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1.  INTRODUCTION

The development of GIS in recent years has been
driven by the increase in the availability of digital spa-
tial data as well as hardware and software capability
and accessibility. Nowadays, spatial patterns of differ-
ent phenomena can be analyzed and visualized using
new tools and means of expression (e.g. 3D GIS), with
the software becoming more effective year after year.
Spatial interpolation techniques have been success-
fully introduced into the field of meteorology and cli-
matology, where continuous spatial information on
weather or climate is necessary (COST719 WG2 2006,
Dobesch et al. 2007). In the context of spatial analysis,
‘spatialization’ can be understood as the transforma-
tion of point data (measurements) to derive new—or

extend information from existing—geospatially refer-
enced data, using different interpolation and extra-
polation algorithms (COST719 WG2 2006). However,
spatialization is usually used in the most general sense
as equivalent to ‘spatial interpolation’.

Urban heat islands (UHIs) are among the most com-
mon, although inadvertent, climatic changes caused by
urbanization (Oke 1987). Studies on the differentiation of
air temperature in urban areas date back to the first half
of the 20th century (Peppler 1929, Middleton & Millar
1936). The geomorphic analogy of UHIs to an island was
confirmed by Oke (1976), who distinguished 3 zones of
the UHI: the cliff, the plateau, and the peak where the
maximum temperature is found. This general pattern is
often disturbed by local changes in land-use types which
may differ from the dominant category in a given zone.
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This means that the isothermal pattern of an UHI is
generally concentric but also strongly dependent on the
spatial arrangement of the land-use types that produce
local variation. The UHI shape can therefore differ from
city to city and may be described as ‘amoebic’ (e.g.
Seoul, South Korea; Park 1986) or ‘multicellular’ (e.g.
1ódź, Poland; K8ysik & Fortuniak 1999).

Although knowledge on the origin and conse-
quences of UHIs has gradually increased in recent
years, the accurate estimation of the UHI spatial struc-
ture, which is often needed by town planners, is still
one of the most important problems. In addition, air
temperature determines numerous aspects of the
urban environment and data on its spatial structure is
an essential input for various modelling studies (e.g.
dispersion of air pollutants). However, sampling sites
in the monitoring system are often sparse, limiting the
application of interpolation techniques. Data gathered
at meteorological stations can be supported by mobile
measurements to solve data inadequacy, although
some data–time adjustments are needed (Duckworth
& Sandberg 1954, Kuttler et al. 1996, Unger et al. 2001,
Szymanowski 2004).

The first attempts at spatial analysis of UHIs were
based on isothermal maps calculated from mobile
measurements (Duckworth & Sandberg 1954, Park
1986, Moreno-Garcia 1994). Such interpolation has
often been performed subjectively, using measure-
ments from neighbouring points (stations) adjusted for
representativeness, urban and terrain (elevation) fac-
tors affecting the local climate. Detailed information on
interpolation techniques applied was not included in
these previous papers and only a few studies were sup-
ported by more advanced mathematical tools (Preston-
Whyte 1970, Clarke & Peterson 1973). The develop-
ment of GIS gave rise to a number of papers dealing
with spatialization techniques and the UHI spatial
structure (Svensson et al. 2002, Bottyán & Unger 2003,
Szymanowski 2004, Vicente-Serrano et al. 2005, Alco-
forado & Andrade 2006). Nowadays, computationally
demanding methods are available and, more impor-
tantly, development of continuous information on
potential UHI predictors, and sine qua non conditions
for the use of multidimensional spatialization techni-
ques, is feasible. Svensson et al. (2002), Vicente-Serrano
et al. (2005), and Alcoforado & Andrade (2006) present
the results of UHI spatialization using different envi-
ronmental (climate and terrain) information as poten-
tial predictors. The ‘urban’ group of UHI predictors
used in spatial interpolation is related to various fea-
tures characteristic of the urban environment (Bottyán
& Unger 2003, Szymanowski 2004, Szymanowski &
Kryza 2006). The main processes leading to UHI
formation are well known and described (Oke 1982,
2006); roughness length (Grimmond & Oke 1999) and

sky view factor (SVF; Johnson & Watson 1984) are
among the main spatial parameters influencing UHI
magnitude. Spatial information on roughness length
and SVF are needed for multidimensional interpola-
tion, but these can only be calculated if the proper
input data are available (usually 3D buildings data-
base; Ratti 2001, Lindberg 2007, Gal et al. 2008), which
is not always the case (e.g. in Central and Eastern
European countries).

The main goal of this paper is to examine the useful-
ness of selected spatialization algorithms for assessing
the spatial pattern of air temperature during selected
UHI occurrences in the city of Wroc8aw, SW Poland.
The pros and cons of various interpolation algorithms
are discussed in reference to UHI spatialization. Cross-
validation (CV) errors are compared, spatially presented
and discussed.

2.  GENERAL CHARACTERISTICS OF THE UHI IN
WROC1AW

The city of Wroc8aw (293 km2; population ~640 000)
is located in SW Poland (51° N, 17° E) at ~120 m a.s.l.
(Fig. 1). The altitude in the city area varies only from
105 to 148 m a.s.l., thus the temperature field is practi-
cally unaffected by elevation. Wroc8aw is situated
along the Odra River. Approximately 31.4% of the city
area is built-up, mainly with housing estates, industrial
and warehouse buildings. The rest of the area consists
of urban green space (36.6%), agricultural areas
(28.9%) and water (3.1%). The environmental condi-
tions make Wroc8aw a good study site for a relatively
undisturbed urban climate and for verification of urban
climate models (Szymanowski 2004, 2005).

