
CLIMATE RESEARCH
Clim Res

Vol. 44: 41–53, 2010
doi: 10.3354/cr00872

Published online October 28

1.  INTRODUCTION

Agrometeorological systems for regional crop moni-
toring and yield forecasting have traditionally relied
on weather data derived from weather stations. The
observations obtained from weather stations were then
interpolated to obtain regular gridded data, used as
input in a crop simulation model and aggregated to a
regional scale for regional yield forecasting. Such an
approach is necessary in order to avoid scaling issues

related to non-linear responses of crop models to input
data (Hansen & Jones 2000).

The set up described above has been successfully
implemented in the European Crop Growth Monitor-
ing System (CGMS), which has been operational since
1994. However, in many areas of the world, data from
weather stations are difficult to come by, expensive,
scarce or incomplete. Moreover, intensive error check-
ing is often necessary in order to flag errors, substitute
missing days and replace missing variables. The re-
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liance on observed weather data has therefore been
considered a bottleneck for implementing the CGMS
in other regions of the world.

In recent years, short-term forecasts from numerical
weather prediction (NWP) models have become an
interesting source of weather data with the potential to
replace observed weather data in the CGMS. The
application of data from NWP models was initially
problematic because of the large grids with sizes on
the order of 2.5° × 2.5°. However, grid sizes have
steadily decreased over the years and are now on the
order of 0.5° × 0.5°, which is a relevant spatial scale for
regional crop yield forecasting (Easterling et al. 1998,
de Wit et al. 2005).

A more subtle problem of NWP model output was
the inconsistency in the time-series due to incremen-
tal upgrades of the NWP model itself. Regional crop
yield monitoring and yield forecasting strongly relies
on the analysis of historical time-series. Therefore,
any biases in the time-series caused by NWP model
upgrades will distort the analysis of historic time-
series of simulated and reported yields. This problem
was recognized by the NWP community and has
resulted in the reanalysis projects such as ERA-40,
which have produced complete, coherent and consis-
tent time-series of NWP data.

Finally, a general problem with output from NWP
models is still that modelled variables often do not
compare well with ground-based weather variables
and complex downscaling procedures are necessary to
convert NWP weather variables into realistic weather
variables on the ground (Bates et al. 1998, Charles et
al. 2004). For example, an often heard complaint is that
precipitation predicted from NWP models does not
properly reproduce the intermittency characteristics of
observed precipitation records, even if it does repro-
duce the seasonal and monthly totals correctly. Such
deficiencies in NWP-based weather data may influ-
ence the output from crop simulation models, because
crop models can be sensitive to the intermittency char-
acteristics of precipitation. However, recent research
results show that the impact of poor reproduction of
intermittency characteristics on crop simulation results
may be limited (Robertson et al. 2007).

Recently, the European Centre for Medium-range
Weather Forecasting (ECMWF) has completed the
ERA-INTERIM archive which is a reanalysis of the
global atmosphere since 1989 (Berrisford et al. 2009).
In contrast to earlier reanalysis archives which were
only available for a fixed period of time, the ERA-
INTERIM archive continues in real time with a delay of
around 1 mo. This particular feature makes it interest-
ing for regional crop yield forecasting applications
which need both near real-time data as well as an
archive of weather data. The remaining gap of 1 mo

between the end time of ERA-INTERIM and real time
can be substituted with data from the operational
ECMWF NWP model.

Our objective was to evaluate the ERA-INTERIM
weather data reanalysis archive for regional crop yield
forecasting over Europe. To achieve this objective,
we generated historical time-series of crop simulation
results for both the classic CGMS driven by observed
weather data and an identical implementation of
CGMS except that it derives its weather data from
ERA-INTERIM. Regression analysis in windows of
9 yr over the period 1989–2007 was used to relate
CGMS simulated results to reported crop yields at a
national level obtained from the European Statistical
Office (EUROSTAT). The established regression mod-
els could then be used to predict crop yield in the
year following each window. The forecast error sta-
tistics over the period 1998–2007 were used to evalu-
ate the use of ERA-INTERIM for regional yield fore-
casting.

2.  DATA AND METHODS

2.1.  Spatially distributed crop growth model

We used the World Food Studies (WOFOST) crop
simulation model as a basis for our work (van Diepen et
al. 1989). The WOFOST model was implemented spa-
tially within the framework of the CGMS as part of the
Monitoring Agriculture by Remote Sensing (MARS)
project (Vossen & Rijks 1995). The MARS project
started in 1988 and was carried out by the European
Commission’s Joint Research Centre with the goal of
providing pre-harvest estimates of crop yield and pro-
duction for a number of important crops. CGMS allows
regional application of WOFOST by providing a data-
base framework which handles model input (weather,
soil, crop parameters), model output (crop simulation
results such as total biomass and leaf area index),
aggregation to statistical regions and yield forecasting
(Genovese 1998, Boogaard et al. 2002).

