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ABSTRACT: The main objective of this study was to show the potential of a simple and computation-
ally inexpensive statistical method for the computation of land cover types (LCTs) and potential nat-
ural vegetation (PNV), which can be easily adapted to any LCT scheme used by climate models. We
propose a diagnostic model (Vegetation Reconstruction by Diagnostic Equilibrium, VERDE), which is
based on the cluster analysis of high-resolution datasets of observed LCT distribution and of climate
variables. We discuss the reliability of this statistical approach and show that VERDE can be applied
for reconstructing PNV distribution in areas such as Europe, India, and China where original vegeta-
tion has been replaced by crops and urban areas. According to VERDE, the dominant PNV consists
of broadleaf deciduous trees in Central Europe, mixed savanna and grassland in Eastern Europe at
mid-latitudes, and evergreen needle trees in Russia. Large areas of India are covered by savanna,
and of China by grassland, mixed forest, and evergreen broadleaf trees. VERDE was applied to 5 cli-
mate model scenarios (produced by HadCM3, GFDL-CM2.0, IPSL-CM4, CSIRO-MK3, and CNRM-
CMB3) to identify changes in potential vegetation at a global scale that would be induced by the pro-
jected climate change at the end of the 21st century. In the Northern Hemisphere, our results showed
an increase in barren soils (deserts) in the areas from the tropics to the mid-latitudes, a northward
shift of various types of forest, and a reduction in snow- or ice-covered land and in areas occupied by
shrubs and bushes (tundra) at high latitudes. Changes were smaller in the Southern Hemisphere and
suggest increases in savanna in South America and shrublands in Australia.
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1. INTRODUCTION

Land cover types (LCTs) are used for characterizing
and modeling the land surface. Many climate models
refer to LCTs for computing the interaction between
the atmosphere and the land surface, for variables
such as surface albedo, surface roughness, momentum
and heat fluxes, and evapotranspiration. Vegetation
types are connected to LCTs, as vegetation is a key ele-
ment characterizing the land surface, together with ur-
ban areas, lakes, glaciers, and ice caps. The concept of
potential natural vegetation (PNV, Tixen 1956) de-
scribes the vegetation types that would exist because
of climate, in the absence of a direct human influence
such as the introduction of crops and towns, which re-
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place the natural environment that would have other-
wise existed. In this study, PNV is a key concept, as our
diagnostic model (called Vegetation Reconstruction by
Diagnostic Equilibrium, VERDE) addresses the prob-
lem of the computation of LCTs in equilibrium with cli-
mate and, therefore, also that of PNV.

PNV has been recently used in climate and environ-
mental research to achieve a wide variety of goals: cli-
mate characterization, climate change analysis, nature
conservation, landscape planning, and ecological risk
assessment (e.g. Alo & Wang 2008, Lapola et al. 2008,
Rosati et al. 2008). Examples of PNV reconstructions in
the literature are based on equilibrium vegetation
models (Haxeltine & Prentice 1996) or on a combina-
tion of models and observational data (Ramankutty &

© Inter-Research 2010 - www.int-res.com



206 Clim Res 41: 205-220, 2010

Foley 1999, hereafter referred to as '‘RF’). Although
there is a consensus on the importance of the concept
of PNV, properly defining and identifying it is not with-
out problems (Hardtle 1995), because of problematic
issues such as including the effect of permanent site
changes (which may be the consequence of human
actions) and considering the balance of PNV with all
site conditions.

The main tool for the construction of PNV and esti-
mation of climate-related PNV change is the running
of a state of the art vegetation model until an equilib-
rium condition is reached. Dynamic global vegetation
models (DGVMs) simulate ecological and physiologi-
cal processes and are capable of simulating responses
of vegetation to climate evolution, also accounting for
soil properties and atmospheric CO,. The models gen-
erate predictions of the composition and structure of
vegetation for a given climate in terms of relatively few
plant functional types, which share similar basic prop-
erties regarding their effects on energy, water, and
CO, exchanges with the atmosphere (Woodward et al.
1995, Haxeltine & Prentice 1996, Sitch et al. 2003).
These models are currently used for analyzing climate
change impacts on vegetation (Cramer et al. 2001, Alo
& Wang 2008). In DGVMs, (1) the definition of the
functional types is part of the structure of the model,
and (2) the computation of PNV requires a simulation
with constant climate conditions and a duration suffi-
cient to reach a steady state of the vegetation.

The main goal of this study was to develop a simple,
inexpensive approach for the computation of LCTs on
the basis of the association of vegetation types with cli-
mate at equilibrium. Here we describe a flexible (to be
used with any reasonable vegetation or land-cover
classification dataset), user-friendly (easy to imple-
ment), and inexpensive (no large computer resources
are required) model, called VERDE. With respect to
DGVMs, VERDE avoids the rigidity of point (1) above
and the need of (2).

VERDE is an application that involves cluster analy-
sis. Cluster algorithms aim to group objects by an auto-
matic and objective procedure. The idea is to identify,
within a sparse distribution, objects that are close to
each other and can be represented by a centroid asso-
ciated with each cluster. The algorithm requires a def-
inition of distance for describing differences between
elements. In this study, the technique was applied to
LCTs and to the annual cycle of monthly precipitation
and temperature, but it could be adapted to include
other meaningful climate variables such as solar radia-
tion, daily temperature range, growing degree days,
moisture indices, and temperatures of the warmest/
coldest months, as well as non-climatic fields such as
soil types. In the literature, some examples of cluster
techniques have been applied to the classification of

regional climate (e.g. Unal et al. 2003) and to confirm
or replace the subjective Képpen climate classification
(Koppen 1900), which has been widely used in the
past, mainly by geographers (Kottek et al. 2006, see
Peel et al. 2007 for a recent analysis). A recent study
(Wang & Price 2007) implemented the same technique
to annual climatic indices and to a small subset of plant
functional types for classification purposes. Moreover,
to our knowledge, the cluster technique has never
been used for modeling LCTs and their climate
change-related changes.

The approach is data driven, as VERDE is based on
information that must be provided by existing datasets
containing LCTs and climate variables. The existence
of an underlying dynamic that associates LCTs with
climate variables is conceptually needed to support the
statistical links that VERDE exploits, but no dynamical
relation is included in the model and no explicit knowl-
edge of the prognostic relation between LCTs and cli-
mate is needed for building VERDE. In synthesis,
VERDE is a diagnostic tool for associating LCTs to cli-
mate variables on the basis of cluster analysis of large
datasets. VERDE is usable only for matural’ LCTs;
urban areas, crops, and farmland cannot be analyzed
with this simple approach.