Research on the climate of Wroc8aw has been con-
ducted since 1997 based on measurements of meteoro-
logical elements performed at automatic weather sta-
tions located in different areas of development and
land-use type (Fig. 1) as follows: (Stn U) city centre,
densely built-up area, up to 5 storeys; (Stn B) housing
estates, 5 to 11 storeys; (Stn Re)  dispersed, residential
development, up to 3 storeys; and (Stn R) rural (agri-
culture, meadow and brushwood) area at the peri-
meter of the city (Szymanowski 2004, 2005).

The magnitude, frequency of occurrence and spa-
tiotemporal characteristics of the UHI in Wroc8aw are
like those observed in similarly populated and located
European and North American cities, and were de-
scribed earlier by Szymanowski (2004, 2005). Here,
only a brief description is given for clarity.

The annual mean magnitude of the heat island in the
centre of Wroc8aw reaches 1.0 K. It is calculated as
the difference in air temperature (dT) between urban
(U, B, Re) and rural (R) stations, based on hourly data av-
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eraged for the period April 1997 – March 2000 (Table 1).
Thermal excess reaches the highest value in the densely
built-up central part of the city and is lower in large
housing estates of tall concrete buildings (0.7 K) or in
residential areas of low estate houses (0.3 K). At night,
the UHI magnitude in compact settlements and housing
estates with tall buildings may be 2 or 3 times higher
than the average values for daytime, the latter not ex-
ceeding 0.5 K (average for April 1997 to March 2002),
irrespective of the settlement type (Table 1).

In the period April 1997 to March 2000, the maxi-
mum instantaneous magnitude of the UHI in the cen-
tre of Wroc8aw reached 8.4 K (10 Feb 1999; 20:00 h;
Table 1), which seems to be typical for cities of this size
(K8ysik & Fortuniak 1999).

The UHI in Wroc8aw reaches the highest magnitude
during nighttime. In the daytime, the maximum ob-
served UHI may exceed 6.0 K (Table 1). The minimum
values of dTU–R (the difference in temperature between
U and R stations; almost –4.0 K) may occur both during
the day and night. Situations when the city centre is
cooler than areas outside the city, the so-called ‘cool
islands’ (Jauregui 1986), can be observed in ~12% of
hours in a year. Positive values of dTU–R in the city cen-
tre are observed during >96% of night hours and
>80% of daytime. Highest intensities (>5.0 K) of the
UHI are observed in 3.8% of night hours and only in a
few cases during daytime. Strong daytime UHI events
are caused by thermal advections in frontal zones pass-
ing over the city (Szymanowski 2005).
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Fig. 1. Land-use map of Wroc8aw, air temperature measurement sites (see Section 2 for abbreviations) and convex hull 
(black perimeter line)
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The annual cycle of the UHI magnitude is closely
related to meteorological conditions and emissions of
artificial heat. In the centre of Wroc8aw, the highest
values of the average UHI magnitude are observed in
the warm season, mainly in spring (May: 1.3 K; Fig. 2).
The minimum value of 0.8 K is noted in autumn (Octo-
ber). Despite the increase in the average degree of
cloud cover and wind speed in winter months, an
increase in the UHI magnitude is noted due to larger
emissions of artificial heat during the heating season
(Szymanowski 2004).

The most influential factors affecting UHI magnitude
are wind speed and cloudiness, the former having a
direct impact on energy exchange through turbulence,
and the latter modifying radiation exchange. In Wroc-
8aw, an increase in wind speed to >4 m s–1 at night and
1 m s–1 during the daytime, irrespective of the cloudi-
ness, eliminates the UHI or considerably reduces its
magnitude (below 1.0 K; Szymanowski 2005). The impact

of cloudiness is practically unnotice-
able during daytime. At night, how-
ever, an increase in cloudiness above
6 oktas diminishes the UHI magnitude
(Szymanowski 2005).

3.  DATA AND METHODS

The project encompassed 4 main
stages (Fig. 3): (1) air temperature mea-
surements and pre-processing, pre-
sented in Section 3.1; (2) preparation of
digital spatial information (Section 3.2);
(3) application of various spatialization
algorithms for the selected UHI cases
(Section 3.3) and evaluation of the

results (Section 4); and (4) visual and quantitative eval-
uation of the interpolation results (Section 4).

R statistical software (R Development Core Team
2007) with gstat library (Pebesma 2004) and the GIS
GRASS system (GRASS Development Team 2007)
were used for the statistical analysis, spatialization and
visualization of the results.