The WOFOST model was selected for implementa-
tion in CGMS on both scientific and practical grounds.
From a scientific perspective the model has a solid bio-
physical basis and included many algorithms that were
developed and tested in earlier ‘School of C. T. de
Wit’ crop models (see Bouman et al. 1996, van Ittersum
et al. 2003 for an overview). The biophysical basis
allowed the model to be applied over a large range of
climatic and management conditions. From a practical
perspective, at the time of the CGMS development in
the early 1990s, WOFOST was already a fully devel-
oped simulation product with a mature, open source
code base and proper version management. In addi-
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tion, the model was designed to simulate a large range
of crop types with a single codebase by changing crop
parameters only. Moreover, calibrated crop parameters
for various crops were already available based on pre-
vious work. In contrast, many contemporary models
used different versions of the codebase (with varying
degrees of modification) to simulate different crop
types. Particularly, the single code base approach
made the WOFOST model much easier to implement
within CGMS.

WOFOST is a mechanistic crop growth model that
describes plant growth by using light interception and
CO2 assimilation as growth driving processes and by
using crop phenological development as a growth con-
trolling process. The model can be applied in 2 differ-
ent ways: (1) a potential mode, where crop growth is
purely driven by temperature and solar radiation and
no growth-limiting factors are taken into account; (2)
a water-limited mode, where crop growth is limited
by the availability of water. The difference in yield
between the potential and water-limited modes can be
interpreted as the effect of drought. Currently, no other
yield-limiting factors (nutrients, pests, weeds, farm
management) are taken into account.

The CGMS setup for Europe was implemented on a
grid size of 25 × 25 km and includes the 27 member
countries of the EU (EU27), Switzerland, the Balkan
countries, the Maghreb, Turkey, Ukraine, Belarus,
Moldavia and Russia up to the Ural Mountains. Two
CGMS implementations were created which only dif-
fered in weather inputs: one system (CGMS-Classic)
uses observed weather data from weather stations, and
the other (CGMS-ERA) uses weather data derived
from ERA-INTERIM.

2.2.  Crop and soil inputs

The Soil Geographical Database of Europe (v. 4) was
used as basis for implementing the soil-related compo-
nents in CGMS (Lambert et al. 2003). Criteria were
defined to determine which soils are suitable for agri-
culture. The soil hydraulic properties and maximum
rooting depth were derived from the soil descriptions
in the database in combination with pedotransfer rules
(European Commission 2006).

Crop parameter values and crop calendars were
derived from the operational CGMS; these are based
on parameter sets initially constructed by Boons-Prins
et al. (1993) derived from field trials executed in Bel-
gium, the UK and the Netherlands. These crop para-
meter values and crop calendars were extended to
other regions of Europe based on research executed in
the framework of the MARS project (Bignon 1990,
Falisse & Decelle 1990, Hough 1990, Russell 1990,

Carbonneau et al. 1992, Narciso et al. 1992, Russell &
Wilson 1994). Since new crop varieties are constantly
introduced, crop parameters that describe crop growth
and development are regularly updated and calibrated
as new information comes available (Willekens et al.
1998, GiSAT 2003). For all crop types the planting date
of the regional crop varieties have been collected and
for some crops that may not reach maturity (i.e. sugar
beet, potato, and maize) the end of season has been
defined as well. For each crop–region combination a
fixed sowing date is assumed during the entire period.

2.3.  Weather inputs

2.3.1.  Observed weather data

Historical data on climate were provided by the
MARS project (Micale & Genovese 2004) of the Insti-
tute for the Protection and Security of the Citizen, Joint
Research Centre of the European Commission, Ispra,
Italy. These data consist of daily values of maximum
and minimum temperature, wind speed, global radia-
tion, vapour pressure and rainfall, interpolated from
station data to a 25 × 25 km climatic grid (Beek et al.
1992, van der Voet et al. 1994). These station data have
been collected from the Global Telecommunication
System of the World Meteorological Organisation as
well as from national and sub-national station net-
works.

The data are decoded and quality checked using
the AMDaC software package (MeteoConsult 1991).
Checking is done by comparing each observation with
the corresponding values of surrounding stations and
by comparing that particular observation with obser-
vations made earlier that day. Obvious observation
errors are corrected automatically; other errors are
flagged for possible correction by a meteorologist.
Meteorological stations with >20% missing data were
excluded from the interpolation.

Only meteorological stations deemed suitable were
used for interpolation. The suitability was established
from a list of criteria such as station height, distance
from the coast, etc. Since there were often several sta-
tions to choose from to perform the interpolation
towards a particular grid cell, the number of missing
data at grid level was reduced. Presently, data from
nearly 7000 stations is available. Of these stations,
about 3000 receive daily meteorological information.
Missing global radiation values were computed as a
function of either sunshine duration, a combination
of cloudiness and temperature range or only the tem-
perature range. Other missing data were replaced by
long-term average values. From 1975 onward, a more
or less complete coverage of Europe is available.
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2.3.2.  Weather data derived from ERA-INTERIM

ERA-INTERIM is a reanalysis of the global atmo-
sphere since 1989, continuing in real time (Berrisford
et al. 2009). The ERA-INTERIM atmospheric model
and reanalysis system has a spatial resolution of 0.7° ×
0.7° and 60 atmospheric layers. Due to an improved
reanalysis system, performance of ERA-INTERIM has
improved compared to previous reanalysis data sets
such as ERA-40 (ECMWF 2007).