VERDE uses the observed links between LCTs and
climate for computing the spatial distribution of LCTs. It
aims at describing only the final equilibrium land cover
condition, without any attempt at describing its time
evolution. VERDE cannot be an alternative to DGVMs,
not only because it does not compute transient condi-
tions, but also because it does not provide information
on variables such as net primary production, carbon
content in vegetation and soil, carbon fluxes, or evapo-
transpiration. In the implementation described in this
study, VERDE is targeted at the representation of LCTs
that are used in climate models for the purpose of de-
scribing the surface properties that are important for
computing fluxes and atmospheric circulation.

Section 2 contains a technical description of VERDE,
of the climate and land-cover data used in its cluster
algorithm, and a model validation through the recon-
struction of LCTs over the Americas. Section 3 de-
scribes the PNV that VERDE reconstructs over strongly
anthropized regions and a set of 5 global LCT distribu-
tions, which result from the temperature and precipita-
tion patterns produced by the global model simulations
of HadCM3, GFDL-CM2.0, IPSL-CM4, CSIRO-MKS3,
and CNRM-CMa3 for the A2 scenario (Naki¢enovi¢ &
Swart 2000). Section 4 contains an overall discussion of
the results, the limitations of VERDE, its advantages,
and how it compares to DGVMs and other diagnostic
descriptions of land cover. Section 5 is a short synthesis
of the main conclusions of this study. Mathematical
details related to the definition of the clustering proce-
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dure are given in Appendix 1, where specific technical
features adopted for the clustering are also described.
Appendix 2 contains some technical details on the pro-
cedure used for comparing the results of VERDE to the
PNV proposed by RF.

2. DATA, METHODOLOGY, AND MODEL
VALIDATION

2.1. Vegetation and climate data input

As the idea of the model is to use global data to build
a purely statistical association of LCT in equilibrium
with climate, 2 reliable sets of input data are needed: a
global LCT, or vegetation type distribution, and a
global climate dataset.

Although the approach can be adapted to different
choices of LCTs, all applications in this study use the
Global Land Cover Characteristics (GLCC) International
Geosphere Biosphere Programme (IGBP) data set, which
contains a global land use fractional distribution at 10’
resolution derived from 1 km AVHRR observations for
the period April 1992 to March 1993 (Loveland et al.
2000) with 17 classification types. We ignored 5 of these
(wetland, cropland, urban, water, cropland-natural), be-
cause they are not directly associated with climate. The
remaining number of vegetation types (Ny) = 12 LCTs
were used for VERDE: barren soil, evergreen broadleaf
trees, deciduous broadleaf trees, evergreen needle trees,
deciduous needle trees, grassland, savanna, woody sa-
vanna, mixed forest, open shrubs, closed shrubs, and
snow-ice. The land cover at each grid point is distributed
percentage-wise among the various types. Although the
LCT with the largest percentage, which is called the
dominant LCT, is often used to visualize and discuss re-
sults, the simultaneous presence of several LCTs is fully
accounted for and exploited by VERDE.

When building the statistical association, it is impor-
tant to consider only natural LCTs whose distribution is
not altered by human influence and factors other than
climate. Therefore, only points with <5 % of croplands,
<5% urban and built-up areas, <5% water bodies,
<5% permanent wetlands, and <5 % cropland-natural
vegetation mosaics were considered, so that the points
used by VERDE have a minimum of 75 % natural LCTs.

In the applications shown in this study, a minimal set
of climate variables was used, consisting of the annual
cycle of monthly mean temperature and accumulated
precipitation derived from the data provided by the
Climatic Research Unit (CRU) of the University of East
Anglia (New et al. 2002, www.cru.uea.ac.uk/cru/data/)
at 10’ resolution. Further refinement considering more
climate variables and also non-climatic fields will be
considered in future applications.

2.2. VERDE model approach

In VERDE, cluster definition is based on the average
monthly temperature (¢) and precipitation (p) annual
cycle in each point i,j of the grid: t™, p™ m =1, 12—
where mrepresents the calendar month —and the per-
centage of land cover for vegetation types, v®, m =1,
Ny—where n represents the LCT (the grid row and
column indices i,j are omitted for brevity of notation).
The equivalent dimensionless variables are defined as

“m) t(m)
(m) — m=1,12 (1)
SDy
(m)
~(m) _ P -
p= m=1,12 (2)
SD,
B v
V(H=SDV m=1,Ny (3)

where SD1, SDp, and SDy, are the corresponding stan-
dard deviations computed on all grid points and either
months or vegetation types. In this manuscript, the
tilde denotes dimensionless variables (see Appen-
dix 1), lowercase characters denote the values at a sin-
gle grid point, and uppercase characters denote aver-
age or global values. The dimensionless variables are
used for the definition of x = (f, Pp,v), which is a dimen-
sionless array of size Np = 12 + 12 + Ny. By means of
a k-means cluster algorithm (MacQueen 1967; see
Appendix 1 for more details), x;; and X, are identified
and represent the 'position’ of the ith element of clus-
ter I and the centroid (baricentrum) of cluster I, respec-
tively. The advantage of the dimensionless variables is
that the clustering algorithm gives identical weight to
precipitation, temperature, and vegetation types in
the computation of clusters.

VERDE adopts a 2-step method for the attribution of
LCT on the basis of the annual cycle of precipitation
and temperature. Step 1 (analysis, based on obser-
vations) is the cluster analysis of the LCTs and climate
data and results in the definition of the model clusters.
Step 2 (attribution, based on processing of observed or
simulated climate data) assigns vegetation types to
each grid point. During the attribution step, the local
annual cycle is computed for each point of the domain,
and the cluster with the most similar annual cycle is
identified by finding the nearest centroid in the sub-
space scanned by the variables ™ and p'™ for m = 1,
12. The distance from the centroid in such subspace is
a measure of how well the cluster represents the local
climate. The LCT vector (v®,v®.. . v™)) of the cluster
centroid is attributed to the point.

