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ABSTRACT: Although hot spells and heat waves are considered extreme meteorological pheno-
mena, the statistical theory of extreme values has only rarely, if ever, been applied. To address this
shortcoming, we extended the point process approach to extreme value analysis to model the fre-
quency, duration, and intensity of hot spells. The annual frequency of hot spells was modeled by a
Poisson distribution, and their length by a geometric distribution. To account for the temporal depen-
dence of daily maximum temperatures within a hot spell, the excesses over a high threshold were
modeled by a conditional generalized Pareto distribution, whose scale parameter depends on the
excess on the previous day. Requiring only univariate extreme value theory, our proposed approach
is simple enough to be readily generalized to incorporate trends in hot spell characteristics. Through
a heat wave simulator, the statistical modeling of hot spells can be extended to apply to more full-
fledged heat waves, which are difficult to model directly. Our statistical model for hot spells was fit-
ted to time series of daily maximum temperature during the summer heat wave season in Phoenix,
Arizona (USA), Fort Collins, Colorado (USA), and Paris, France. Trends in the frequency, duration,
and intensity of hot spells were fitted as well. The heat wave simulator was used to convert any such
trends into the corresponding changes in the characteristics of heat waves. By being based at least in
part on extreme value theory, our proposed approach is both more realistic and more flexible than
techniques heretofore applied to model hot spells and heat waves.
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1. INTRODUCTION been applied to this type of meteorological event in

realistic climate applications. Even the statistical

Heat waves are meteorological events that have re-
ceived much attention in recent years, given the mor-
tality associated with them (Gosling et al. 2009) and
given the specter of increases in their frequency, dura-
tion, and intensity as part of global climate change
(Meehl & Tebaldi 2004). In particular, the high mortal-
ity associated with the 2003 European heat wave gen-
erated much concern about whether climate change is
playing a role (Schér et al. 2004). Other recent heat
waves of note include the 1995 event in Chicago, Illi-
nois, USA (Karl & Knight 1997). Because of their rarity
and their severity, such events are naturally viewed as
‘extreme’, but statistical methods based on extreme
value theory (e.g. Coles 2001) have only rarely, if ever,
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analysis of projections of future changes in heat wave
characteristics, on the basis of climate change experi-
ments using numerical models of the climate system,
has generally avoided any use of the statistics of
extremes (Tebaldi et al. 2006, Koffi & Koffi 2008).

Yet there is a long tradition of using statistical meth-
ods based on extreme value theory in the analysis of
simple extreme meteorological events, most commonly
in the form of the highest daily precipitation amount
over a year or the highest temperature over the sum-
mer season (Gumbel 1958). While such analyses typi-
cally assume stationarity (i.e. an unchanging climate),
they are starting to be extended to the case of temporal
trends (e.g. Katz et al. 2002). The so-called point pro-
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cess approach is a parsimonious way to model possibly
non-stationary extremes, jointly modeling the occur-
rence of an event (e.g. an exceedance of a high thresh-
old) and its severity (e.g. an excess over a high thresh-
old) (Smith 1989, Coles 2001). This approach has
recently been applied to detect trends in high temper-
ature extremes (Brown et al. 2008). Other meteorolog-
ical applications using the point process model are
included in Furrer & Katz (2008) and Katz et al. (2002).
In such analyses, it is common to ‘decluster’ the data
and model only cluster maxima to account for temporal
dependence. In the present application, these clusters
constitute hot spells whose characteristics need to be
modeled as well (especially hot spell length and tem-
poral dependence of excesses within a hot spell) rather
than discarded.

Hot spells and, to an even greater extent, heat waves
have a complex temporal structure that makes the
application of extreme value theory less than routine.
Although some analyses have made at least limited use
of the theory, attempts to date have tended to be rather
ad hoc, among other things tied to somewhat arbitrary
definitions of hot spells or heat waves (Katsoulis &
Hatzianastassiou 2005, Khaliq et al. 2005, 2007, Abau-
rrea et al. 2007). Part of the problem relates to the dif-
ficulty in defining a heat wave, involving a choice of
threshold, a minimal duration, and possibly other vari-
ables besides daily maximum temperature (Robinson
2001, Meze-Hausken 2008). As will be seen, an ap-
proach focused on hot spells, which are simply defined
as consecutive days with maximum temperature over a
certain threshold, with the statistical modeling based
at least in part on extreme value theory, results in suf-
ficient flexibility to be applicable to a wide variety of
more complicated definitions of a heat wave.

In the statistical modeling of hot spells, it is essential
that the temporal dependence of extreme high daily
maximum temperature be realistically modeled
(Mearns et al. 1984, Kysely 2002). In the statistics litera-
ture, models based on bivariate extreme value theory
have been proposed to account for the persistence of
temperature at high (or low) levels (Coles et al. 1994). In
the present paper, we propose a simpler, but closely re-
lated approach that only makes use of the more familiar
univariate extreme value theory and readily available
software. All calculations in this work have been done
with the free software environment for statistical com-
puting and graphics, R, using the packages ismev and
extRemes (see www.R-project.org and R Development
Core Team 2009). One advantage of the proposed ap-
proach is being parsimonious enough to be readily ex-
tended to detect trends in the statistical characteristics
of hot spells and related heat waves.