A downscaling procedure was implemented which
downscales the 0.7° × 0.7° ERA-INTERIM data set to
the 25 × 25 km grid of the CGMS. This downscaling
procedure is executed in 3 steps. Firstly, the 3-hourly
weather variables from ERA-INTERIM were converted
to daily weather variables that are needed for the crop
simulation model using the following approach. Daily
total precipitation was derived from the 3-hourly time
slots spanning 06:00 to 06:00 h UTC of the following
day, in order to be compatible with precipitation esti-
mates from weather stations that report every 12 h
(usually at 06:00 and 18:00 h UTC). Daily minimum
(maximum) temperature was derived as the minimum
(maximum) temperature between 18:00 and 06:00 h
(06:00 and 18:00 h) UTC. The remaining variables (early
morning vapour pressure, total irradiation and mean
wind speed) were derived over the 00:00 to 24:00 h
UTC window.

Secondly, an inverse distance weighting was applied
which estimates the value of each weather variable at
a given CGMS grid as the weighted average of the
corresponding variable at the 4 surrounding ERA-
INTERIM grid nodes. Finally, variable-specific cor-
rections were applied. The parameters in the correc-
tion were derived from regression between time-series
of interpolated variables and observed variables at
weather stations over Europe. This correction also
takes into account the systematic offsets caused by
differences in elevation between the ERA-INTERIM
model grid and the CGMS model grid.

For radiation and rainfall no corrections were ap-
plied. For the radiation this was due to the limited
number of observations available, while for rainfall an
independent validation demonstrated that correction
did not improve the quality of the rainfall estimates
(JRC 2006).

2.4.  Crop simulations and spatial aggregation

Both CGMS-ERA and CGMS-Classic were used to
generate crop simulation results at grid level for the
entire spatial domain over the period 1989–2007,
which corresponds with the ERA-INTERIM archive
that was available. The main outputs from these simu-

lations are the 4 biomass estimates that WOFOST pro-
vides and which are relevant for crop yield prediction:
total aboveground biomass under potential production
conditions, yield (harvestable product) under potential
production conditions, total aboveground biomass
under water-limited production conditions and yield
(harvestable product) under water-limited production
conditions.

The simulated crop biomass values on individual
grids have to be aggregated to regions in order to
establish relationships with yield statistics available
from EUROSTAT. Ideally, the cultivated area of each
crop should be known per CGMS grid cell in order to
aggregate simulated yields to regions. However, crop
area estimates are not available at the level of individ-
ual CGMS grids or, quite often, administrative regions.
Moreover, the regression procedures that are used to
derive relationships between simulated and reported
yields are sensitive to errors in the time-series of crop
area statistics.

Therefore, we decided to substitute crop area with
the area of arable land within a grid cell. The area of
arable land was derived from the CORINE Land Cover
2000 land cover database for the EU27 area (Nunes de
Lima 2005), complemented with Global Land Cover
2000 for areas outside the EU27 (Bartholomé &
Belward 2005). Aggregation of simulation results to
the European national level was thus performed by
weighting on the area of arable land within each
CGMS grid cell within a region.

2.5.  EUROSTAT reported crop yields

Official reported crop yields at national level were
derived from EUROSTAT over the period 1989–2007
for 14 crops (Table 1) and all E27 countries (EURO-
STAT 2005). Not all crops listed in Column 1 of Table 1
are modelled explicitly by CGMS, and in a number of
cases one simulated crop is used as predictor for a
family of crops.

In the present study we assume that the crop yield as
reported by EUROSTAT represents the true crop yield
for a country. However, uncertainties in the EURO-
STAT statistics probably vary a lot between countries
as a result of the differences in methodologies used to
derive the yield estimates that are reported to EURO-
STAT. In order to remove some obvious errors and
inconsistencies, we applied the following procedure:
(1) records which contained zero values or null values
were deleted from the databases; (2) records where
subsequent years had exactly the same numeric value
were deleted from the database; and (3) a visual analy-
sis was carried for all countries and crop types and out-
liers were deleted from the database. Outliers were

44



de Wit et al.: Regional crop yield forecasting in Europe

typically years where yield was more than double or
less than half the average yield, except for years where
there were strong indications for exceptionally low or
high yields (such as exceptional drought years).

2.6.  Regression analysis and forecast error retrieval

Fig. 1 shows the CGMS water-limited crop yield at
the end of the growing season and the EUROSTAT
reported yield for wheat in Spain and sugar beet in
Germany. From these figures a number of conclusions
can be drawn that have an impact on the construction
of a regression model to relate CGMS simulation
results to EUROSTAT reported yields.