Wang & Price (2007) already tested the k-means
cluster analysis and found an optimal classification
tool, but it was applied for characterizing 3 plant func-
tional types and was applied to only 3 climatic indices:
monthly mean daily minimum temperature, annual
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sum of growing degree days where daily mean tem-
perature exceeded 5.0°C, and the climatic moisture
index (which was defined as total annual precipitation
minus annual potential evapotranspiration). Wetlands
were excluded from the analysis by Wang & Price
(2007) and also from our study. Here, we cluster a com-
plete LCT distribution in association with climate
(given as the annual cycle of monthly temperature and
precipitation) and use the results for a diagnosis of
vegetation coverage.

2.3. Model tuning and optimization

The resulting distribution of the attributed LCTs de-
pends on the number of clusters that has been pre-
scribed (Fig. 1 shows the dominant LCT). In the sim-
plest configuration (2 clusters), the whole land surface
is split between barren soil and open shrubs. With
increasing numbers of clusters, the dominant surface
cover becomes progressively diversified. With 3 clus-
ters, evergreen broadleaf trees replace barren soil in
the humid tropical regions. With 4 clusters, woody
savanna appears over a large fraction of transitional
areas around the desert regions. With 5 clusters, open
shrubs replace many barren soil areas and are added
in transitional regions between savanna and barren
soil. With 6 clusters, snow-ice covered regions are
identified at high latitudes in the Northern Hemi-
sphere. With 7 clusters, mixed forests occupy large
parts of Eurasia and North America. With 8 clusters,
grassland covers large regions at mid-latitudes in the
northern Hemisphere. With 9 clusters, a distinction
between areas with woody savanna and savanna is
introduced. Increasing the number of clusters does not
necessarily introduce a new dominant LCT (there are
only 12 LCTs in this implementation), but is meant to
provide a finer classification. In fact, no new dominant
LCT appears with 10 clusters; rather, only a geograph-
ical redistribution of dominant LCTs takes place (e.g.
barren soils replacing open shrubs at high latitudes)
with respect to that based on 9 clusters. Moreover, the
LCTs in the GLCC dataset are not univocally linked
with climate, as quite different annual cycles can be
associated to the same LCTs. An example is barren
soil, which can be linked to the desert tropical dry cli-
mate and to the tundra landscape of the polar regions.

In the k-means cluster algorithm, the number of clus-
ters is prescribed and can be changed freely by the
user. Increasing the number of clusters implies improv-
ing VERDE's capability of describing the actual LCT
distribution as a function of climate. At the same time,
the computation of the clusters becomes progressively
more time consuming, and the conceptual classifica-
tion and simplification of the link between climate and

vegetation becomes less effective. Appendix 1 dis-
cusses the optimal number of clusters in the range up
to 500 clusters and reaches the conclusion that it would
not be advisable to use fewer than about 100 clusters.

Experimenting with the VERDE model has shown
that the procedure can produce unreliable results in
connection with the presence of clusters with few ele-
ments, which are clusters attributed to few grid points
(small areas). When the analysis (the first step of the
model procedure) contains small clusters, the attribu-
tion (the second step of the procedure) on the basis of
the local annual temperature and precipitation cycle
can assign their LCTs to large areas, and such attribu-
tion depends irregularly on the number of clusters.
This problem has been avoided by excluding clusters
smaller than 0.4 times the average cluster size during
the attribution (see Appendix 1). Moreover, note that
the meaning of small clusters is arguable, as they
might represent the effect of local factors or climati-
cally non-equilibrium situations, such as remnants of
LCTs that are disappearing.

For all figures and results presented in this manu-
script, VERDE was implemented using 100 clusters,
and the attribution did not consider clusters smaller
than 0.4 times the average cluster size. Fig. 2c shows
the natural LCT distribution computed by VERDE in
this configuration.

2.4. Model validation

Fig. 2 shows the capability of VERDE to describe the
actual dominant LCT. Fig. 2a shows the LCT in the
global GLCC IGBP dataset. Fig. 2b shows only the
points where the LCT has been considered natural (the
anthropized grid points are masked). Fig. 2c shows the
dominant LCT of the centroid of the cluster to which
each single grid point is attributed. The natural LCT in
Fig. 2b matches well the LCT of the cluster centroid in
Fig. 2c, showing the consistency of the model and the
capability of the cluster centroids to correctly represent
the observed natural LCT and its link with climate. The
kappa score (Cohen 1960) value for the agreement
between Fig. 2b and c is 0.62, suggesting a good
agreement between the 2 datasets.

In order to validate VERDE, the natural vegetation
over the Americas is reconstructed using the clusters
computed from the data (temperature, precipitation,
and vegetation) over the rest of the globe, but exclud-
ing those over the American continent itself. Six maps
are shown in Fig. 3. Panels (a), (b), and (c) show the
actual LCT, the actual natural LCT, and the recon-
structed LCT, respectively. Panel (d) shows the dis-
tance: in the subspace scanned by fi(jm) and }3}-]’-’”
between each point jj and the centroid Cj of the cluster
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Fig. 2. (a) Actual dominant vegetation type based on the GLCC-IGBP
dataset (Loveland et al. 2000); (b) same as (a) except that only the points
with natural vegetation are plotted and anthropized regions are shaded
in light gray; (c) dominant potential natural vegetation (PNV) of cluster
centroids, using 100 clusters. PNV values are aggregated on a 2° grid

containing the grid point itself. Low/high values of
distTPU are a measure of the success/failure of the attri-
bution procedure, that is of the identification of a cli-
mate outside the Americas sufficiently similar to the
local one. Fig. 3e provides information on the error
resulting from matching the annual temperature cycle
of the cluster centroid to the grid point value. This is a
dimensional quantity (values in K) given by the devia-
tion around the temperature of the cluster centroid.

EVRNEED
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e iy
' "y DECNEED
- DEBROAD
‘1: % n [ | MRsT
-l CLSHRBS
1
i N | —
i ! / OPSHRBS
WOODSAV
SAVANNA
GRASSLD
; I WETLAND
CROPLND
URBANBU
CROPVEG
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Fig. 3f shows the analogous quantity for pre-
cipitation (in mm). Formulas describing these
quantities are given at the end of Appendix 1.