3.1.  Meteorological data

Air temperature data were collected using mobile
measurements (car traverses) and automatic weather
stations located in various land-use types as men-
tioned above (Fig. 1). The mobile measurements were
performed with the automatic meteorological units
mounted on 2 cars during the UHI stabilization phase
to avoid rapid changes in UHI magnitude (Haeger-
Eugensson & Holmer 1999, Runnalls & Oke 2000).
Each car had a unique, 90 km route and was moving at
an average speed of 30 km h–1; thus, each measuring
session lasted for ~3 to 4 h. The cars started and fin-
ished their routes at Stn Re. Temperature data were
collected with radiation-shielded, aspirated resistance
sensors (Pt-100) connected to the data logger. Temper-
ature was measured every 5 s at 2 m above the ground
(screen level). Data collected during imposed stops,
e.g. at traffic lights, were rejected (Szymanowski 2004).
Recorded data were corrected for temperature changes
during the measurement session. Time adjustments
were applied based on cooling rates, after the method-
ology proposed by Kuttler (1993). The whole area of
the city was divided into 4 zones of different cooling
rates according to 4 automatic weather stations located
in different land-use classes. This method required
generalization of the land-use map described in Sec-
tion 3.2. Each measurement point was classified to one
of the 4 zones and the temperature was adjusted
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Table 1. Magnitude and frequency of the UHI in the different land-use types of
Wroc8aw during April 1997 to March 2000. dT: difference in temperature. See 

Section 2 for further (subscripted) abbreviations

Magnitude (K) Frequency (%)
Avg Max Min >0.5 K >1.0 K >3.0 K >5.0 K

City centre (dTU–R)
Night 1.6 8.4 –3.9 77.1 50.6 15.5 3.8
Day 0.5 6.4 –3.7 27.6 17.3 2.0 0.3

Housing estate (dTB–R)
Night 1.1 9.0 –3.8 77.1 38.6 9.9 1.7
Day 0.3 6.5 –4.9 27.6 11.2 1.1 0.1

Residential development (dTRe–R)
Night 0.4 6.2 –4.8 77.1 18.0 1.1 0.1
Day 0.2 6.4 –4.4 27.6 7.9 0.20 0.0

Fig. 2. Mean annual course of urban–rural air temperature
differences (dTU–R, dTB–R, dTRe–R) for Wroc8aw, April 1997 –
March 2000. See Section 2 for a description of station abbrevi-

ations, and Fig. 1 for station locations
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depending on time of measurement and the cooling
rate value. Measurement points were systematically
selected along routes to represent different land-use
categories, with some densification over the most inter-
esting and geometrically diverse areas in the city cen-
tre. Finally, for each UHI case analysed, the tempera-
ture values from 206 points were taken as the input
data for the spatialization process (Figs. 1 & 3).

Air temperature measurements for the presented
case study were done in 2001–2002 during 7 nights
with relatively weak winds (<4 m s–1) and cloudless to
moderately cloudy skies (Table 2). The mobile mea-
surements in urban environments were usually per-
formed during almost calm wind conditions that
allowed measurement of UHI diversity and magnitude
caused by urban and anthropogenic processes con-
trolled by factors such as urban geometry, artificial
heat emission, thermal properties of constructing
materials etc. (Oke 1987). Previous studies on the
UHI in Wroc8aw revealed that an increase in wind
speed to >4 m s–1 at night, irrespective of cloudiness,
causes considerable reduction of the UHI magnitude
(Szymanowski 2005). Therefore, wind speeds <4 m s–1

may be considered as UHI-favourable in Wroc8aw. Of
the cases analyzed, only one is characterized by wind
speed exceeding 3 m s–1 (Table 2). The other sessions

were taken during calm or almost calm conditions that
caused distinct diversity of the UHI in magnitude (dif-
ference between maximum and minimum temperature
dTM ≥ 6.0 K) and also in space (see Figs. 5 to 7). In each
case, the strongest winds were observed at Stn R. In 6
of the 7 cases, general agreement of the prevailing
wind direction on the west (R) and east (Re) side of the
city was observed, suggesting a dominant role for the
regional wind over a potential local UHI circulation.
On 22 May 2001, opposite winds directed towards the
city centre could be attributed to ‘urban breeze’, but
this is not supported by the relevant measurements.

The UHI intensity calculated from the mobile mea-
surements (dTM) is usually considerably higher than
that calculated as dTU–R (especially in the case of 15 Jan
2002, Table 2). This may be attributed to the location of
the urban station (U) in the peak zone, but not exactly
in the warmest area due to technical reasons.

3.2.  Explanatory variables for UHI spatialization

The UHI is usually observed during calm and cloud-
less atmospheric conditions as a result of energetic
exchange depending on many processes and charac-
teristics of urban areas (Oke 1982, Oke et al. 1991).
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The most important factors influencing UHI formation
and its magnitude are: the introduction of new sur-
face materials, the expansion of active urban surfaces
(geometry) and the emission of artificial heat, moisture
and air pollutants. These features change the aerody-
namic, radiative, thermal and moisture conditions that
are responsible, among others, for alteration of the air
temperature field over the city. Some parameters char-
acterizing size, geometry and ‘metabolism’ of cities
may be directly or indirectly derived from maps, digital
databases and satellite images with GIS techniques.
Such approximated derivatives can then be used in
spatial interpolation as additional explanatory vari-
ables determining the UHI spatial structure in the
urban canopy layer (Bottyán & Unger 2003, Szymanow-
ski 2004, Alcoforado & Andrade 2006, Szymanowski
& Kryza 2006).

In this study, a set of potentially significant predic-
tors for the UHI phenomenon was established. Para-
meters considering the impact of terrain relief on tem-
perature were assumed to be negligible due to the lack
of significant elevation changes in Wroc8aw. All auxil-
iary variables were derived from the digital land-use
map (16 land-use classes, 10 for built-up and 6 for non-
built-up areas, 25 m resolution) supported by the
buildings database (perimeters, heights and spatial
arrangement) available only for the selected areas
of the city, topographic maps (scale 1:10 000), ortho-
photomap and 30 m (60 m for near infrared band)
resolution Landsat thematic mapper (TM) imagery
covering Wroc8aw and its surroundings. Because con-
sistent information on building parameters was not
directly available for the whole city, an indirect method
of land-use classes parameterization was applied.
Three testing areas of ~9 ha each were assigned for
every land-use category. For these testing fields, the
buildings database was prepared based on local gov-
ernment database, checked and corrected using field
measurements. Average values of parameters derived
from these source data were assumed to be typical for
a given land-use category (Table 3).