First of all, the reported yields for the 2 examples
contain a trend of rising crop yields over time. For
wheat in Spain, yields have increased from 1.64 t ha–1

(1975–1979 average) to 2.83 t ha–1 (2005–2009 aver-
age). For sugar beet in Germany, yields have increased
from 46.6 t ha–1 (1988–1992 average) to 61.8 t ha–1

(2005–2009 average). In both countries the trend over
the entire window is significant at α = 0.001. This trend
is generally called the technology trend and is caused
by improved agricultural practices (with regard to
yield) over time. The CGMS simulated results do not
contain such a trend, as the technology level is
assumed stable.

Secondly, there is a considerable mismatch in ab-
solute terms between CGMS simulated yields and
EUROSTAT reported yields. For wheat in Spain, the
average simulated yield is 5.1 t ha–1 and the average
reported yield is 2.3 t ha–1. For sugar beet in Germany,
the average simulated yield is 13.0 t ha–1 and the aver-
age reported yield is 54.4 t ha–1. For wheat in Spain,
the difference is caused by sub-optimal management

by farmers, while WOFOST assumes that management
is optimal in terms of nutrients, pests and diseases. For
sugar beet in Germany, the difference is mainly caused
by the water content of the reported yield (fresh
weight), while WOFOST predicts dry weight.

Finally, the interannual variability matches quite
well between the time-series of reported and simu-
lated yields. The extreme years can be recognized in
both time-series easily: in Spain the 1995 and 2005
drought years, and in Germany the 2003 and 2006
drought years and the favourable years 1993 and 2000.
Nevertheless, particularly for wheat in Spain, the
CGMS simulated yields show much larger fluctuations
than the reported yields.

Based on the above considerations, it is clear that a
regression model that predicts reported yields based on
CGMS simulation results should correct for the differ-
ence in yield level, map fluctuations in simulated yield
to fluctuations in reported yield and include a trend
model that takes the technology trend into account.

However, the selection of a trend model is not always
obvious because the trend is not necessarily stable over
the entire window. Moreover, a smooth trend of any
type over a large number of years assumes a continuity
which might be unrealistic (Vossen 1992). For example,
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Table 1. Overview of the European Statistical Office (EURO-
STAT) crop types and the European Crop Growth Monitoring
System (CGMS) simulated crops that were used as predictors

EUROSTAT crop CGMS crop

Wheat Winter wheat
Soft wheat Winter wheat
Durum wheat Winter wheat
Barley Winter wheat
Winter barley Winter wheat
Spring barley Barley
Grain maize Grain maize
Field peas Field beans
Field beans Field beans
Oil seed rape Oil seed rape
Turnips (rape) Oil seed rape
Sunflower Sunflower
Sugar beets Sugar beets
Potato Potato

Fig. 1. Time-series of the European Crop Growth Monitoring
System (CGMS) simulated yields (s) and the European Sta-
tistical Office (EUROSTAT) reported yields (m) for (a) wheat 

in Spain and (b) sugar beet in Germany
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it is well known that the 1992 reform of the European
Agricultural Policy has caused a breach of trend in the
reported crop yields in many countries. Therefore, the
regression model should only be based on data from a
limited number of years preceding the year for which
prediction is to be carried out. Nevertheless, the series
should be long enough to give a sufficient number of
degrees of freedom in the regression analysis.

In the present study we did not analyse the length of
the time-series and the type of trend that should be ap-
plied, but we conformed to the operational practice in
use at the Joint Research Centre. Therefore, we used a
time-series of reported crop yields for a given crop and
country over a 9 yr period to determine a linear technol-
ogy trend assuming a stable trend over this period. The
residual variation around the trend is then to be ex-
plained by the crop yield simulation results (yield pre-
dictors) provided by CGMS-ERA and CGMS-Classic
using simple linear regression. All predictors were used
individually for regression analyses for both CGMS-
ERA and CGMS-Classic. We did not apply multiple lin-
ear regression using multiple CGMS predictors because
of the risk of high collinearity between predictors.

The following equation describes the regression
model:

Oy = –O + b(y – –y ) + c(Py – –P ) + ε

where Oy is the reported yield O for year y, –O is the
average reported yield, b (y – –y ) is the technology trend
where b is the yearly increase/decrease in official
yield, c (Py – –P ) is the modification of the trend by
CGMS/CGFS predictor P and regression coefficient c
and ε is the residual error.

Since CGMS produces dekadal1 crop yield predic-
tors during the growing season, the regression proce-
dure described above is repeated for each dekad in the
growing season and a separate regression model is
established at each dekad. Crop yield forecasting can
be carried out by extrapolating the trend for the follow-
ing year (the target year) and by feeding the WOFOST

simulation results for the target year into the regres-
sion models to predict the deviation from the trend for
each dekad in the target year.