Discrepancies between actual natural and
reconstructed LCTs (shown in Fig. 3b,c) are
related mostly to an overestimate of the area
attributed to grassland (which replaces open
shrubs) and savanna and woody-savanna,
which replace grassland and open shrubs over
central areas of North America. Comparable
errors take place in the southernmost part of
South America and along the Andes. The
evergreen needle forest along the north
Pacific coast is partially replaced by evergreen
broadleaf trees. The map of the distance
(Fig. 3d) shows that all of these inaccuracies
are due to failures in identifying a cluster cen-
troid with a similar climate. This is likely due
to the absence of similar climatic conditions in
other regions of the world. Peculiarities of the
annual cycle of temperature (Fig.3e shows
areas where errors in temperature are rather
large) are the likely candidates for these dis-
crepancies. A different error is the introduc-
tion at high latitudes of large patches of decid-
uous needle trees that are not observed in the
present vegetation. This is due to the presence
of large extensions of deciduous needle trees
over continental cold regions of Asia with sim-
ilar climate conditions. Differences between
the reconstruction and observations are also
large in southern Greenland, where tundra
replaces the existing glaciers. In fact, another
possible cause of wrong attribution is the lack
of dynamics in VERDE, which in principle
computes LCTs in equilibrium with climate.
Obviously, the presently observed LCTs could
represent a metastable or transitional state,
which is not in equilibrium and it is gradually
disappearing or owing its existence to a micro-
climatic balance. Any metastable or transient
condition would be completely missed by
VERDE. This could be the source of the differ-
ences between attributed and present LCTs in
southern Greenland. In spite of these short-
comings, over most of the Americas, the attri-
bution is successful because the present LCTs are con-
firmed by the attribution, and crops are replaced with
plausible LCTs. In fact, the kappa score computed be-
tween the natural and reconstructed LCT distributions
is 0.48. Therefore, Fig. 3 shows that information on the
annual temperature and precipitation cycle alone is
sufficient for identifying the actual LCT over the Amer-
icas on the basis of statistical links established using
data from outside the Americas.
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Fig. 3. (a) Observed vegetation, (b) observed natural vegetation, (c) model potential natural vegetation (PNV), (d) distance from
cluster centroid, (e) and (f) temperature (K) and precipitation (mm) deviation, respectively, from that of the cluster centroid.
PNV values are aggregated on a 40’ grid
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Fig. 4. (a,d) Observed vegetation, (b,e) observed natural vegetation, and (c,f) potential natural vegetation (PNV) over Europe (a-c)
and over Asia (d—f). The local annual cycles of temperature and precipitation are used in each point for attributing to it the potential

natural vegetation. Distribution values are aggregated on a 20" grid for Europe and on a 30’ grid for Asia

3. APPLICATIONS AND RESULTS

This section describes 2 applications of VERDE that
demonstrate its effectiveness: the reconstruction of PNV
and the computation of LCTs in climate projections.

3.1. Reconstruction of PNV over anthropized areas
An application of VERDE is the reconstruction of

PNV types over areas where farming, urban areas, and
other human-related activities have replaced the orig-

inal vegetation cover. The best examples are the
almost completely anthropized areas in Europe, China,
and India. Over these areas, the LCT reconstruction
obtained using VERDE can be considered an indepen-
dent contribution to the reconstructions produced by
botanists (e.g. Neuhausl 1991) and to the general dis-
cussion on PNV (Moravec 1998, Hardtle 1995). In gen-
eral, botanists follow a completely different reasoning
and have different targets, so that a precise compari-
son is not possible. However, VERDE qualitatively re-
produces the reconstruction by Neuhausl (1991). Fig. 4
compares the actual present vegetation and natural
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vegetation over Europe and Asia to the PNV over Eu-
rope and Asia. The dominant PNV over most of central
Europe consists of deciduous broadleaf trees, with
large patches of mixed wood-savanna vegetation ap-
pearing towards the north-east. Evergreen needle
trees dominate over Russia and Scandinavia. Shrubs
and barren soil (desert) are located along the southern
coasts of the Mediterranean. Grasslands occupy the
interior of Anatolia, part of Iberia, and the northern
coast of the Black Sea.

In Asia, all of India, China, and large parts of west-
ern Asia have no natural vegetation left. According to
VERDE, India would be mostly savanna, with ever-
green broadleaf trees occupying only its humid west-
ern coast and most of Indonesia. China would be cov-
ered with grassland, mixed forest, and evergreen
broadleaf trees, with transition among these types
occurring from north to south. Western Asia, located at
higher latitudes than China, would be covered with
mixed forest, evergreen needle trees, and grassland,

o

with a patchy distribution roughly corresponding to a
transition from north to south.

Reconstructed vegetation is consistent with the LPJ
(Lund Potsdam Jena) model results (Sitch et al. 2003) at
the global scale, although a precise comparison is not
possible, because in these applications, VERDE uses
an LCT classification different from that of LPJ. Com-
pared to LPJ, VERDE underestimates the amount of
evergreen and deciduous needle trees in Central
Europe (France, Germany, and England) and also over
Iberian and Italian orographic features.

The validity of VERDE has been checked against the
RF reconstruction that is available at www.sage.wisc.
edu/atlas/ (Fig. 5a). Since RF did not adopt the GLCC
IGBP LCT classification, some extra rules had to be
introduced in order to transform the VERDE classifica-
tion to the RF vegetation types (see Appendix 2). The
transformed VERDE classification is shown in Fig. 5b.
The 2 maps (Fig. 5a,b) match reasonably well with a
kappa score of 0.41, denoting ‘'moderate agreement.’ A

difference between them is the larger tundra
extension in VERDE in areas where RF set
mixed and boreal forest. The source of this
VERDE attribution is the presence in the GLCC
IGPP map (Fig. 2a) of natural open shrubs in
cold regions, which are considered tundra with
the conversion rules in Appendix 2. The pres-
ence of savanna in Europe in the VERDE maps
is not correct, but is explicable, as RF also set
savanna over 2 tiny spots in Europe and at sim-

NODATA  jlar latitudes over central Asia. Finally, VERDE
POLARIC . .

DESERT attributes savanna as natural vegetation over
runpra  [ndia because the Indian climate is assigned to
opsHres the same cluster as areas of Australia, Africa,
pNsHRBs — and South America that are located at the same
GRASSTD  distance from the Equator, but in the southern
SAVANNA  hemisphere, and where GLCC IGBP maps
MIXFRST .