In Section 2, the statistical modeling of extreme tem-
perature events with simple structure is provided as

background, emphasizing the point process approach.
Summer time series of daily maximum temperature at
3 locations, viz. Phoenix, Arizona (USA), Fort Collins,
Colorado (USA), and Paris, France, were analyzed.
This approach is extended to hot spells in Section 3,
modeling hot spell length with a geometric distribu-
tion, and modeling the excess on a given day within a
hot spell with a conditional generalized Pareto (GP)
distribution whose scale parameter depends on the
excess on the previous day. This statistical model for
hot spells was further extended to allow for trends in
the frequency, duration, and individual excesses of hot
spells. A 'heat wave simulator’ is introduced in Section
4 to demonstrate how characteristics of more full-
fledged heat waves can be obtained from the underly-
ing statistical model for hot spells. Finally, a brief dis-
cussion is provided in Section 5, emphasizing further
extensions of the statistical modeling of hot spells to
make the treatment of heat waves more realistic.

2. STATISTICAL MODEL FOR SIMPLE EXTREME
TEMPERATURE EVENTS

The appropriate statistical tools to analyze simple ex-
treme temperature events, such as excesses over high
thresholds, are provided by the methods of extreme
value theory. Well-known in the atmospheric science
and hydrology literature are 2 approaches: (1) the
modeling of block maxima (e.g. annual or seasonal
maxima or, equivalently, minima) using the general-
ized extreme value (GEV) distribution; and (2) the
peaks-over-threshold (POT) modeling of threshold ex-
cesses using the generalized GP distribution. Here, we
advocate a third approach, closely related to the first 2,
which models the occurrence of exceedances of a high
threshold and the corresponding excesses jointly using
a 2-dimensional Poisson process.

2.1. Point process approach

The core result of extreme value theory implies that
the distribution of the (appropriately normalized) max-
imum M, = max{X;,...,X,} of an independent and iden-
tically distributed sample Xj,..., X, from a distribution
function F converges to the GEV distribution. Consis-
tent with this result, the distribution of the excesses
over a high threshold u is approximated by a GP distri-
bution under mild conditions on F. In the context of this
paper, the block maximum M, corresponds to an
annual or seasonal maximum temperature, whereas
the excesses over u correspond to daily maximum tem-
peratures exceeding the threshold u. The cumulative
distribution function of the GEV is given by
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Here & denotes the shape parameter, where positive
§ implies a heavy tail, negative & a bounded tail, and
the limiting case of £ >0 an exponential tail (i.e. the
Gumbel distribution for block maxima and the expo-
nential distribution for threshold excesses); 6, 6, > 0
denote the scale parameters and — < |1 < e the location
parameter. The scale parameters of the GEV and the
GP distributions are related through ¢, = 6 + §(u - )
We anticipate obtaining negative shape parameters,
i.e. a bounded tail, for temperature, as indicated e.g. by
Brown & Katz (1995).

For most practical situations, for example if X; repre-
sents the daily maximum temperature during the sum-
mer at a specific location, the independence assump-
tion is obviously not realistic. One possible way to deal
with this problem is to decluster excesses over the
threshold u by identifying independent clusters using
an empirical rule (e.g. a new cluster starts after r con-
secutive observations below u). Only 1 value per clus-
ter is kept, e.g. the first excess of the cluster or the max-
imum excess of the cluster, reducing the sample size
for further analysis. See Chapter 5 of Coles (2001) for a
discussion of the need to decluster and the modeling of
extremes of dependent series in general. A more gen-
eral view on declustering schemes was provided by
Ferro & Segers (2003).

The point process approach, mentioned in the Intro-
duction, combines the modeling of the occurrence of
exceedances of a high threshold and their correspond-
ing excesses in 1 model. It uses the fact that the count
of threshold exceedances within a certain time window
can, under the same conditions as above for the GEV to
arise, be approximated by a Poisson distribution with
rate A depending on the parameters |, ¢, § of the limit-
ing GEV distribution of the corresponding block maxi-
mum. Chapter 7 of Coles (2001) introduces in an acces-
sible way how the Poisson process approximation is
obtained and summarizes mathematical and statistical
details of this approach, especially the relation to the
POT. Maximizing the likelihood of the Poisson process
directly yields the GEV parameters L, o, &, and there-
fore indirectly the corresponding GP parameters o, &.
Furthermore, the Poisson rate of the number of clusters
per season can be expressed as A = [1 + §(u — p)/c] %,
The point process approach has several advantages
over the block maxima and the POT approaches: (1) it
uses considerably more data about extremes than a
block maximum approach, resulting in more reliable
results; (2) it can be formulated in terms of the GEV
parameters, which are invariant to the choice of

threshold, allowing non-stationarities such as trends to
be easily and naturally introduced through covariate
effects in the parameters; and (3) it includes the thresh-
old excess rate in the inference, which is modeled sep-
arately in a POT approach. Note that parameter esti-
mation via maximum likelihood requires specialized
but straightforward numerical techniques in the non-
stationary case.

In order to fit a point process model, it is necessary to
select an appropriate threshold. A common approach
is to fit the model using a set of candidate thresholds,
and to consider only values of u for which the resulting
parameter estimates are approximately stable. In the
case of a point process model, it is also theoretically
possible to vary the threshold in time, but this can lead
to numerical instabilities in the maximization. In the
case of heat waves, we concentrated on the summer
season, so there was no need to consider time-varying
thresholds.

2.2. Data

All considered models were tested using series of
daily maximum temperature at 3 different stations: Sky
Harbor International Airport in Phoenix, Arizona; Fort
Collins, Colorado; and Parc Montsouris in Paris. The
Phoenix data were obtained from the US National Cli-
matic Data Center and span the period 1934-2007,
where the years 1935-1937, 1939, and 1945-1947 are
missing and were completely left out of the analysis.
Note that Phoenix experienced a heat island effect
over this period, with markedly increasing daily mini-
mum temperature but a less pronounced increase in
daily maximum temperature (see Balling et al. 1990).
The Fort Collins data were obtained from the Colorado
Climate Center at Colorado State University, and span
the period 1900-1999 with no missing values. The
Paris data were obtained from the European Climate
Assessment and Dataset (see Klein Tank et al. 2002),
and span the period 1900-2008.