The CGMS-ERA and CGMS-Classic forecast errors
were derived using the so-called one-year-ahead pre-
diction in combination with a sliding window analysis
(Fig. 2). In this approach the regression models estab-
lished in the preceding time-series are used to hindcast
the crop yield for the target year. The official reported
EUROSTAT crop yield for the target year is then used
to calculate the error. This approach has several ad-
vantages:

1. The error derived from the one-year-ahead fore-
cast represents the most faithful error estimate as it
mimics the operational conditions and takes the error
from extrapolating the trend or average into account.

2. The analysis window (1989–2007) is large enough
to allow 10 sliding windows of 9 yr and thus the collec-
tion of reliable error statistics (n = 10).

3. The forecast error can be easily calculated and
summarized over the entire period (in contrast to, for
example, T-values which express the significance of
the regression).

4. It can be easily compared to the baseline forecast
based on the error provided by using the (extrapo-
lated) trend as one-year-ahead forecast.

Note that no tests were carried out on the signifi-
cance, stability or performance of the regression model
derived for each sliding window. We assumed that for
cases where CGMS cannot significantly explain the
interannual variability in crop yield, the resulting
regression model will have poor performance when
forecasting the yield for the target year as well. Cases
with poor CGMS performance can then be easily rec-
ognized because the forecast error is usually larger
than or close to the baseline forecast.
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1The use of the term dekad refers to an FAO convention in or-
der to distinguish 10 yr periods (decade) from 10 d periods
(dekad)

 1989  1990  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000  2000

Regression on yield statistics

Regression on yield statistics

Regression on yield statistics

Regression on yield statistics

Forecast

Forecast

Forecast

Forecast

Fig. 2. Schematic representation of the sliding windows approach with a one-year-ahead forecast
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2.7.  Summarizing the forecast error

For analyzing the yield forecasts for each predictor,
we calculated the root mean square error (RMSE)
which is a widely used metric for model testing (Will-
mott et al. 1985). The RMSE between the forecasted
yield and the official reported yield over all available
years was calculated as:

where Fy is the forecasted crop yield for a particular
crop yield predictor, Oy is the official reported crop
yield from EUROSTAT for year y and n is the number
of forecasts. We repeated this approach over all dekads
in time and over all 9 cases: 8 predictors (4 predictors
for CGMS-ERA and 4 for CGMS-Classic) and the con-
trol case without predictors (trend only).

We then visualized the crop yield forecasting per-
formance by plotting the RMSE on the y-axis against
the dekad through the year on the x-axis for each
available combination of crop and country. More-
over, maps were constructed which show the spatial
patterns in forecast accuracy and performance of
CGMS-ERA, CGMS-Classic and the baseline predic-
tor. Finally, the results were summarized by counting
in how many cases the CGMS-ERA and CGMS-Classic
predictors could improve the baseline predictor with a
defined margin. 

3.  RESULTS

3.1.  Selected examples of forecast error during the
growing season

The total number of crop–country combinations is
too large (265) to discuss each combination individu-
ally. However, we will discuss some examples that pro-
vide insight into the performance and ambiguities that
arise from this analysis.

The first example is shown in Fig. 3 where the fore-
cast error for wheat in Spain is plotted. Winter wheat in
Spain is a fairly ideal case because the year-to-year
weather variability is large and the crop is mainly
grown under rain-fed conditions. From the example it
is clear that the water-limited crop yield predictors
from both CGMS-ERA and CGMS-Classic start to cor-
relate with the official reported crop yields around
Dekad 12 as the blue and green lines are clearly below
the error of the trend-only case (black dotted line).
From this dekad onward in time, the CGMS simulation
results make a clear contribution to reducing the fore-
cast error and by Dekad 15 the forecast error stabilizes.

On average, the forecast error could be reduced from
0.6 t ha for the trend-only case to 0.35 t ha–1 for the
trend plus the CGMS predictor. The figure also
demonstrates that the CGMS predictors related to
potential production conditions are not correlated with
the reported crop yield statistics, as they show no (or
hardly any) improvement of forecasting error beyond
the trend-only case.

A second example is provided by Fig. 4 where the
forecast error for sunflower in Austria is plotted. It is
clear that in this example there is no correlation be-
tween any of the CGMS predictors and the official re-
ported yields as no predictor performs substantially
better than the trend-only case (black dotted line). This
example shows that unstable behaviour in the forecast
error sometimes occurs at the beginning of biomass ac-
cumulation (Dekad 12 for total biomass, Dekad 17 for
storage organs). This is caused by the relatively small
absolute amount of biomass available at that point in
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Fig. 3. Temporal evolution of the forecast error for wheat in
Spain (n = 10). Solid lines: predictor ‘crop total aboveground
biomass’ for potential (P) and water-limited (WL) production
levels. Dashed lines: results for the predictor ‘crop yield’
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Fig. 4. Temporal evolution of the forecast error for sunflower
in Austria (n = 10). Solid lines: predictor ‘crop total above-
ground biomass’ for potential (P) and water-limited (WL)
production levels. Dashed lines: results for the predictor ‘crop 
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the growing season, which may lead to very large rela-
tive differences in biomass from year to year, which in
turn causes large swings in the forecasted crop yield.