Finally, a set of 6 parameters, all strongly correlated
with air temperature, was used for the multidimen-
sional interpolation of the UHI. These are:

(1) Roughness length (z0; m) which is calculated
using the modified formula proposed by Lettau (1969).
Due to limited information on buildings geometry,
some simplifications are assumed. The lot area is held
equal to the area of the given land-use class and wind
direction is not incorporated in the silhouette para-
meter. Central parts of the city are characterized by
values reaching 3.7 m, exceeding 7.0 m only in the
vicinity of the highest buildings (Table 3). Leaving the
central part, a gradual decrease of z0 to 0.5–1.0 m in
residential areas and <0.5 m in the rural zone can be
observed. This is consistent with values calculated for
other cities by Oke (1987) and Fortuniak (2003).

(2) Percentage of artificial surfaces (AS) in a given
land-use class. Both horizontal (roofs, roads, parking
lots, pavements, etc.) and vertical surfaces (walls)
are taken into account. Artificial surfaces are added
together and linked to the lot area. Buildings are
represented by boxes and roof structures are not con-
sidered during calculations. AS values exceed 200% in
densely built-up areas of the city centre, decreasing to
~100% in the housing estates, <70% in residential and
<10% in rural areas (Table 3).

(3) Percentage of non-built-up surfaces (NS) in a
given land-use class. Calculations for this parameter
are similar to those for AS, but only horizontal surfaces
are considered. For some land-use classes (densely
built-up, industrial areas), this factor does not exceed
10% but reaches 90 to 95% in the rural zone (Table 3).

(4) Normalized difference vegetation index (NDVI),
calculated directly from the near infrared and red
bands of Landsat TM for each raster element (Tucker
1979). Calculations of NDVI for a given pixel always
result in a number that ranges from –1 to +1. Zero
means no vegetation and values close to +1 (0.8 – 0.9)
indicate the highest possible density of green leaves.
In this case, the calculations of NDVI are performed
based on Landsat images taken in summer (August).
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Table 2. Meteorological conditions, UHI magnitude in the city centre (dTU–R) and the difference (dTM) between maximum and
minimum temperature at the measurement points (after time adjustment) for the selected cases. UTC: coordinated universal time

Date Time Wind speed Prevailing wind direction Cloudiness dTU–R dTM

(UTC) Stn R Stn R Stn Re Stn R (K) (K)
(m s–1) (oktas)

22 May 2001 00:00 0–1 W to WSW ENE to E 0 6.0 8.3
26 Jun 2001 00:00 0–1 W to SSW S 0–3 4.9 6.6
30 Jul 2001 22:30 1–2 SW to WSW S to SSW 1–4 3.8 7.3
13 Oct 2001 21:30 1–2 N to NW NE 0 3.4 7.7
03 Jan 2002 02:00 0–1 N to NNE NE to ENE 0–2 6.2 9.0
15 Jan 2002 01:00 3–4 ESE to SE E 0 0.7 3.6
15 Feb 2002 00:30 1–3 NE to ENE ENE 0 1.9 6.0
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Mean values of NDVI vary from 0.06 to 0.29 for built-
up classes, from 0.27 to 0.48 for non-built-up classes,
and 0.12 for water (Table 3).

(5) Thermal admittance (μ; J m–2 s–1/2 K–1), estimated
as a weighted value using the ratio of vegetated sur-
faces to artificial surfaces. Thermal admittance for
concrete (built-up classes) and moderately moist (40%)
clay soil covered by grass (non-built-up classes exclud-
ing water) are used as starting values, after Boeker
& van Grondelle (1995). The parameter values change
from <950 J m–2 s–1/2 K–1 for meadows, to >1750 J m–2

s–1/2 K–1 for the city centre (Table 3), which is consistent
with other estimates (Oke 1982, Fortuniak 2003).

(6) Anthropogenic heat emission (QA; W m–2) from
the urban units of Wroc8aw. QA was earlier estimated
by Chudzia & Dubicka (1998) for the Wroc8aw area
based on detailed inventory of energy consumption in
the late 1990s. Electric energy and fuel consumption
for residential heating were used to estimate artificial
heat release during non-heating (Apr to Oct) and heat-
ing (Nov to Mar) seasons in various parts of the city
and in various land-use classes. Mean annual heat flux
for the central parts of the city was estimated at 62.5 W
m–2, reaching 100 W m–2 in the heating season. Values
of QA for the heating season are 2 to 4 times greater
than those for the non-heating season and vary from
10 to 100 W m–2 depending on land-use category
(Table 3). QA for non-built-up classes is set at zero.

Given a set of values approximated for each para-
meter and land-use category, the land-use map was
reclassified and the categories replaced with quanti-
ties (Table 3).