For each station, we considered a summer period
from 16 June to 15 September (T = 92 d) susceptible to
the occurrence of hot spells and heat waves.
Exploratory data analysis confirmed that daily maxi-
mum temperature did not have a marked cycle within
this period at these locations, so we did not model sea-
sonality of temperature. Nevertheless, the use of this
specific period is a convenient oversimplification since,
on one hand, the heat wave season is certainly longer
in Phoenix than in Fort Collins or Paris, and, on the
other hand, the length of the season itself may be sub-
ject to change. For a first application of the proposed
method, the simplification seems adequate but may
need to be relaxed in a more realistic model. In the
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summer period considered, there were fewer than 10
additional missing values for Phoenix and only 2 for
Paris. We set the value of the daily maximum tempera-
ture on these dates to the minimum observed value
over the entire record period, so that they had no influ-
ence on the extremal analysis. The data from the USA
were provided in heavily discretized form, rounded to
the nearest degree Fahrenheit, and subsequently con-
verted to degree Celsius. The data from France were
provided rounded to the nearest one-tenth of a degree
Celsius. Fig. 1 shows the time series of annual maxi-
mum temperature at the 3 sites.

Extreme temperature events are the focus of this
paper, so data quality was of special importance.
Moreover, since detecting possible trends in hot spells
was a goal, we needed to assume homogeneity of the
data series to justify fitting the proposed model. Klein
Tank et al. (2002) mentioned that it is not untypical for
climatic time series to be subject to certain inhomo-
geneities as, for example, changes in station location or
instrumentation. Thus, one should be aware that any of
the detected trends could be artifacts of these inhomo-
geneities, rather than reflecting real climate change.

2.3. Point process model fit

The discretization of the temperature data from the
USA resulted in some numerical difficulties in the fit-
ting of the point process model, being more than nor-
mally sensitive to the exact choice of the threshold.
Cooley et al. (2007) ran simulations to show that using
thresholds in the middle of the discretization interval
provides numerically stable estimations, which is the
approach we took here. Another possibility would be
to artificially add noise to the observations to break the
ties that cause the numerical difficulties (see Einmahl
& Magnus 2008). The conversion from Fahrenheit to
Celsius leads to seemingly arbitrary thresholds, which
are simply explained as midpoints between distinct
data values. Note that the data from Paris were much
less discretized and were used here, at least in part, to
ensure that the obtained results were not effects of the
discretization.

For the traditional point process analysis, we used
thresholds of 40.8°C (i.e. 105.5°F) for Phoenix, 30.8°C
(i.e. 87.5°F) for Fort Collins, and 27°C for Paris, which
were chosen following the approach described in
Section 2.1. Clusters were separated by a single value
below the threshold, i.e. r = 1, retaining the cluster
maximum excesses to be treated as independent ob-
servations. Note that using the above thresholds and
r=1 only served statistical purposes in the modeling of
clusters of high temperature; more societally meaning-
ful thresholds and more meteorologically meaningful
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Fig. 1. Time series of annual maximum temperature at 3 sites

values for r were used when considering heat waves
derived from hot spells (see Section 4.2).

Maximum likelihood estimates of the GEV parame-
ters at all stations, as well as the above-mentioned
thresholds, are given in Table 1. The estimates of the
GP parameter 6, and the Poisson parameter A were de-
rived from the corresponding values of the GEV para-
meters as indicated in Section 2.1. Table 1 includes
standard errors for all parameter estimates. As antici-
pated, we obtained negative shape parameter esti-
mates, i.e. a bounded tail, at all 3 locations. Recall that
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Table 1. Parameter estimates of the generalized extreme value (GEV) para-
meters and the corresponding generalized Pareto (GP) and Poisson parameters
(SE in parentheses), as well as p-values of the Poisson dispersion test, for 3 sites

with Phoenix being the strongest case.
The Poisson dispersion test is based on
the assumption of stationarity; there-

fore, a rejection of the null hypothesis

Station ~ Threshold . GEV GP Poisson could be attributable to a Poisson dis-

(°C)  Locationp Scalec Shapef Scalec, Mean} p tribution with a trend, rather than the

Phoenix  46.8 45.36 145  -0.27 266  9.69 0.99 lack of a Poisson distribution per se.
(0.141) (0.044)  (0.021) (0.116)  (0.380) Trends are addressefi in Section 33

Fort Collins 30.8 35.41 128 030 267  11.24 0.83 The top row of Fig. 2 shows histo-

(0.010)  (0.032) (0.018)  (0.090) (0.335) grams of the ngmber of .clusters per

Paris 27 33.33 231 -0.29 4.15 7.52  0.52 summer along with the estimated Pois-

(0.182)  (0.057) (0.020) (0.161) (0.263) son probability function for all 3 sites.

the shape parameter is identical in both parameteriza-
tions, the GEV, and the Poisson-GP, of the point pro-
cess approach. We tested the Poisson hypothesis for
the number of clusters per season with a Poisson dis-
persion test (Rice 1995), based on the approximate >
distribution of the ratio of n -1 times the variance
divided by the mean; p-values of the Poisson disper-
sion test for all stations are also given in Table 1. The
hypothesis was supported by the data for all 3 stations,

Although deviations from the esti-
mated probability function are appar-
ent, the general shape of the histograms does not
strongly contradict the Poisson assumption. In the case
of Phoenix, it seems that large numbers of clusters are
observed more frequently than the Poisson model
would predict. Quantile—quantile (Q-Q) plots for the
cluster maximum excess under the GP hypothesis (as
derived from the point process model fit) are shown in
the bottom row of Fig. 2, and do not indicate any major
departures from the assumed point process model.