Finally, the course of the forecast error for winter
barley in Bulgaria is shown in Fig. 5. This example is
not so easy to interpret: the predictors of water-limited
total biomass (solid blue and green lines) provide min-
imal forecast error around Dekad 11, after which the
forecast error increases; and the water-limited yield
predictors (dashed blue and green lines) provide mini-
mal forecast error around Dekad 15, after which they
increase again. At the end of the growing season, no
predictor is substantially better than the trend-only
case (black dotted line).

In the case of winter barley in Bulgaria, both systems
show variable performance through the growing season,
and further investigation is needed to identify the cause
of forecasting error variability. Other cereals in Bulgaria
(wheat, soft wheat, barley) show a similar pattern com-
pared to Fig. 4, which is striking given that the simula-
tion results for winter wheat are used to predict crop
yield for all 4 crops (wheat, soft wheat, spring barley and
winter barley). Therefore, the crop calendar and/or para-
meterization of the WOFOST model may need to be
adapted. Another cause may be overestimation of soil
rooting depth. Currently the average ratio of potential to
water-limited biomass at the end of growing season for
winter wheat in Bulgaria is 0.982, showing that water
limitation hardly plays a role. Thus the system is rather
insensitive to variability in rainfall and drought effects
which often play a role at the end of the growing season.

3.2.  Maps of forecast error

A straightforward way to summarize the results
would be to visualize the lowest forecast error at the
end of the growing season per crop, country and

system. However, the examples in the previous section
have demonstrated that the results from the analysis
are sometimes not straightforward to interpret. The
example of winter barley in Bulgaria demonstrates that
the forecast error at the end of the season is not better
than the trend-only case and, therefore, we would
erroneously conclude that both systems have no fore-
cast skill at all.

To overcome this deficiency we have summarized
the results in 2 different ways: (1) the predictor with
the smallest forecast error at the end of the growing
season (Dekad 36) was taken for CGMS-ERA and
CGMS-Classic and compared with the trend; and (2)
the predictor with smallest forecast error over the
entire season was taken for CGMS-ERA and CGMS-
Classic and compared with the trend.

Further, both analyses were not only carried out in
absolute terms (t ha–1), but also relative to the error of
the trend. In this analysis the forecast error could be
expressed as a percentage error of the trend-only case.
We used this percentage error to only select those
cases where the contribution of the CGMS predictors
could reduce the forecast error from the trend-only
case by >10%. This analysis is helpful in discriminat-
ing those cases where the CGMS predictors do have
the lowest absolute forecast error, but the difference
between the baseline and the CGMS forecast error is
marginal.

The results are displayed as 4 maps (Fig. 6), where
the upper 2 maps display the absolute forecast error
at the end of the growing season and the smallest
absolute forecast during the growing season. Error
bars provide an indication of the forecast error for the
predictor with the smallest error for CGMS-Classic
(blue) and CGMS-ERA (red) as well as the forecast
error of the trend only (cream). Regions are coloured
according to the system with the overall lowest error.
The lower 2 maps display the absolute and lowest
forecast errors relative to the trend. Regions where
CGMS-Classic or CGMS-ERA forecasting skill is able
to reduce the error of the trend-only by >10% are
coloured according to the system with lowest error.

The 4 maps summarize information about the stabil-
ity and significance of the forecast. In the case of a
well-behaved forecast error, as for winter wheat in
Spain (Fig. 3), all 4 maps will show the same pattern
since the forecast error at the end of the growing sea-
son is (nearly) equal to the smallest forecast error and
all forecasts improve the trend-only forecast by >10%.
In the case of awkward forecast behaviour, such as for
winter barley in Bulgaria (Fig. 5), the 4 maps will show
different patterns as the forecast error at the end of the
growing season is much larger than the smallest fore-
cast error during the season. We have chosen to dis-
cuss the spatial distribution of forecast error for winter
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Fig. 5. Temporal evolution of the forecast error for winter bar-
ley in Bulgaria (n = 9). Solid lines: predictor ‘crop total above-
ground biomass’ for potential (P) and water-limited (WL) pro-
duction levels. Dashed lines: results for the predictor ‘crop yield’
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wheat and grain maize because of the contrasting
results for these 2 crops.

The maps of forecast error for wheat show a mixed
pattern with regard to system performance (Fig. 6).
With regard to the absolute error at Dekad 36, CGMS-
ERA performs best in southwestern Europe (France,
Italy and Spain), while CGMS-Classic performs best in
central Europe (Germany, Poland, Austria, Hungary
and Romania). Both CGMS-Classic and CGMS-ERA
do not have any forecasting skill in the UK, Greece,
Turkey, the Netherlands or Bulgaria. When looking at
the map of lowest error, in the UK, Bulgaria, Turkey
and the Netherlands CGMS-ERA now shows forecast-
ing skill, while Sweden, the Baltic States and Poland
flipped from CGMS-Classic to CGMS-ERA as the best
performing system.