The portion of the surroundings which is ‘seen’ by
the sensor placed above the ground surface at a known
height is referred to as the ‘source area’. In the case of

air temperature, the shape and size of the source area
depends upon turbulent transport and is normally
elliptical and aligned in the upwind direction from the
sensor. However, under windless meteorological con-
ditions, the shape of the source area is approximately
circular. The estimation of the source area can best be
applied in the inertial sublayer, above the complica-
tions of the roughness sublayer and the complex
geometry of the 3D urban surface. Within the urban
canopy, the source area cannot be reliably evaluated
but can be estimated to have a radius of ~0.5 km
(screen level rule-of-thumb, after Oke 2004), depend-
ing on building density. Therefore, a set of raster layers
for each parameter was developed with low-pass filter-
ing (Fig. 3). For each grid square, the filter calculates
the average of the values within a specified neighbour-
hood of the input raster map. The averaging reduces
isolated high values and smoothes sharp gradients on
the boundary of the original land-use classes. The
averaging matrices applied here are circular in shape
with radii varying from 50 to 1000 m.

3.3.  Spatialization algorithms

Both stochastic and deterministic interpolation algo-
rithms (and their combinations) were used in this study.
Stochastic (geostatistical) interpolators are based on
probability theory and spatial autocorrelation of geo-
graphical data (Cressie 1991). The mathematical,
deterministic methods are usually physically based,
providing the opportunity to explain and predict a
variable at each point according to the known physical
processes causing the spatial variation of the spatial-
ized phenomena (Ustrnul & Czekierda 2005). Further,
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Table 3. Values of selected urban parameters attributed to different land-use categories. s.: season; st: stories. See Section 3.2 
for abbreviations

Land-use class z0 AS NS NDVI μ QA (W m–2) QA (W m–2)
(m) (%) (%) mean (J m–2 s–1/2 K–1) non-heating s. heating s.

Densely built-up area, up to 5 st. 3.70 200 10 0.07 1754 25 100
Buildings higher than 11 st. 7.40 250 50 0.14 1675 25 100
Housing estate, 5–11 st. 2.40 100 70 0.20 1524 22 80
Housing estate, up to 5 st. 2.30 120 45 0.19 1597 20 75
Residential area, high intensity 1.00 70 70 0.22 1448 18 50
Residential area, less intensity 0.50 50 85 0.29 1402 15 40
Industrial area 2.10 100 15 0.16 1699 20 70
Shopping centre 2.10 100 15 0.06 1699 20 70
Railway area 0.50 90 10 0.23 1719 5 10
Parking lot 0.05 90 10 0.11 1719 5 10
Agricultural area 0.10 2 98 0.27 938 0 0
City forest 1.00 0 100 0.48 1182 0 0
Park, cemetery 1.00 2 98 0.36 1182 0 0
Garden 0.50 5 95 0.35 1090 0 0
Meadow 0.10 0 100 0.37 938 0 0
Water 0.01 0 100 0.12 1553 0 0
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spatialization techniques can be subdivided into local
and global algorithms. The latter use all available data
to make a prediction for the entire area, whereas the
former operate within a defined zone using data from
the direct neighbourhood of the point being estimated.
Spatialization methods may also be exact or inexact,
depending on whether they preserve the measured
value at the location of the measurement or not. Inex-
act methods tend to remove local variation in order to
minimize predictive errors across the whole domain.
Finally, some algorithms can be considered as ‘multidi-
mensional’ as they make use of additional explanatory,
georeferenced variables (spatially continuous predic-
tors).

Choosing the optimal spatial interpolator for the UHI
is particularly difficult because of the heterogeneous
nature of urban areas where large local gradients in
temperature may appear due to changes in land-use
type, SVF and other influencing factors. In this study,
5 spatialization methods, based on different theoretical
backgrounds (local and global perspective, determin-
istic and stochastic nature), were compared:

(1) Inverse Distance Weighting (IDW) is a widely
applied mathematical method of spatial interpolation.
The value at a certain point is calculated as a weighted
sum of the values at nearby measurements. The
weights are proportional to the inverse of the distance
between the interpolated and measured points. Math-
ematically, the IDW can be expressed as:

(1)

where Z*j is an estimated value at point j, Zi is a known
value at point i, dij is the distance between the point to
be estimated (j) and neighbouring points (i), and β is
the weighting power, equal to 2 in this study. The CV
method is performed to determine the optimum β
value for IDW interpolation, with the β changing from
0.5 to 3.5 (0.5 increment). The largest CV errors were
obtained for the small weighting powers (β < 1), while
the smallest CV errors were obtained for β = 2, increas-
ing slightly for β > 2. In this study, the IDW algorithm
implemented in the gstat library (Pebesma 2004) was
used.

(2) Regularized Spline with Tension (RST) is a deter-
ministic method to represent 2D curves on 3D surfaces
(Mita$ova & Mita$ 1993). The interpolation is made
flexible through the choice of the tension parameter
which controls the properties of the function and the
smoothing parameter, allowing noise filtering. If the
smoothing parameter is not used, the resulting surface
tends to have a wave pattern that fulfills the criterion of
exact estimation. It may result in an odd spatial pattern

and invalid values can be obtained (Dobesch et al.
2007). The general formula for the RST is:

(2)

where Z*j is as defined in Eq. (1), Tj and λi (λ1,...,λn)
are n+1 parameters calculated by solving a system of
n+1 equations and R(dij) is a radial basis function
(Mita$ova & Mita$ 1993), which also includes the
tension and smoothing parameters mentioned above.
In this study, RST implementation available through
the GIS GRASS system was used (Mita$ova & Mita$
1993).

