands to paddy
fields (F→P) resulted in a lower Tmax and Tave, and
produced the second largest increase in Tmin. The
LUC for the conversion from paddy fields to building
lots (P→B) had a small impact relative to the impacts
of the ‘deforestation’ scenarios (F→B and F→P). In
addition, the induced temperature increase reached

up to 0.23°C for Tmax, 0.19°C for Tave, and 0.18°C for
Tmin. For the remaining LUCs (P→F, B→P, and B→F),
the LUC-induced temperature changes were always
less than the LUC-induced temperature changes of
the F→B, F→P, and P→B scenarios.

4.  DISCUSSION

4.1.  The effects of grid size on impact-function
performance

The performance of the impact-function is affected
by grid size (Fig. 5). Thus, the effects of grid size on
the impact functions that are used for simulations
must be studied in detail. Therefore, we determined
the RMSE values between the RCM and impact-
function methods at various grid sizes (ranging from
5− 40 km). These RMSEs are summarized in Fig. 7.

The calculated RMSE values decreased substan-
tially for all variables after box-averaging (from 5 to
10 km; Fig. 7). Thereafter, the RMSE values gradu-
ally increased with increasing grid size with a mini-
mum at grid sizes of 10 and 20 km. The improved
performance (represented by a smaller RMSE) of the
10 and 20 km grids relative to the 5 km grid poten-
tially occurred because the impact-function method
did not account for horizontal advection or cross-
parameter effects. Another possible reason is noise
caused from internal variability, which distorted the
spline fitting in the composition of impact functions.
Box-averaging may cancel these effects and result in
a good match between the 2 methods.
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The gradual decrease in performance from the grid
sizes of 10 and 20 km to the grid size of 40 km poten-
tially occurred because the temperature responses to
changes in the land-surface parameter values from
the impact functions are oversimplified by the box-av-
eraging. The RMSE values for Tmin are always greater
than those for Tave and Tmax. As shown in Fig. 4, Tmin is
sensitive to changes in heat capacity (cρ) and thermal
conductivity (λ) when these values are low (cρ < 1 ×
106 and λ < 0.6). These are similar to the values
that are given for forest terrain (cρ = 1 × 106; λ = 0.7;
Table 2). The creation of the  impact-function required
caution for these sensitive value ranges; however, we
did not account for any cross-term effect and thus Tmin

estimation was poor compared to that of Tave and Tmax.
Also, because the most mountainous areas in the
study area (which are characterized by complex
 terrains) are covered by forest, box-averaging may
decrease the impact of topography in mountainous
 areas, which results in smoother temperature re-
sponses (particularly for Tmin). In contrast, Tave and
Tmax respond to surface albedo and evaporative effi-
ciency more than they respond to other parameters
(Fig. 4a,b). However, the responses of Tave and Tmax to
lower surface albedo values (α < 0.2) and evaporative
efficiencies (β < 0.3), which are near the forest land
values (α = 0.1; β = 0.3), were not very sensitive
(Fig. 4a,b). These insensitive responses contributed to
the lower RMSE values for Tave and Tmax relative to Tmin.

4.2.  Uncertainty of surface temperature change
associated with LUC scenarios

As shown in Fig. 6, the greatest warming due to
LUC occured when forest land is converted to build-
ing lots (+1.0 to +1.3°C for Tave). This area currently
corresponds to non-residential areas. The greatest
warming occurred in the ‘deforestation/urbanization’
scenarios (F→B) because forest land is the most
 dominant LULC in the study area. In addition, urban
heat islands are known to cause significant warming
(Kimura & Takahashi 1991). The other LUC from
 forest land, the F→P scenario, showed different re -
sponses among temperatures: warming for Tmax and
Tave, and cooling for Tmin. This is because an increase
of evaporative efficiency (forest land to paddy field:
0.3−0.8) contributes surface cooling for Tmax and Tave

and increases of heat capacity (1.0 × 106 to 2.3 × 106 J
m−3 K−1) and thermal conductivity (0.7 to 1.6 W m−1

K−1) cause surface warming for Tmin (Fig. 4). Relative
to these temperature changes, the temperature
changes associated with the LUCs, such as B→P and