BOR DC show savanna. Thus, the presence of differ-
BOR EV ences between VERDE and RF is not unusual in
tvreLoc  this sort of comparison. A recent example can
TMPNLEG  be found in Lapola et al. (2008), who compared
TMPBLEG  RF to the PNV by Matthews (1983). They were
Igizig also forced to establish conversion rules be-

Fig. 5. Global maps showing the potential natural vegetation (PNV) at
2° resolution. (a) Results of Ramankutty & Foley (1999); (b) results

produced by our model, VERDE

tween the 2 sets of vegetation types and found
a kappa score of 0.49.

3.2. Effects of climate change on LCTs

Another application of VERDE is the compu-
tation of climate-induced LCT change. This was
carried out using the results of global climate
simulations and considering the mean annual
cycle for the CTR (ConTRol) period 1961-1990
(CTR) and for the period 2071-2100 of the A2
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tential natural vegetation
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and A2 scenario PNV (right
column) based on the aver-
age local annual cycle for the
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climate) and the 2071-2100
A2 scenario of 5 global
models: HadCM3, GFDL-
CM2.0, IPSL-CM4, CSIRO-
MK3, and CNRM-CM3.
Model data are aggregated
on a 5° grid before PNV
reconstruction
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emission scenario. Fig. 6 shows the LCT change
derived from 5 model simulations (HadCM3, GFDL-
CM2.0, IPSL-CM4, CSIRO-MK3, CNRM-CM3), whose
results were extracted from the CERA WWW-Gateway
of the World Data Center for Climate, Hamburg (http://
cera-www.dkrz.de/). Model resolution varies from
about 1.9° (the spectral T63 CNRM-CM3 and CSIRO-
MK3 models) to 3.75° (the longitude resolution of
HadCM3 and IPSL-CM4). In this application of
VERDE, all models were transferred to a common 5°
resolution latitude-longitude grid.

A feature common to all of these climate projections
is the northward shift of the forest areas in the North-
ern Hemisphere at the expense of barren or snow-ice
covered soil and shrubs. A second feature is the
increased extension, both north- and southwards, of
the barren tropical areas of the Northern Hemisphere.
Those changes are associated with milder temperature
conditions at high latitudes and with a northward and
southward extension of areas with very scarce precipi-
tation in the tropics, respectively. Changes in the
Southern Hemisphere are smaller and less consistent
among different models.

Table 1 summarizes the changes of LCTs, showing
the percentage of points for each LCT that VERDE
attributes during the CTR period, differences relative
to the A2 scenario (A2-CTR), and the corresponding
change percentage, i.e. the difference divided by the
value in the CTR period. Values of reconstructed
LCTs for the CTR period are consistent among the
models, and the k-scores compared to the natural
LCTs of VERDE range from 0.40 to 0.55. According to
this diagnostic, the best model among those we took
into account is HadCM3; all others had k-scores
below 0.44. Some differences produced by the A2 sce-
nario are important, including the increment of barren
soil (+26 %) and the decrease in open shrubs (-15 %)
and snow-ice covered land (-4.5%). The areas cov-
ered by other LCTs are shifted in the A2 scenario
(mainly in the Northern Hemisphere and northward)
but their overall extension does not really change.
This suggests that the level of the related resources
will remain steady in the future climate, although the
areas where they are located will change. In contrast,
the increase in barren soils represents an overall loss
of productivity.

Table 1. CTR (ConTRol): present climate potential natural vegetation (PNV) mean distribution (%) computed over all land points
based on the average local annual cycle for 1961-1990 (present climate) of 5 global models (HadCM3, GFDL-CM2.0, IPSL-CM4,
CSIRO-MK3, and CNRM-CM3). A2 - CTR: difference between the 2071-2100 A2 scenario and the 1961 to 1990 period; (A2 -
CTR)/CTR: as for ‘A2 — CTR’, but for the relative difference (percentage change of PNV). Land cover types: evergreen needle
trees (EN), evergreen broadleaf trees (EB), deciduous needle trees (DN), deciduous broadleaf tress (DB). mixed forest (MF),
closed shrubs (CS), open shrubs (OS), woody savanna (WS), savanna (S), grasslands (G), snow-ice (SI), barren soil (BS)

EN EB DN DB MF cs 0s S S G SI BS
CTR

HadCM3 5.3 6.3 1.7 3.7 9.5 0.7 15.2 6.9 6.3 5.0 314 8.1
GFDL-CM2.0 5.7 45 1.0 42 7.2 1.6 17.7 6.6 5.4 5.6 31.3 9.4
IPSL-CM4 9.0 3.9 1.4 3.0 6.7 1.8 14.9 3.8 5.1 4.7 322 134
CSIRO-MK3 7.4 4.4 2.6 3.7 7.6 15 12.6 6.7 6.2 6.3 315 9.5
CNRM-CM3 6.5 8.2 1.8 4.1 8.7 0.9 11.4 7.7 6.6 8.0 29.9 6.2
Mean 6.8 5.5 1.7 3.8 7.9 1.3 14.3 6.3 5.9 5.9 31.2 9.3
SD 1.3 1.6 0.5 0.4 1.0 0.4 2.2 1.3 0.6 1.2 0.7 2.4
A2-CTR

HadCM3 15 0.2 0.3 01 -03 09 -29 -04 -06 04  -1.1 2.0
GFDL-CM2.0 1.8 0.1 0.4 05 -0.1 02 -41 -04 -06 03 -1.0 2.7
IPSL-CM4 1.7 1.0 08 -02 -07 04 -28 04  -09 1.1 -16 0.9
CSIRO-MK3 -0.1 01 -08 0.9 0.5 04 -08  -0.9 0.4 05 -23 2.2
CNRM-CM3 -0.1 11 -0.8 07 -03 02 -11  -04 01  -14  -1.0 3.0
Mean 1.0 0.5 0.0 04  -02 04 -23 -04  -03 02  -14 2.2
SD 0.9 0.5 0.7 0.4 0.4 0.3 1.2 0.4 0.5 0.8 0.5 0.7
(A2-CTR)/CTR