0.20 Phoenix 0.20 Fort Collins 0.20 1 Paris
0.151 0.15 [] 0.15 N

A\ /
0.101 x

\ 0.10+

N\ - /* \

20

0.05 0.051 0.05 1
0.00- 0.00- 0.00-
0 5 10 15 20 0 5 10 15 20 0 5 10 15
Number of clusters Number of clusters Number of clusters
50 A o 000, °
Phoenix o Fort Collins o 40 1 Paris o
38 1
48 - 381
36 1 36
46 1 34 |
34 ]
m 32
30 1
B 32 B
42 08 |
42 44 46 48 50 32 34 36 38 28 30 32 34 36 38 40

GP model quantile

GP model quantile

GP model quantile

Fig. 2. Top row: histogram and estimated Poisson probability function for the number of clusters per summer at 3 sites. Bottom row:
Q-Q plots for the cluster maximum excess under the generalized Pareto (GP) hypothesis at 3 sites
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3. STATISTICAL MODEL FOR HOT SPELLS

In the previous section, we fitted a point process
model to the cluster maximum temperatures, defining a
high temperature cluster as consecutive days with max-
imum temperature above the threshold u, e.g. 40.8°C
for Phoenix, where a new cluster of high temperatures
starts if the temperature drops below u for at least 1 d
(r =1). From a more applied viewpoint, we call these
clusters of high temperatures 'hot spells’; see Fig. 3 for
an illustration of 9 hot spells in a season of 92 d. Again,
the choice of threshold and of r=1 is based on statistical
considerations; societal and meteorological considera-
tions will be important when applying the fitted model
in the analysis of heat waves. Note that the point pro-
cess fit of the previous section provides a Poisson model
for the number of hot spells as well as a GP model for
the hot spell maximum excess, but it does not provide a
complete description of the entire hot spell. To be com-
plete, we need to additionally provide a model for the
spell length, as well as a model for the dependence of
excesses within a spell.

3.1. Description of the hot spell model

Here, we propose to model the spell length through
a geometric distribution, a simple enough model to
allow the easy introduction of trends through a gener-
alized linear model (GLM) framework. In addition, we
propose to start from a simple GP model for the first
excess of a spell and to assume conditional GP distrib-
utions for the remaining excesses, where the condi-
tioning is on the excess of the previous day and the
conditional relationship is assumed constant over the
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Fig. 3. Observed hot spells (black) during 1934 at Phoenix
based on a threshold (horizontal line) of u=40.8°C and r=1
during 16 June (Day 1) to 15 September (Day 92)

length of the spell. Modeling the temporal dependence
of the excesses within a hot spell through a Markov
process, making use of bivariate extreme value theory,
is an asymptotically correct approach (see Coles et
al. 1994). Instead, we used only univariate extreme
value theory, through conditioning in order to provide
a simple approach that is easily applicable in practice
while still making to a certain extent use of the theoret-
ical advantages of extreme value models. For both
types of GP model, simple and conditional, trends can
be easily introduced through covariate effects in the
parameters.

Given its memoryless property, the geometric distri-
bution is the simplest plausible model for spell length.
Smith et al. (1997) used it to model the cluster length of
low minimum daily temperatures, although they found
some evidence that a distribution with a heavier tail
might be needed. The probability mass function of the
geometric distribution is

P(k)=(1-0)k"p, k=12,.. 3)

with the reciprocal of the parameter 6 being the mean.
Parameter estimation is done using the method of
moments (which in this case is equivalent to maximum
likelihood). Under a wide range of conditions, the
parameter 0 corresponds to the so-called extremal
index, which measures the tendency of the underlying
process to cluster at extreme levels; see Chapter 5 of
Coles (2001) for a brief discussion of this index.

Note that this model is specific to the threshold uin the
sense that, if the fitted model is used at a higher thresh-
old, the number of exceedances will no longer necessar-
ily be geometric. Asymptotically correct extreme value
models are not subject to this limitation. We circum-
vented this issue by simulating hot spells, i.e. using the
original threshold, and obtaining results on heat waves.

We modeled the excess on the first day of a hot spell
with a GP distribution with parameters ¢, and &, which
we derived from a point process model fit to data
retaining only the first excess per hot spell. The
remaining excesses of the same spell were modeled
conditionally on the excess of the preceding day. More
precisely, the conditional excess E; on Day I given the
value of the excess E;_; = v on Day I - 1 follows a GP
distribution with scale parameter 6,, = 6,2 (v) de-
pending on v and constant shape parameter & ,.

Note that assuming a constant dependence structure
throughout each hot spell reduces the number of para-
meters involved and increases the amount of data
available to estimate each of them considerably,
namely to all consecutive pairs of excesses. Obviously,
it is possible to extend this simple and parsimonious
approach by allowing the parameters of the condi-
tional GP distribution to vary depending on which day
within the spell is modeled. For the station data consid-
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ered here, we encountered numerical problems while
fitting such models, more precisely the estimated
shape parameters being in some cases smaller than or
very close to —0.5, a theoretical bound below which the
maximum likelihood estimator is not valid (Coles
2001). The same type of numerical instability was ob-
served for the data at the 3 sites when fitting bivariate
extreme value models similar to those considered by
Coles et al. (1994) and Smith et al. (1997).