(3) Ordinary Kriging (OK) is a group of stochastic
methods that incorporate the concept of randomness in
spatial processes. They are based on the assumption
that values measured at neighbouring locations tend to
be more alike than values measured at remote sites. A
variogram or covariance function is used as a tool for
quantifying the spatial autocorrelation of data. Kriging
uses a linear combination of weights derived through
the semivariogram modeling procedure. In the first
step, the experimental semivariogram γ(r) is estimated
from the measured data, using one of numerous esti-
mators such as the classical semivariogram estimator
(Cressie 1991):

(3)

where r is a distance vector between locations si and
sj, N (r) denotes the set of pairs of locations at distance
r, and |N (r)| is the number of corresponding pairs of
locations. A theoretical semivariogram model (spheri-
cal, exponential, etc.) is fitted to the values of the ex-
perimental semivariogram. The theoretical variogram
model is defined by the range (the longest distance
with correlated values of the random process), the
sill (the variance of random process) and the nugget
that represents microscale variation. The spatial pro-
cess is assumed to be intrinsically stationary. The
prediction of the OK is a weighted linear combina-
tion of the available data. Linear coefficients (λ) are
calculated under the condition of a uniformly unbiased 

predictor ( ) and under the constraint of mini-

mal prediction error variance. The OK predicted
value Z*(s0) for the location s0 can be expressed as:

(4)

A detailed description of the method can be found in
Cressie (1991). In this study, a spherical model of the
semivariogram was incorporated.

(4) Multiple Linear Regression (MLR) was used in
this study as a deterministic procedure (Dobesch et al.
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2007). Thus, the independent variables (predictors)
can be physically explained considering processes
responsible for UHI formation. Mathematically, it is
expressed by the equation:

(5)

where Z(s) is the interpolated variable, X1,…,Xn are
explanatory (independent) variables, and β0,...,βn are
coefficients of linear regression. MLR is one of the few
multidimensional interpolation schemes which are
used in modern climatology (Ninyerola et al. 2000,
Ustrnul & Czekierda 2005). The MLR method has been
used for macro- or regional-scale interpolation (Nin-
yerola et al. 2000, Ustrnul & Czekierda 2005). The first
attempts showed that this approach may also be
applied to local-scale studies (Szymanowski 2004,
Szymanowski & Kryza 2006).

(5) Residual Kriging (RK) is kriging under the trend
model group (universal kriging, residual kriging, krig-
ing with external drift) where a random function is
modeled as the sum of a trend component (drift) plus a
residual (Dobesch et al. 2007). In the MLR approach
described above (Eq. 5), there is a part of the variation
which is not explained by the regression model (resid-
ual) referred to as δ(s) as shown in a modification of
Eq. (5) below:

(6)

The residuals are assumed to be a random variable
that follows the intrinsic hypothesis, and values of δ(s)
are usually interpolated with the OK method. In the RK
algorithm, the spatial pattern of the interpo-
lated variable is calculated as the sum of the
MLR-derived layer (deterministic part) and
the spatially interpolated regression residu-
als (stochastic part): Z*(s) + δ(s).

The starting parameters for the IDW, RST
and OK spatialization methods were ob-
tained by the CV procedure using the crite-
rion of minimal errors (Fig. 3). This was done
to ensure that the results obtained for a given
interpolation algorithm did not suffer from
wrong parameterization, i.e. that only the
best possible results calculated with a given
spatialization method were compared with
other algorithms. For each interpolation pro-
cedure, different values of the initial para-
meters were used and CV errors were evalu-
ated. For the IDW, the power parameter and
‘cut off’ distance were set, while tension and
smoothing parameters were set for the RST
(Table 4). For the OK, an empirical semivari-
ogram was prepared and a semivariogram

model was built by selecting the best sill and range
values through the CV procedure (Fig. 3). The spheri-
cal variogram model was selected, with no nugget and
anisotropy effects allowed.

The MLR method was applied in this study to quan-
titatively describe the relations between measured air
temperature and one or more spatially continuous
predictors. Statistically significant predictors were se-
lected for each UHI case from the set of environmental
variables described in Section 3.2. Parameters for the
MLR equation were calculated by least squares esti-
mation. Selection of the predictors was performed
stepwise, taking into account their statistical signifi-
cance, their intercorrelation with other independent
variables, and the Akaike Information Criterion (Hur-
vich et al. 1998). Also, the direction of dependence
(+ or –β) between the modeled air temperature and
the statistically significant independent variable was
checked to ensure that the final equation may be
explained in terms of known physical processes that
influence UHI formation.

The quality of each spatialization technique applied
in this study was evaluated using the CV approach in
which a single observation is removed from the origi-
nal sample dataset and used as the validation data, and
the remaining observations were used for interpola-
tion. The procedure was repeated consecutively for all
measured sites and the interpolation errors were
calculated as the difference between the modeled and
the observed values. The CV errors were used to
calculate descriptive statistics, including: mean bias
(BIAS), the root mean square error (RMSE), the mean
absolute error (MAE), maximum and minimum errors
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Table 4. Characteristics and important parameters of the spatialization 
methods used

Method Characteristics Important parameters

IDW Deterministic Power: 2
Exact ‘Cut-off’ distance: 6000 m
Local

RST Deterministic Tension: 40
Inexact Smoothing: 0.1
Global

OK Stochastic Semivariogram model: spherical
Exact Range and sill fitted automatically
Local

MLR Deterministic Case-dependent explanatory
Inexact variables (Table 3)
Global
Multidimensional

RK Deterministic–stochastic Case-dependent explanatory
Exact variables (Table 3)
Global Semivariogram model: spherical
Multidimensional Range and sill fitted automatically
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(Willmott & Matsuura 2006). The statistical
distribution of the CV errors was also
characterized by skewness and kurtosis
(Table 6). Statistical validation of the inter-
polation algorithms was complemented by
visual analysis of the UHI spatial patterns.
To allow comparison of results between the
UHI cases, the CV errors were standardized
(see Figs. 5 to 7).