HadCM3 28.7 25 199 24 -35 1339 -191 -62 -10.1 73 -36 247
GFDL-CM2.0 322 28 380 119 -1.1 136 -232 -6.1 -105 6.1 -31 288
IPSL-CM4 19.0 263 555 -7.6 -103 230 -18.9 9.8 -180 230  -50 6.4
CSIRO-MK3 -0.8 12 -284  23.0 62 261 -63 -13.6 6.6 73 -73 231
CNRM-CM3 21  13.0 -455 175 -31 205 -96  -57 1.9 -171  -34 489
Mean 15.4 9.1 7.9 94 24 434 -154  -43  -6.0 53  -45 264
SD 14.4 96 387 109 53 454 6.4 7.7 89 128 16  13.6
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4. DISCUSSION

The aim of this study was to develop a simple diag-
nostic approach, called VERDE, for computing LCTs in
equilibrium with the local climate by exploiting infor-
mation existing in large data sets. VERDE adopts a
data-driven approach, which is based on statistical
links and not on vegetation dynamics. The approach
has its utility, because it allows computing the re-
sponse of LCTs to climate change on long time scales
(ideally, VERDE computes the final equilibrium condi-
tion) without the need of long forward time integra-
tions. Since many LCTs have a correspondence with
vegetation types, VERDE fulfills a similar task for veg-
etation types and computes PNV.

The VERDE approach has 2 limitations. One con-
cerns the reproduction of present natural LCT distrib-
ution; another is its applicability to future conditions.

The underlying assumption of VERDE is that current
vegetation types in non-anthropized areas equal PNV
and that vegetation is in equilibrium with its environ-
ment. Clusters are defined on this basis. However,
human influences can be detected almost everywhere,
even in apparently 'matural’ areas: nitrogen inputs
reach considerable magnitude, forestry activities dom-
inate a great proportion of forests, atmospheric CO,
concentrations are far from pre-industrial levels, and
temperatures have increased over the last decades.
There is the concrete possibility that natural vegeta-
tion in the GLCC IGBP dataset is not in equilibrium
with its environment, and in many regions, VERDE's
basic assumption might be violated. However, most
anthropic factors have only recently reached the scale
at which they produce global effects, and systems have
begun a transition phase toward new conditions, but
they have not yet greatly drifted away from the previ-
ous equilibrium.

When projecting LCTs into the future, VERDE as-
sumes constant relationships between the LTCs and cli-
mate conditions. However, physiological reactions of
plants to altered environmental conditions can be
expected on a large scale. Effects of increased atmos-
pheric CO, concentrations on plant water-use effi-
ciency can alter the precipitation-vegetation relation-
ship, which can limit VERDE's applicability to future
climates. This issue is not unusual in climate change
studies. Note that dynamical vegetation models, which
explicitly describe the processes responsible for climate
evolution, present limitations to their range of pre-
dictability as well, because they include parameteriza-
tions of plant-physiological processes that have been
tuned for the present climate conditions and should be
changed when applied in much different future condi-
tions. Similarly, the relations that are at the basis of
VERDE and of other statistical models would not be

valid if climate conditions drifted too far from those at
present. Common scientific sense suggests that the
range of predictability of dynamical models is larger
than that of statistical models, but both approaches
have limitations to their range of applicability.

It is clear that VERDE cannot aim to be an alternative
to DGVMs, because it is not able to describe the time-
dependent behavior of vegetation communities, to
simulate time-dependent biophysical and biogeo-
chemical feedbacks, to describe the terrestrial carbon
sinks in future climate scenarios, and to address many
of the current research concerns. The advantages of
VERDE are its simplicity (both in concept and in imple-
mentation) and the freedom it allows in choosing the
LCT classification to be used. This is because of its
data-driven approach, so that VERDE does not need to
be based on LCTs with well known dynamics and
prognostic equations. In fact, in this study, the adopted
classification followed that adopted by climate models,
which are designed to describe surface processes and
not vegetation types. Besides the applications
described here, which are based on the International
Geosphere Biosphere Program (IGBP) classification,
VERDE has also been tested with the Biosphere
Atmosphere Transfer Scheme (BATS, Yang & Dickin-
son 1996) and with the classification adopted by the
ORCHIDEE model (Krinner et al. 2005) in order to
interface VERDE with the regional model Regcm and
with the global model LMDZ, which have respectively
adopted these 2 schemes (M. Zampieri & P. Lionello
unpublished, M. Zampieri unpublished).

Without introducing new methodological features,
VERDE can become more accurate by including more
climate variables (besides the annual cycle of temper-
ature and precipitation), such as growing degree days,
moisture indices, and temperatures of the warmest/
coldest months —which are representative of environ-
mental factors to which vegetation is exposed —if
those data are available at a global scale. However, the
VERDE validation and the applications described in
this paper show that adequate results can < obtained
using only the annual cycle of temperature and precip-
itation. In fact, the model results are consistent with the
physiological bounds on minimum temperature re-
ported by Haxeltine & Prentice (1996). If, using the
CRU dataset, minimum temperature is defined as the
mean monthly temperature minus half the diurnal
range, then there are no clusters with >10% of needle
trees and a minimum temperature below -60°C or
above 0°C and equally no cluster with >10% of ever-
green broadleaf trees and minimum temperature
below —-10°C.

Note that vegetation is not only limited by the aver-
age annual cycle of monthly precipitation and temper-
ature. Extreme climate events can also play a role in
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determining the vegetation and limiting existing types
of plants, both with direct (e.g. drought) or indirect
(such as the impact of fires triggered by extremely hot
and dry spells) climate effects. The association of
droughts and extreme climate events with the annual
cycle is definitely weak, so that the effect of these fac-
tors is not accounted for by this approach. However,
the results of VERDE are consistent with Bond et al.
(2004), who included fire effects in a dynamical vege-
tation model, and one may consider including these
effects if such information becomes available, as this is
not an intrinsic limitation of the approach adopted by
VERDE.

Advantages of VERDE with respect to previously
widely used equilibrium models are its objective data-
driven approach and its flexibility.

VERDE's approach does not require any a priori
knowledge of plant physiology and of land cover
dynamics, and it is interesting that its results compare
favorably to those produced by expert ecologists and
climatologists, which are based on other criteria. The
comparison to the PNV proposed by RF as discussed in
this study was intended as a validation of VERDE, but,
as a by product, it supported the PNV proposed by RF
with a blind, purely data-driven approach.