The form of the scale parameter function 6,5 (v) re-
mains to be chosen. Classical functional forms are the
exponential 6, , (V) = exp(a + b- v) and linear 6,5 (V) =
a + b-v. The exponential function is more regularly
used in statistics since it ensures positivity, and the
classical bivariate extreme value models use a corre-
sponding function. A linear functional form has the
appeal of leading to a simpler model and later on to a
simpler simulation procedure, and in practice, the pos-
itivity constraint is rarely violated within the range of
the data.

The choice of the functional form has consequences
for the theoretical properties of the conditional GP dis-
tribution. Since we assumed that the conditional distri-
bution of the Ith excess given the value of the (I - 1)th
excess is a GP distribution, the conditional mean
(expectation) of the second excess E, given the first
E; =v, for example, is given by

GH,Z(V)
1-&,
i.e. it is again a linear function of the value of the first
excess, if the linear form for ¢, , (v) is chosen. We close
the description of the model by giving the formula for

conditional quantiles, which will be used later on:

E[E,|E, =v]= (4)

with steeper slopes for higher p resulting, for example,
in a more rapidly increasing inter-quartile range than
the median.

One of the drawbacks of the proposed approach is
that the unconditional distribution of any given excess
within a spell is not necessarily exactly a GP distribu-
tion, although it should be a close approximation. Even
though the GP is the asymptotically correct model, it is
in practice, i.e. for finite samples, only an approxima-
tion, and the conditional approach at worst only weak-
ens this approximation somewhat further. Another
possible limitation is that the stochastic process for
daily intensities within a cluster is not time-reversible.

3.2. Hot spell model fit

Method of moments estimates of the parameter 6 of
the geometric distribution for the hot spell lengths as
well as standard errors and the corresponding mean
spell lengths are given in Table 2, and Fig. 4 shows his-
tograms of hot spell lengths along with the fitted geo-
metric distributions for all 3 sites. Especially for
Phoenix, the tail of the geometric distribution seems to
underestimate the observed frequency of longer spells,
systematically indicating that it might not be heavy
enough compared to the data. In spite of this possible
drawback, we favor the geometric distribution over
more heavy-tailed candidates such as the Zipf distrib-
ution (e.g. Section 11.20 of Johnson et al. 1992), since

Table 2. Estimates of the parameter of the geometric distribu-
tion 6 (+SE) and mean spell lengths (d) for 3 sites

v) Station 0 Mean spell length 1/6
Gua(Vv
H'[p,E,,0,,(V)]=—22=[(1-p) -1 5
[Pr52:0u (V] g, [a-p) ] ) Phoenix 0.24 = 0.008 4.08
. . . Fort Collins 0.43 £0.010 2.30
where 0 < p < 1. If 6,5 (V) is a linear function, then the Paris 0.40 + 0.011 .52
conditional quantiles are obviously linear functions of v
0.304 0.5 0.5
M Phoenix Fort Collins - Paris
2‘0.25 \ 0.4 0.4
§ 0.20- \
o 0.3 0.3
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Fig. 4. Histogram and estimated geometric probability function for the hot spell lengths per summer at 3 sites
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the effect due to the observed underestimation should
be small and the possibility to easily introduce trends
through a GLM approach should be more important.
Table 3 contains parameter estimates along with
standard errors of the conditional GP distribution for
both choices of the scale parameter function and for all

Table 3. Parameter estimates (+SE) of the conditional gener-
alized Pareto (GP) distribution for both choices of the scale
parameter function and for 3 sites

Exponential function Linear function
a b €s a b €2
Phoenix
0.50 0.21 -0.36 1.46 0.60 -0.38
+0.023  +£0.013  +0.004 +0.042  +0.024 +0.003
Fort Collins
0.91 0.08 -0.38 2.47 0.25 -0.38
+0.040 +0.010  +0.011 +0.091 +0.031 +0.010
Paris
1.31 0.09 -0.46 3.53 0.51 -0.47
+0.035 +0.007  +0.013 +0.091 +0.032 +0.005

3 sites. Note that the estimates of the shape parameter
are barely influenced by the choice of this function and
lie in an acceptable range (i.e. negative as expected for
temperature data but above —0.5). Fig. 5 shows the
conditional relationship between all consecutive pairs
of excesses (i.e. E;_; and E;) with respect to sample/
observed (circles and vertical lines) and model/
theoretical (thick and dashed lines) median and lower
and upper quartiles: linear function (top panels) and an
exponential function (bottom panels) for the scale
parameter at all 3 sites. For Paris, we rounded the
excesses to the nearest half degree Celsius in order to
be able to calculate stable conditional sample quan-
tiles. Circles in the plots without attached vertical lines
correspond to a single pair of consecutive excesses for
the given value of the first excess, i.e. no measure of
spread can be calculated. In general, circles that are
farther right in the plot are based on fewer values in
the sample quantile calculation, i.e. they are less reli-
able. For Phoenix, the model using the exponential
scale parameter function seems to provide a better fit
to the last few points on the right. Farther to the left of

Phoenix

of second excess (°C)

Fort Collins

of second excess (°C)

First excess (°C)

First excess (°C)

30 36
First excess (°C)

Fig. 5. Theoretical (thick and dashed lines; linear function in top panels, exponential function in bottom panels) and sample

(dots and vertical lines) medians and lower and upper quartiles for the conditional generalized Pareto (GP) model for all consec-

utive pairs of excesses (i.e. the pair E; ; and E; with the threshold added to show original temperature values rather
than excesses) at 3 sites
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the plots, both functional forms result in a similar fit of
the model to the data for all 3 stations.