The maps with forecast error relative to the trend
illustrate in which countries the forecast skill has at

least 10% lower error than the trend-only case. The
results demonstrate that stable skill is reached for
Spain, Portugal, Lithuania and the central European
countries (Germany, Austria, Hungary, Czech Re-
public, Slovakia and Romania).

Analyses of the countries where the system has con-
flicting behaviour show that in some countries the sys-
tem suffers from unstable forecast skill, which means
that the forecast skill at some point during the growing
season is better than the end-of-season forecast skill
(Bulgaria, Cyprus, Estonia, Finland, Ireland and the
Netherlands). In other countries the systems simply do
not show any significant forecasting skill (Belgium,
France, Greece, Croatia, Italy, Latvia, Poland, Sweden,
Slovenia and the UK).

In general, forecasting skill for grain maize is high
and stable for most countries (Fig. 7), and improves
beyond 10% of the baseline forecast. Notable excep-
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Fig. 6. Overview maps of crop yield forecast root mean square error for wheat. Regions are coloured according to the best per-
forming system, error bars show the forecast error. (a) Absolute error at the end of the season; (b) lowest absolute error during the
growing season; (c) regions where the absolute error at the end of the season is at least 10% better than the trend; and (d) regions 

where the lowest absolute error during the growing season is at least 10% better than the trend
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tions are Greece, Spain and Portugal, most likely be-
cause grain maize is irrigated in those countries. Also,
in Belgium and the Netherlands the system shows
either limited skill (Belgium) or instabilities in the fore-
cast (the Netherlands). No clear pattern is visible in
terms of whether CGMS-Classic or CGMS-ERA per-
forms best. In countries with high skill, both systems
generally have good performance.

3.3.  Summarizing the results

The results were summarized per crop type by
counting in how many countries CGMS-Classic and
CGMS-ERA outperformed the trend-only case by 10
and 25% (Table 2). The table summarizes the forecast-
ing error at the end of the growing season. Therefore,
the reported statistics are a conservative estimate of
the system performance because it was demonstrated
that for many countries the forecasting error at the end
of the growing season is not the lowest error.

With a threshold of 10%, CGMS-ERA and CGMS-
Classic demonstrate yield forecasting skill in 101 and
98 out of 265 cases, respectively (38.1 and 37.0%).
There are some small differences between the 2 sys-
tems, notably CGMS-ERA clearly performs better than
CGMS-Classic for barley (15 vs. 11 cases). However,
the overall pattern is very similar between the 2 sys-
tems.

From Table 2, we can derive the performance of
CGMS-Classic and CGMS-ERA per crop type. Perfor-
mance is relatively high (≥ 40% skill) for grain maize,
sugar beets, field beans (only 13 cases), barley, sun-
flower and soft wheat. Performance is poor (<20%
skill) for oil seed rape, turnips (rape) and field peas.
The remaining crops are intermediate.

If we increase the threshold for performance to 25%
improvement over the trend-only case, then the dif-
ferences between CGMS-ERA and CGMS-Classic are
larger and in favour of CGMS-Classic. CGMS-ERA
shows yield forecasting skill in 45 out of 265 cases
(17.0%) and CGMS-Classic shows skill in 52 out of
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Fig. 7. As Fig. 6 but for grain maize
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265 cases (19.6%). CGMS-Classic outperforms CGMS-
ERA for sugar beet (3 cases), wheat (2 cases), barley
(2 cases), maize (2 cases) and durum wheat (1 case).
CGMS-ERA outperforms CGMS-Classic only for potato
(1 case).

Finally, we aggregated all crop–country combina-
tions and displayed the forecast error relative to the
trend-only case as a cumulative frequency distribution
(Fig. 8). The results confirm that CGMS-Classic
slightly outperforms CGMS-ERA in the crop–country
combinations where skill is high (left side of figure),
but in the vast majority of crop–country combinations
there is no substantial difference in forecasting skill.

4.  DISCUSSION AND CONCLUSIONS

The overall conclusion is that CGMS-Classic and
CGMS-ERA perform very similarly in terms of crop

yield forecasting skill. The only difference between
CGMS-ERA and CGMS-Classic is that CGMS-ERA
uses weather variables derived from ERA-INTERIM as
input to the WOFOST crop model, while CGMS-Clas-
sic uses interpolated observed weather variables. This
implies that the deficiencies which are often observed
in weather variables derived from NWP models
(e.g. failure to reproduce rainfall intermittency charac-
teristics) do not significantly affect the year-to-year
variability in crop simulation results. Therefore, ERA-
INTERIM is a suitable replacement for observed
weather data over Europe. Moreover, the good results
obtained over Europe indicate that ERA-INTERIM
may be used to implement regional crop yield fore-
casting systems over regions with sparse coverage of
weather stations, although in such regions the quality
of ERA-INTERIM may be lower due to the smaller
number of observations that could be taken into ac-
count in the reanalysis.