The flexibility of the data-driven approach of VERDE
is very useful when coupling it to climate models. The
approach used with VERDE allows it to be very easily
adapted to the climate information available and to the
scheme that each climate model uses for characteriz-
ing the land surface. An example (M. Zampieri &
P. Lionello unpublished) is the offline coupling of
VERDE with the RegCM model, where VERDE adopts
the land-cover scheme of RegCM and allows the cli-
mate model to compute all atmosphere-land surface
interactions that would be produced by LCTs in equi-
librium with the model climate. This flexibility and this
sort of application cannot be provided by models or
approaches such as that described by RF or Koeppen's
climate classification, which are based on a choice of
variables describing the land cover, which are not
linked to the dynamics of climate models.

5. CONCLUSION

In this paper, we have proposed a diagnostic model
of LCTs, called VERDE, which is based on cluster ana-
lysis of high-resolution datasets of observed vegetation
distribution and climate. We have shown that VERDE
is a useful tool for computing realistic LCTs in equilib-
rium with climate and PNV.

VERDE is flexible, in that it can be used with any
standard vegetation or land-cover classification, is
user-friendly (its implementation is relatively easy),

and is inexpensive (running VERDE takes a few sec-
onds on a common desktop computer). It can be cou-
pled offline to climate models, and the new LCTs com-
puted by VERDE on the basis of the computed climate
could be immediately used by the models themselves
in subsequent simulations (M. Zampieri & P. Lionello
unpublished). Moreover, VERDE could be improved
by introducing other climatic and non-climatic vari-
ables, such as soil type, which clearly affects vegeta-
tion types (e.g. Bachelet et al. 1998), because of the
important interplay of climate with the soil's capability
to retain water and make it available for plant growth.

We used VERDE to reconstruct vegetation distribu-
tion in some areas (such as Europe, India, and China)
where vegetation has been replaced because of
anthropic activities. The dominant PNV would be
broadleaf deciduous trees in Central Europe, with a
transition to mixed savanna and grassland in the east
at mid-latitudes, and evergreen needle trees in Russia.
Large areas would be savanna in India, and grassland,
mixed forest, and evergreen broadleaf trees in China.
The results of VERDE compare reasonably well with
previous PNV reconstructions (e.g. Ramankutty &
Foley 1999).

VERDE was applied to 5 climate model A2 scenario
simulations in order to identify the LCT changes in
critical areas as a consequence of projected climate
change. In the Northern Hemisphere, our results
showed an increase in barren soils (deserts) within the
tropics and at mid-latitudes, a northward shift of
forests, and a reduction of shrublands and snow-ice
covered soil at high latitudes. Changes were smaller
and less consistent among different models in the
Southern Hemisphere.
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Appendix 1. Cluster algorithm

In this study, the k-means cluster algorithm was applied to
a climate and a land cover type (LCT) dataset, represented
with the vector x = (f , p. V), where t, P, vare temperature, pre-
cipitation and LCT, as in Egs. (1-3). Clusters are computed
minimizing the total distance D, defined as the sum of the
distances of the cluster elements C; from the respective cen-
troid Cj:
o Ne N,
D*=Y % dist(%,, %) (A1)
I=1 i=1
where N¢ is the number of clusters and N, is the number of
elements on the Ith cluster, and the distance dist is given by
the usual Euclidean definition in an Np-dimensional space.

Np
dist?(%,7) = 2 (%, — 7,)° (A2)
p=1

where in this study the index P denotes the 24 + Ny compo-
nents of the vector x.

A substantial amount of work has been used for the iden-
tification of the optimal number of clusters. Fig. Ala shows
the behavior of the total distance D as a function of the num-
ber of clusters. Note that Dis the sum of 3 contributions:

D*=D2+D2+D} (A3)

where

5 N N; . " 12 N

Di=3%%d:, d; = (E"-t"y (A4)

I=1 i=1 m=1

and similar definitions hold for Df, and 153, which describe
the distances in the subspaces scanned varying the t(m),
p(m), and v(m) coordinates. D necessarily diminishes as the
number of clusters increases. Fig. A1 shows that the mini-
mization proceeds evenly and smoothly for all 3 contribu-
tions, so that each corresponds to approximately one-third
of the total distance, regardless of the number of clusters.
Fig. 7b shows the average (SD) within clusters for the
dimensional variables t(m), p(m), and v(m), where

Ne Niq

. 12
(M)=—2 2= D E" -1 (A5)

SD? )—L !
NC Ny 1205

intra

and similar definitions are used for SDj,;4(P) and SDj,ya(V).
This plot shows, in dimensional units (K, mm) and percent-
age, the average deviations of a single element of the clus-




Zampieri & Lionello: Statistically computing land cover types 219

Appendix 1 (continued)
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Fig. Al. (a) Total distance D as a function of the number of clusters; (b) average intra-cluster SD for temperature (K), precipitation
(mm), and vegetation (land use, %). Both panels show these quantities as a function of the number of clusters

ter from its centroid. As the number of clusters increases
and the number of elements within each cluster decreases,
both average deviation and total distance diminish.

A criterion for identifying a suitable number of clusters is
the inter-intra distance ratio R (Davies & Bouldin 1979):

RZ — ~imer (AG)

The quantity R can be computed as function of the num-
ber of clusters, where Sme is the average distance among
different clusters, defined using the cluster centroids

S2 1 ft2(3 2

O = NN D 2. dist* (X, Xc,,) (A7)
and Smm\ is the average distance within each cluster de-
fined considering the distance between cluster elements
and the cluster centroid

e = Z Zdzst (% Xc)) (A8)

Nc G NS
A large value of R denotes a situation in which the clus-
ter centroids are well separated with respect to the disper-
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sion of the cluster elements. In an ideal situation, all ele-
ments are grouped in well separated small clouds centered
around the cluster centroids. The inter-intra distance ratio
R is shown as a function of the number of clusters in
Fig. A2. The figure also shows the values Ry, Rp, and Ry
computed exactly as R, but using only variables in the sub-
spaces scanned by t(m), p(m), and v(m), respectively.
Fig. A2 shows that the growth of R, Ry, Rp, and Ry slows
down as the number of cluster increases, but it does not
stop. The steepness of these 4 curves when the cluster
number is comparatively low suggests that it would not be
advisable to use less than about 100 clusters, but it fails to
provide a clear indication of the upper limit beyond which
it is not worth increasing their number. In this study, all
applications were performed using 100 clusters, as
described in Section 2.