Note that all model characteristics shown in these
plots are derived from the fitted model, with the dis-
played sample characteristics not being directly fitted
explaining at least some of the apparent less than ideal
performance of the models. In view of the fact that we
only allowed 1 parameter to vary (the scale parameter
of the conditional GP distribution) and that the right-
hand side of the plots is naturally based on extremely
few observations, the fit of the conditional GP models
seems adequate for all 3 stations. We therefore chose
to use the simpler linear function for the scale parame-
ter in the following. A major advantage over more con-
ventional approaches like a conditional normal model
is that the conditional GP model is able to capture the
effect of increasing variability with increasing median
or mean.

3.3. Trends in hot spells

We intentionally constructed our hot spell model such
that the introduction of trends in duration, frequency,
and intensity of hot spells, and later on indirectly for
heat waves, is easily possible. Technically these 3 char-
acteristics correspond to the components of the hot
spell model: the geometric model for spell length, the
Poisson model for number of spells per season, and the

(conditional) GP model for the sizes of the temperature
excesses within a spell. While duration and frequency
are direct consequences of the definition of a hot spell,
intensity can be measured in different ways, e.g. by a
mean, maximum, or total excess of a spell. In our case,
we concentrated on the first excess as an indicator since
it can be assessed easily in our modeling framework
and since trends in the first excess will induce changes
in these other measures as well.

For all 3 model components, we considered parame-
ters fixed over the heat wave season within a given year
but allowed shifts from one year to another, i.e. for each
year y of the record period 1, ..., P we considered 0 =
0(y) for the geometric parameter, A = A(y) for the Poisson
parameter, and 6, = 6,(y) for the GP scale parameter for
the first excess within a spell. The GP shape parameter
was kept fixed, since changes in shape are rarely ob-
served and are difficult to model. For the geometric
model, trends were introduced through a GLM frame-
work. For the point process/Poisson-GP model, there
are 2 possibilities: either (1) introducing trends indi-
rectly through covariate effects in the GEV parameters
and then transforming to the Poisson-GP parameteriza-
tion; or (2) introducing trends directly but separately
through a GLM framework in the Poisson model and
through covariate effects in the GP scale parameter. We
preferred the second possibility because of the advan-
tage that statistical significance can be evaluated sepa-
rately for the number of spells and excesses. Covariate

Table 4. Parameter estimates (+SE) and p-values (bold values indicate significance at the 0.05 level) of the likelihood ratio test for
the 3 components of the hot spell model, number of spells, first excesses and spell length, with and without trend, for all 3 sites,
where y=1,..., Pdenotes the year in the record period

Number First excess Length
Ay) ou(y) g 1/6(y)
Phoenix
No trend 9.69 1.13 -0.18 1/0.24
+0.380 +0.050 +0.022 +0.008
Trend exp(2.2 + 0.002y) exp(0.1 — 1.6 x 107*y) -0.18 exp(1.2 + 0.005y)
+0.081 +0.002 +0.074  +£0.002 +0.022 +0.080 £0.002
p 0.24 0.92 0.01
Fort Collins
No trend 11.24 1.61 -0.20 1/0.43
+0.335 +0.055 +0.018 +0.010
Trend exp(2.3 + 0.003y) exp(0.4 - 0.001y) -0.20 exp(0.8 + 3.6 x 107*y)
+0.062 +0.001 +0.056 +0.001 +0.017 +0.054 +0.001
p 0.01 0.24 0.69
Paris
No trend 7.52 1.88 -0.16 1/0.40
+0.263 +0.073 +0.018 +0.012
Trend exp(2.0 + 8.0x 107°y) exp(0.7 — 0.002y) -0.16 exp(0.8 + 0.002y)
+0.070 +0.001 +0.061 +0.001 +0.019 +0.065 +0.001
p 0.94 0.03 0.05
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Fig. 6. Observed number of hot spells, mean first excess, and mean length of hot spells per summer (circles connected by black
lines) compared to mean values of the generalized Pareto (GP), Poisson, and geometric distributions, respectively, with (gray
lines) and without (black horizontal lines) trend at 3 sites

effects in the parameters are obviously also possible for
the conditional GP model, but in view of the difficulties
of fitting even our basic model for the dependence of
excesses we refrained from that possibility altogether.

Table 4 contains parameter estimates along with
standard errors and p-values of the likelihood ratio
test, which indicate significant trends if smaller than a
certain level, usually taken as 5 %, for all 3 components
of the hot spell model, with and without trends, and all
3 sites. Fig. 6 contains the observed evolution over time
of the same 3 components compared to mean values of
the respective model distribution with and without

trends at all 3 sites. As indicated in the table, there was
a significant trend in spell length for Phoenix, in the
number of spells for Fort Collins, and in the first excess
and spell length for Paris, which were more or less all
confirmed by the visual impression of Fig. 6. The
downward trend in mean of first excesses in Paris is
surprising, but might simply be due to the fact that hot
spell intensity is not adequately represented by the
mean first excess. The visual impression of the
observed series confirms a decreasing variance over
the years, which matches the sign of the parameter
estimates in Table 4. Note that since we considered a
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season of fixed length, it will be difficult to allow for a
trend in both spell length and number of spells. As
mentioned before, this at least somewhat unrealistic
assumption will probably need to be relaxed in an
expanded version of the model.

4. HEAT WAVE SIMULATOR

Here we introduce a ‘heat wave simulator’, i.e. a sto-
chastic simulation algorithm that generates tempera-
ture series from the discussed hot spell model in order
to demonstrate how characteristics of more full-
fledged heat waves can be obtained.