ERA-INTERIM will be maintained by ECMWF and
updated weather records will become available with a
delay of approximately 1 mo. This means that ERA-
INTERIM does not provide weather variables in near
real-time and CGMS-ERA therefore relies on weather
variables from the operational ECMWF NWP model
(ECMWF-OPE). However, if ECMWF-OPE has differ-
ent properties (e.g. monthly total precipitation, total
solar radiation) compared to ERA-INTERIM, then this
implies that the WOFOST simulations in the forecast
year may be biased compared to the simulations in the
historic archive upon which the forecast regression
equations are based.
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Table 2. Overall performance (% skill) of CGMS-Classic and
CGMS-ERA based on forecast error at the end of the growing
season, where forecast skill improves the trend by at least
10%, or at least 25%. Also shown is the number of countries
(N) for which each system had the lowest error per crop type
and the total number of countries where this crop is cultivated

CGMS-ERA CGMS-Classic
Crop N Skill (%) N Skill (%) Total

≥≥10%
Wheat 10 34.5 11 37.9 29
Soft wheat 10 40.0 10 40.0 25
Durum wheat 1 12.5 3 37.5 8
Barley 15 51.7 11 37.9 29
Winter barley 5 27.8 5 27.8 18
Spring barley 6 33.3 6 33.3 18
Grain maize 14 73.7 13 68.4 19
Field peas 0 0.0 0 0.0 10
Field beans 7 53.8 7 53.8 13
Oil seed rape 3 15.8 3 15.8 19
Turnips (rape) 3 16.7 3 16.7 18
Sunflower 6 42.9 6 42.9 14
Sugar beets 12 54.5 12 54.5 22
Potato 9 39.1 8 34.8 23
Total 1010 38.1 98 37.0 2650

≥≥25%
Wheat 4 13.8 6 20.7 29
Soft wheat 4 16.0 5 20.0 25
Durum wheat 1 12.5 0 0.0 8
Barley 4 13.8 6 20.7 29
Winter barley 1 5.6 2 11.1 18
Spring barley 2 11.1 2 11.1 18
Grain maize 10 52.6 12 63.2 19
Field peas 0 0.0 0 0.0 10
Field beans 1 7.7 2 15.4 13
Oil seed rape 2 10.5 2 10.5 19
Turnips (rape) 2 11.1 2 11.1 18
Sunflower 3 21.4 3 21.4 14
Sugar beets 5 22.7 4 18.2 22
Potato 6 26.1 6 26.1 23
Total 45 17.0 52 19.6 2650

Improvement over trend (%)
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Fig. 8. Cumulative frequency distribution of forecast error
over all crop–country combinations relative to the baseline
forecast (trend only). Negative values imply lower forecast
error than the baseline forecast, positive values imply higher 

forecast error
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Accordingly, future research should address if the
yield forecasting performance is affected by a breach
of trend in the WOFOST simulations caused by the
transition of ERA-INTERIM to ECMWF-OPE in the tar-
get year. Such an analysis would require an overlap-
ping archive of ECMWF-OPE and ERA-INTERIM data,
which is not yet available. However, we do want to
stress the need for an evaluation of the properties of
ECMWF-OPE and ERA-INTERIM in order to evaluate
the influences of possible biases in the WOFOST simu-
lations in the target year.

In this analysis we used the database of observed
weather data as a reference to evaluate the ERA-
INTERIM database for crop yield prediction. Implicitly
we assume that the observed data are of better quality.
However, this assumption is not justified for all vari-
ables. Global incoming radiation is usually predicted
fairly accurately by NWP models, while it is poorly esti-
mated by CGMS (de Wit et al. 2005), principally using
estimates of sunshine duration (20% of stations) or
cloud cover and temperature (76% of stations) based
on a procedure described by Supit & Van Kappel
(1998). Although the limited accuracy of CGMS radia-
tion estimates has been criticized, our results indicate
that the impact of errors in radiation estimates on the
CGMS yield forecasts is small.

The results of the present study provide valuable
background information on the accuracy and precocity
of CGMS for regional yield prediction over Europe.
However, we do want to stress that the yield forecast-
ing accuracy presented here is not representative of
operational conditions. The analyses carried out for the
present study consist of hundreds of thousands of
regressions (per country, crop, predictor, sliding win-
dow and dekad) which prevent optimizing settings
on the regression model (length of time-series, trend
model, etc.) for specific cases. In this respect, it is likely
that a skilled operator who makes a careful analysis of
the length of time trend, the type of trend model used
(none, linear or quadratic) and the impact of different
predictors on the regression model will be able to
obtain better forecasts than those described here.

Finally, we conclude that there is a need to improve
the crop calendar and/or calibration of CGMS in gen-
eral, and for some crops in particular. Barley/winter
barley shows unstable forecasting skill in a number of
countries where forecasting skill is high before harvest
but is completely lost at the end of the season. Given
that barley/winter barley is predicted with the simula-
tion results for winter wheat, it may be worthwhile to
implement winter barley as a separate crop type. Field
peas show no forecasting skill at all. As field peas are
currently predicted with the simulation results from
field beans, this may indicate the need to implement a
true field pea crop in CGMS.
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