B→F (approximately −0.1°C for Tave, Tmax, and Tmin),
were small. This result occurred because of the lim-
ited original extent of building lots. The area of the
building lots only accounted for 3.6% of the Shikoku
area. In contrast, the area of the forest land ac -
counted for 74.6% of the Shikoku area (Yoshida et al.
2012). Nevertheless, Fig. 6 clearly demonstrates the
magnitude of the potential impacts of LUCs on local
warming and the uncertainties that result from the
different LUC scenarios. If we compare LUC-induced
warming to the warming that results from other
causes (using climatic change as the example), the
maximum impacts of the LUCs on warming (+1.0 to
+1.3°C for Tave) roughly correspond to the global
annual-mean surface warming in the 2040 decade
(with some variations across GCMs; the differences
across the emission scenarios are not during this
period; IPCC 2007). Although the temporal and spa-
tial scales differ, this comparison could help us to
understand the magnitude of LUC-induced warm-
ing. Bagley et al. (2012) performed similar compar-
isons for changes in global crop yield due to future
climate change and different LUC scenarios. How-
ever, the largest decrease in Tave was observed when
forest lands were converted to paddy fields (−0.40 to
−0.35°C). This result occurred due to the drastic
change in β, which changed from 0.3 for forest land
to 0.8 for paddy fields. Because paddy fields in sum-
mer have water surface for cultivation, the value of
parameter β for paddy fields is higher than that for
forest land. In addition, evaporative cooling con-
tributes to the decreasing Tave. Based on the area
average, the magnitude of this cooling offsets the
projected warming in the 2010 decade, which sug-
gests that it is impossible to offset climate-change-
induced warming in the Shikoku with land-use
 management efforts such as the reforestation or reac-
tivation of paddies in urban areas.

4.3. Characteristics of the impact-function method,
and comparison to the RCM method

The impact-function method is useful when com-
puter resources are limited. This method can be used
to perform uncertainty analysis without a computa-
tionally heavy model. Although computer resources
for environmental studies have be come more avail-
able, these resources are not al ways adequate for
simulating very comprehensive models that use
fine grid sizes (Challinor et al. 2009). Therefore, the
impact-function method is a potentially helpful alter-
native for performing uncertainty analysis.
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The impact functions that were developed in this
study partially rely on the physical principles that
were modeled in the RCM (with some errors that are
presented in the Results section) when the given
LUC was within the range of the RCM sensitivity
analysis. Because the impact functions are statistical
models, users must exercise caution when extrapo-
lating them. Furthermore, composed impact func-
tions should always be validated as far as possible.
These requirements are disadvantages of the impact-
function method. In addition, the reliabilities of the
impact functions depend on the sample size used to
create them. Increasing the sample size may enable
the use of statistical models that account for cross-
parameter or nonlinear effects. However, a trade-off
exists between the complexity and reliability of the
statistical models, and the sample size that can be
processed with limited computer resources.

5.  CONCLUSIONS

This study developed impact functions that ap -
proximated the effects of the RCM-simulated LUCs
on summer temperatures in Shikoku without requir-
ing computationally heavy simulations. The devel-
oped impact functions were evaluated by comparing
them to the RCM results that were obtained with the
RCM method. The impact functions were then used
during uncertainty analysis to estimate the potential
changing surface temperature ranges in the areas
that were associated with the various LUC scenarios.

The reliability of the impact functions varied with
grid size. The best agreement was obtained between
the impact functions with a 10 km grid size and the
RCM method results (when a 5 km grid was used for
the RCM method), which yielded an RMSE of 10−
15%. Therefore, the impact-function method is a
potential alternative for RCM simulations when com-
putational resources are limited. We believe that the
impact-function method is flexibly applicable to vari-
ous LULC types. However, further study is needed to
conclude overall applicability of the impact-function
method to LULC types other than those considered in
this study.

Our results suggest that the possible warming
induced by the LUCs is similar to the warming pro-
jected by climate change in the decade of 2040 in
Shikoku (with some variations across different GCMs
and emission scenarios). Although land-use manage-
ment may reduce warming, cooling effects are lim-
ited in their ability to offset warming trends that
result from climate change. This study emphasizes

the need for developing adaptation measures other
than land-use management, and for avoiding further
deforestation and paddy abandonment at a regional
scale to minimize LUC-induced warming.
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