4.1. Algorithm

The algorithm to simulate a time series of hot spells
starts by generating the number of hot spells for each
year in the desired simulation period from the Poisson
distribution (which is derived from the point process
model of the first excess of a spell). Then, for each of
these hot spells, a spell length is generated from the

Number of spells per summer

geometric distribution. From the theory of Poisson pro-
cesses, it follows that the distribution of the hot spells
within the season is uniform, and we use this fact to
simulate the alternation between hot spells and inter-
vals between spells over the entire simulation period.
The next step is to generate an excess over the thresh-
old for the first day of each hot spell from the GP distri-
bution (which is derived from the point process model),
and finally to generate excesses for the remaining days
of each hot spell recursively using the conditional GP
model. The technical details for the implementation of
the simulation algorithm are given in Appendix 1.

As a demonstration of the simulator applied to
Phoenix, Fig. 7 shows boxplots of different characteris-
tics of the observed temperature series of 67 yr (74 yr
between 1934 and 2007 with 7 yr of missing data), along
with minimum/maximum, lower/upper quartile, and
median of 100 simulated temperature series of length
74 yr (with no trends in any parameters of the hot spell
model). Here, the mean excess per summer is shown as
an example of an indicator of the intensity of a hot
spell. This characteristic is calculated from all excesses
in all spells of a season, i.e. the simulated values are
drawn from the GP model of the first excess and the

Mean spell length per summer
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Fig. 7. Boxplots of several hot spell characteristics of observed (67 yr) temperature series over the threshold of u = 40.8°C for

Phoenix. Black vertical lines above boxplots correspond with increasing length to minimum/maximum, lower/upper quartile, and

median of 100 simulated temperature series of length 74 yr (with no trends in any parameters of the hot spell model). Gray dotted
lines extend quantiles of boxplots to facilitate comparison with the simulation
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Mean spell length (d)

1940 1960 1980 2000

Fig. 8. Mean spell lengths: observed temperature series for

Phoenix (thick black line), pointwise 10 and 90 % quantiles of

100 simulated temperature series of length 74 yr (hatched:
without trend; gray: with trend)

conditional GP model for the remaining excesses of a
spell. The deviation in the central part of the boxplot is
a concern here, reflecting again that the conditional
GP model is not a perfect approximation of the true
underlying process (see also Fig. 5).

As a second demonstration of the simulator, this time
including a trend in the parameter of the geometric
distribution for spell length, Fig. 8 shows mean spell
lengths per season from the observed temperature
series from Phoenix along with pointwise 10 and 90 %
quantiles of 100 simulated temperature series of length
74 yr. This display emphasizes the positive effect of the
introduction of a trend on the simulation, but again
indicating that the geometric model is probably not
heavy tailed enough (see also Fig. 2).

4.2. Heat waves

The extreme value methodology we apply requires, on
the one hand, that the threshold be high enough for the
asymptotic theory to be valid but, on the other hand, low
enough such that enough data are available for the
analysis to be stable. Another requirement is that clus-
ters/hot spells need to be approximately independent,
which is usually achieved by a declustering scheme of
which we used the simplest one: 2 spells are separated
by at least 1 d of lower temperatures. To study heat
waves, we used the fact that at least for some definitions,
they can be indirectly derived from hot spells, for exam-
ple by using a higher threshold (Fig. 9, middle), using
only longer hot spells, merging spells, i.e. using r > 1
(Fig. 9, right) or other functionals of the spell (e.g. mean
or total excess). The principal idea is to model hot spells
using extreme value theory, and then derive conclusions
on heat waves, which themselves cannot be analyzed as
easily for various reasons: (1) there are too few data for
direct models of heat waves to be as reliable; (2) different
definitions of heat waves would require repeated model
fitting, if not different modeling approaches; and (3) heat
waves are, depending on the definition, considerably
more complex to model directly.

As an example, we used the fitted hot spell model
(i.e. u=40.8°C and r = 1) for Phoenix and accordingly
simulated hot spell series with and without the
detected trend in spell length. From these simulated
hot spells, we indirectly obtained simulations of heat
waves, defined as temperatures exceeding the higher
threshold of 43.6°C (i.e. 110.5°F), where 2 heat waves
are separated by at least 1 d of lower temperatures (i.e.
still r=1). Fig. 10 shows an observed series of the num-
ber of heat waves (top), mean length (middle), and
mean excess (bottom, i.e. 1 measure of heat wave
intensity) along with corresponding pointwise 5% and
95 % quantiles of 100 simulated temperature series of
the same length (except for years of missing data) with
and without trend.

Maximum temperature (°C)

451 L ﬂ }7 45 ? ﬁﬁ’ q T‘H 45 ﬂ H“
pah I ey o 1n ﬁj‘r ik 1
401 40 40
351 35 35
30 30 30
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Time (d) Time (d) Time (d)

Fig. 9. Observed hot spells (black) during 1934 at Phoenix based on a threshold of u=40.8°C and r=1 (left), u=43.6°Cand r=1
(middle), and u=40.8°C and r= 2 (right)
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Fig. 10. Number of heat waves (u=43.6°C, r= 1), mean heat wave length (d, middle), and mean excess (bottom); thick lines corre-

spond to the observed series at Phoenix of length 67 yr, areas between pointwise 5 and 95 % quantiles of 100 simulated tempera-

ture series of length 74 yr are hatched for the hot spell model without trend and gray for the model including a trend. The extra

gaps (in addition to the years of missing data) in the time series (middle and bottom panel) are due to years in which no heat
waves occurred (see top panel)

In Fig. 10, the observed number of heat waves in
Phoenix seems to increase more systematically than
the observed number of hot spells (recall Fig. 6),
whereas the length and mean excess during heat
waves do not seem to show systematic changes over
time. Possibly the observed (and statistically signifi-
cant, see Table 4) increasing trend in hot spell length
results in heat waves occurring more frequently.
Most of the line corresponding to the number of heat
waves is contained in the shaded area, as it is rather
wide. The dark gray area, corresponding to the hot
spell model with a trend in the geometric spell
length distribution, seems to reflect the potential
trend in the number of heat waves, more convinc-

ingly so if bands with lower confidence (e.g. 10 and
90%) are used (not shown). For mean heat wave
length, it is clear that the simulations are not able
to reproduce the observed sudden spikes, and for
the mean excess during heat waves, the confidence
bands seem again rather wide compared to the
observed values.