When the number of clusters is large, the clustering
algorithm produces clusters with very few elements, mean-
ing that they can be attributed to small areas (few grid
points). The meaning and robustness of these small clusters
is arguable. They might represent a local scale situation in
which vegetation is not in equilibrium with the climate,
such as remnants of vegetation types that are going extinct
because they are no longer adapted, or they might be due
to local factors, such as special soil conditions, that do not
exist anywhere else at a global scale, or to human inter-
vention. In contrast, the large size of a cluster is an indica-
tion of a robust link between climate and vegetation.
Moreover, a series of tests that we carried out while devel-
oping the model has shown that small clusters produce
instability during the attribution, as clusters including very
few elements according to the analysis (first step of the
procedure) might be attributed (second step of the proce-
dure) to large areas, and this attribution depends irregu-
larly on the number of clusters. This problem is avoided if
small clusters are not used during the second step (attribu-
tion) of the procedure. The definition of small depends on
the total number of clusters, because as the number of clus-
ters increases, the average cluster size decreases. There-
fore, a dimensionless size is defined as the ratio between
the number of elements in each cluster and the average
number of elements per cluster. Fig. A3 shows the fraction
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Fig. A3. Fraction of clusters (y-axis) exceeding a fixed di-

mensionless size (x-axis). Each line refers to a computation

based on a different number of clusters (from 2 to 500). The

line corresponding to the implementation with 100 clusters
is marked light grey

of clusters exceeding a given dimensionless size. It shows
that 10% of the clusters are smaller than 0.4 the average
size independently from the total number of clusters used
by the model. Empirical tests that were run while develop-
ing VERDE have shown that if clusters smaller than 0.4
times the average size are not considered when attributing
a cluster to a model grid point, the robustness of the results
greatly increases (see Section 2).

With reference to the discussion of VERDE validation
over the Americas (final part of Section 2) and the relative
maps, the distance in the subspace scanned by t‘]”” and p‘"”
between each point ij and the centroid C; of the cluster
containing the grid point itself (Fig. 3d) is defined as:

2y 2 (By"- pg}’ (A9)
m=1
Fig. 3e shows a dimensional quantity (values in K), that is
the deviation around the centroid

Z (tu &y (A10)

Fig. 3f shows the analogous quantity for precipitation
(values in mm).
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Appendix 2. Land cover type (LCT) redefinition

This appendix shows the scheme used for comparing the
results produced by VERDE, which adopts the GLCC IGBP
LCTs for building the clusters, to the PNV reconstructed by
Ramankutty & Foley (1999, hereafter referred to as ‘RF’).
The scheme consists of rules for converting the VERDE
LCTs to the vegetation types used by RF. The purpose was
to obtain global maps using the same classification for
describing the land cover.

The GLCC IGBP LCTs consist of 17 types: (1) evergreen
needle forest, (2) evergreen broadleaf forest, (3) deciduous
needle forest, (4) deciduous broadleaf forest, (5) mixed forest,
(6) closed shrublands, (7) open shrublands, (8) woody savan-
nas, (9) savannas, (10) grasslands, (11) permanent wetlands,
(12) croplands, (13) urban and built-up, (14) cropland/natural
vegetation mosaic, (15) snow and ice, (16) barren or sparsely
vegetated, (17) water bodies. of these types, 5 (the 4 'non nat-
ural’ types, 11-14, and (17), were not considered in this study.
These types were compared to the 16 types used by RF:
(1) tropical evergreen forest/woodland, (2) tropical deciduous
forest/woodland, (3) temperate broadleaf evergreen forest/
woodland, (4) temperate needle evergreen forest/woodland,
(5) temperate deciduous forest/woodland, (6) boreal ever-
green forest/woodland, (7) boreal deciduous forest/woodland,
(8) mixed forest, (9) savanna, (10) grassland/steppe, (11) dense
shrubland, (12) open shrubland, (13) tundra, (14) desert,
(15) polar desert/rock/ice.

The comparison in Fig. 5 was carried out adopting the
rules below.

A few rules are obvious. When the dominant vegetation of
the cluster centroid is (5), (6), or (9) (according to the GLCC
IGBP classification), the following associations are adopted:

5) GLCC IGBP — (8) RF

6) GLCC IGBP — (11) RF

9) GLCC IGBP — (9) RF

10) GLCC IGBP — (10) RF

Besides the dominant LCT of the cluster centroid, other
rules also consider the monthly mean temperature values
and accumulated precipitation of the cluster centroid and
are guided by the usual definition of climate types (e.g. Kop-
pen):

¢ (1) and (2) GLCC IGBP — (1) RF, if mean monthly temper-
ature is >15°C and monthly precipitation exceeds 1500 mm
¢ (1) and (2) GLCC IGBP — (6) RF if mean annual tempera-
ture is <0°C or the month has a mean temperature >10°C
— (4) RF and (3) RF, respectively, in all other cases

¢ (3) and (4) GLCC IGBP — (2) RF if mean monthly temper-
ature is >15°C and monthly precipitation exceeds 1500 mm
¢ (3) and (4) GLCC IGBP — (7) RF if mean annual tempera-
ture is <0°C no month has a mean temperature >10°C

¢ (3) and (4) GLCC IGBP — (5) RF otherwise

¢ (16) GLCC IGBP — (13) RF if the cluster has no month with
mean temperature >10°C; — (14) RF otherwise

e (7) GLCC IGBP — (13) RF if mean annual temperature
<0°C; — (12) RF otherwise.

Other rules consider the LCT with the second largest per-
centage in the cluster centroid.

* (8) GLCC IGBP — (9) RF if the second largest LCT is
savanna; — (1) RF If the second largest LCT is evergreen
forest; — (2) RF If second largest LCT is deciduous forest

¢ (15) GLCC IGBP — (13) RF if a second vegetation type is
present with a fraction higher than 0.3 — (15) RF in all other
cases

(
(
(
(

Editorial responsibility: Gerd Esser,
GieBen, Germany

Submitted: July 9, 2009; Accepted: January 26, 2010
Proofs received from author(s): April 18, 2010




	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 
	cite8: 
	cite9: 
	cite10: 
	cite11: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite16: 
	cite17: 
	cite18: 
	cite19: 
	cite20: 
	cite21: 