4.  RESULTS AND DISCUSSION

The first step in implementing multidi-
mensional spatialization techniques is the
selection of the most significant predictors
and the determination of the linear regres-
sion coefficients (β) using stepwise regres-
sion as described above (Table 5).

The most valuable explanatory variables
for the UHI cases studied were NDVI, z0, μ
and QA (Table 5). The statistical significance
of AS in winter was also noticeable, sug-
gesting seasonal changes in the importance
of predictors. Residual standard errors
change from 0.41 to 1.14°C and increase
with the magnitude of the UHI (and there-
fore with spatial variability of the UHI phe-
nomenon; Table 2). The R2 values show that
depending on the case, 66 to 81% of the air
temperature variance was explained by the
regression model.

Based on statistical analysis of the CV
errors, the RK can be selected as the most
accurate method for spatial interpolation of
the UHI in the 5 cases analysed (Table 6).
For 2 UHI cases (15 Jan 2002 and 15 Feb
2002), better results (i.e. the smallest CV
errors) were obtained using the OK. In
general, least accurate results (the largest
CV errors) were obtained with the IDW and
MLR methods (Table 4, Fig. 4). However,
the MLR algorithm usually gives signifi-
cantly smaller values of BIAS compared
with IDW. This suggests that IDW has a
strong tendency to overestimate air temper-
ature.

Three UHI cases from the set of 7 are illus-
trated on maps representing 3 groups of
UHI generated under various wind condi-
tions, which was found to be important for
the spatialization results:

(1) UHI generated during weak winds,
with UHI circulation (22 May 2001; Table 2,
Fig. 5)
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Table 5. Regression analysis results for the MLR and RK spatialization

Date Predictors included Residual R2 F
(in order of SE (n = 206)
significance) (°C)

22 May 2001 NDVI, z0, QA 0.98 0.77 224.8
26 Jun 2001 z0, NDVI, μ 0.77 0.81 214.5
30 Jul 2001 z0, μ, NDVI, QA 1.01 0.69 110.4
13 Oct 2001 z0, μ, QA, NDVI 0.80 0.72 135.4
03 Jan 2002 QA, AS, NDVI 1.14 0.66 134.8
15 Jan 2002 μ, NDVI, NS, AS 0.41 0.74 119.4
15 Feb 2002 NDVI, AS 0.75 0.69 228.0

Table 6. Cross-validation results for the spatialization methods applied.
BIAS: mean bias; MAE: mean absosulte error; RMSE: root mean square error

Date Statistic IDW RST OK MLR RK

22 May 2001 BIAS 0.20 0.01 0.01 0.00 0.00
MAE 0.76 0.63 0.58 0.78 0.53
RMSE 1.01 0.86 0.79 0.99 0.68
Skewness 0.55 0.46 0.50 0.06 0.28
Kurtosis 3.27 4.50 4.26 2.95 3.40

26 Jun 2001 BIAS 0.19 0.00 0.01 0.00 0.01
MAE 0.68 0.54 0.51 0.61 0.46
RMSE 0.86 0.71 0.66 0.78 0.59
Skewness 0.40 0.39 0.32 0.04 0.39
Kurtosis 2.86 3.54 3.44 3.17 3.47

30 Jul 2001 BIAS 0.16 0.01 0.01 0.00 0.01
MAE 0.71 0.59 0.55 0.82 0.51
RMSE 0.92 0.77 0.72 1.02 0.68
Skewness 0.62 0.15 0.27 0.02 0.29
Kurtosis 3.03 3.53 3.62 2.84 3.45

13 Oct 2001 BIAS 0.14 0.00 0.01 0.00 0.00
MAE 0.60 0.48 0.46 0.62 0.46
RMSE 0.78 0.67 0.64 0.81 0.60
Skewness 0.38 0.45 0.74 –0.160 0.15
Kurtosis 4.50 6.34 7.30 3.58 4.24

03 Jan 2002 BIAS 0.16 0.00 0.01 0.00 –0.010
MAE 0.59 0.48 0.43 0.90 0.44
RMSE 0.78 0.62 0.56 1.15 0.54
Skewness 0.28 0.15 0.20 –0.500 0.32
Kurtosis 3.63 3.46 3.53 3.08 2.58

15 Jan 2002 BIAS 0.06 0.00 0.01 0.00 0.00
MAE 0.27 0.21 0.20 0.34 0.22
RMSE 0.36 0.28 0.27 0.42 0.29
Skewness 0.47 0.24 0.34 0.00 0.10
Kurtosis 3.64 4.17 4.29 2.91 3.73

15 Feb 2002 BIAS 0.12 –0.010 0.00 0.00 0.00
MAE 0.50 0.36 0.35 0.62 0.38
RMSE 0.62 0.46 0.45 0.76 0.48
Skewness 0.27 0.39 0.40 0.03 0.23
Kurtosis 2.95 3.75 3.60 2.77 3.31
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(2) UHI generated and shifted to the leeward side due to
weak but stable regional winds (3 Jan 2002; Table 2, Fig. 6)

(3) UHI generated and ‘generalized’ under the influ-
ence of stronger winds (15 Jan 2002; Table 2, Fig. 7).