5. DISCUSSION

A new technique has been proposed for the statisti-
cal modeling of hot spells. Unlike most previous re-
search on this topic, our method is based as much as is
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feasible on the statistical theory of extreme values.
Given that hot spells are an extreme meteorological
phenomenon, this reliance on extreme value theory
naturally produces an approach that treats the basic
characteristics (i.e. frequency, duration, and intensity)
of such events in a more realistic manner statistically
than techniques heretofore applied. Perhaps less obvi-
ous, the point process technique for extreme value
analysis results in a more powerful approach for sys-
tematically studying the statistical features of extreme
high temperatures. We have demonstrated how the
statistical characteristics of more full-fledged heat
waves can be derived from our statistical model for hot
spells. In particular, attention need no longer be re-
stricted to a rigid definition of a heat wave, about
which there is not necessarily any consensus.

The proposed technique has been intentionally kept
simple enough for trends in its various components to
be incorporated. Thus, there remain a number of
respects in which the technique could be extended,
both to make its treatment of hot spells more realistic
statistically and of heat waves meteorologically. As
already mentioned, it would seem more reasonable to
allow a trend in the length of the heat wave season,
along with any trends in other characteristics. A more
appealing, but less parsimonious, approach would
consist of introducing seasonality into the parameters
of the statistical model, rather than holding them fixed
over an entire season. A longer summer season could
be modeled, with hot spells being less likely at the
beginning and end of the season. Concerning meteo-
rological realism, it would be straightforward to apply
the technique to daily time series of apparent tempera-
ture instead of maximum temperature, thus taking into
account humidity (e.g. Karl & Knight 1997). Indices of
atmospheric circulation patterns, such as blocking,
could be used as covariates instead of, or in addition to,
a trend component (e.g. Sillmann & Croci-Maspoli
2009). Much more challenging would be the simulta-
neous treatment of both daily maximum and minimum
temperature, thus taking into account night-time
weather conditions as well.

This research has implications for the statistical mod-
eling of temperature variables more generally. Specifi-
cally, climate change scenarios are frequently pro-
duced by stochastic weather generators (e.g. Semenov
2008). Conventional weather generators are based on
autoregressive-type models for time series of daily
minimum and maximum temperature. As such, they
cannot be expected to adequately represent the statis-
tical characteristics of extreme high temperatures,
especially the temporal dependence of excesses within
a hot spell. How to modify such weather generators to
improve their performance in terms of simulating heat
waves remains an open question.
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Appendix 1. Implementation of the heat wave simulator

Recall that the discussed hot spell model is based on several parameters: A
for the Poisson parameter of the number of hot spells, 8 for the geometric
parameter of hot spell length, 6, and & for the generalized Pareto (GP) para-
meters of the first excess of each spell, and a, b, &, for the parameters of the
conditional GP distribution with scale parameter modeled with a linear func-
tion for the excesses within a spell. Given a season length T, a number of sea-
sons S to be simulated, and values (estimated or hypothetical) for the model
parameters, the algorithm to generate series of hot spells is given by the fol-
lowing pseudo-code:

for yin 1,...Srepeat [1] to [8]

[1] generate N(y) ~ POIS(A)

[2]if N(y)>[T/2] goto 1

[3]foriel,...,N(y) generate Li(y)+ 1 ~ GEO(0)

[4] if Z; L;(y) + 2N(y) - 1 > T goto 3

[5] draw uy,...,un(y) Without replacement from {0,..., Teqia = T-Z; Li(y) — N(y)},
[6] divide {1,2,..., Teqa} using upy,.... Uy

[7#]forie1,...,N(y) generate E; 1(y) ~ GP(6,E)

[8] foriel,....N(y), jel,....Li(y) generate E; ;,1(y) ~ GP(a + bE; j(y) &)

Here N(y) denotes the number of hot spells, L;(y) + 1 is the length of the
ith hot spell (with spells being at least 1 d long), there are T, g = T—-Z; L;(y)
- N(y) days not in a hot spell, ujj,...,Un(y) is the ordered sample, and E; ;(y)
is the excess on day j of the ith hot spell. In step [1], the notation N(y) ~
POIS (A) refers to a random number N(y) distributed according to a Poisson
distribution with parameter A, similarly for the geometric distribution in step
[3] and the GP distribution in step [7] and [8]. Note that steps [2] and [4]
ensure that there are enough days in the season to fit the generated number
of hot spells with corresponding length and at least 1 d of colder temperature
between spells (i.e. at least N(y) — 1 ‘cold’ days).

The simulation algorithm is virtually the same if the model contains a trend
in 1 or several of the parameters, the only difference being that a different
parameter value is used in the generation for each season. For example, if
the observed trend in the spell length for Phoenix is included in the model,
then the third step uses L;(y) + 1 ~ GEO (8(y)).
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