Two of these cases represent the strongest (22 May
2001, 3 Jan 2002) and one the weakest (15 Jan 2002)

UHI magnitude of all the cases analysed (Table 2).
They also represent conditions of heating and non-
heating seasons with different significant predictors
(Table 5).

The CV technique allowed evaluation of the spatial
tendency to over- or underestimate air temperature
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Fig. 4. Distribution of the cross-validation 
errors (°C) for selected methods 
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Fig. 5. Air temperature (°C) and standardized
cross-validation errors calculated using se-
lected spatialization methods for 22 May 2001
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Fig. 6. Air temperature (°C) and standardized
cross-validation errors calculated using se-
lected spatialization methods for 3 Jan 2002
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Fig. 7. Air temperature (°C) and standardized
cross-validation errors calculated using selected 

spatialization methods for 15 Jan 2002
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across the city. It is noticeable that the IDW algorithm
consistently underestimated air temperature over the
central parts of the city, despite the large positive
BIAS that suggested overall overestimation. The MLR
method tended to generate regular errors in different
parts of the city, mostly in the cliff zone of the UHI
(Figs. 5 to 7).

Spatial arrangement of the measured sites was of
great importance for the interpolation results, espe-
cially for the simple distance-dependent algorithms.
As a result, IDW, RST and OK produced an implausible
pattern of air temperature outside the convex hull of
points (Fig. 1). The predicted spatial pattern of tem-
perature, in most cases, disagreed with the spatial ar-
rangement of built-up and non-built-up areas, result-
ing in the overestimation of the temperature over the
‘rural’ outskirts of the city (Figs. 5 to 7). This means that
the results were unrealistic in locations where extrapo-
lation, not interpolation, was performed. These draw-
backs characterize all methods that do not make use of
auxiliary variables in the spatialization process. Inside
the convex hull, all methods performed more or less
correctly, except in the cliff zone of the UHI, where the
CV errors are expected to be the largest. The same
methods, especially the IDW, gave an unwanted ‘bull’s
eye’ effect, i.e. local extremes at the measurement site.
The IDW can be considered as the least plausible of all
tested methods that do not take advantage of addi-
tional explanatory variables. The other techniques of
this group (RST, OK) were visually similar and more
reliable in the convex hull area, although splines are
not exact interpolators. The RST also gave larger CV
errors than the OK, especially if MAE and RMSE were
compared (Table 6, Fig. 4). Both methods showed a
much more generalized spatial pattern of the UHI
which can be useful for a preliminary study of the
phenomenon but is of little use in more detailed inves-
tigations. This characteristic can be an advantage
when wind speed is high enough to ‘generalize’ (K8ysik
& Fortuniak 1999) the spatial pattern of the UHI
(Fig. 7). In such a case, the OK method can substitute
multidimensional techniques inside the convex hull of
points. However, when there is a need for detailed
information on the UHI spatial structure, the multi-
dimensional methods should be used.

The CV results suggest that the MLR method usually
gives poorer outcomes than the OK (Table 6). The main
advantage of the MLR is that the results are urban-
based and visually more realistic, even in places where
extrapolation is performed, i.e. outside the convex hull.
The MLR method of UHI spatialization has been
applied with different sets of explanatory variables by
Bottyán & Unger (2003), Szymanowski (2004), Alco-
forado & Andrade (2006) and Szymanowski & Kryza
(2006). In all cases in this study, however, only up to 80

to 90% of the variance in air temperature was ex-
plained, even in the most stable, calm and cloudless
meteorological conditions; the R2 ranges from 0.66 to
0.81. Results suggest that the explanatory variables
applied here may not be precise enough or do not suf-
ficiently describe all physical processes that are re-
sponsible for the formation of the UHI. This should be
investigated in the future, and additional explanatory
variables should be evaluated, especially for z0 length
(e.g. by using the more accurate Raupach [1994] ap-
proach instead of the simplified Lettau [1969] formula
[Grimmond & Oke 1999]). Other morphometric factors,
including SVF and height to width ratio of the urban
canyons should be applied (Bottyán & Unger 2003,
Alcoforado & Andrade 2006). Part of the variance
should also be explained by meteorological factors,
especially wind speed and direction, which were not
considered in the spatialization process here. Even if
regional winds are not clearly strong, the influence of
locally induced UHI circulation may affect the shape
and magnitude of the UHI (Eliasson & Holmer 1990). In
such cases, part of the unexplained variance probably
results from the unfulfilled assumption of the spatial
process being stationary. This could be confirmed by
analysis of the spatial distribution of CV residuals for
the MLR method, which had the spatial tendency to
over- or underestimate air temperature in some parts
of the city (Figs. 5 to 7). This was clearly noticeable
in the case of 3 Jan 2002 when the MLR model under-
estimated air temperatures in the SW part of the city
but overestimated those in the NE part. In this case, the
whole thermal ‘cell’ of the UHI was shifted to the SW
due to weak but stable NE winds. This drift was recog-
nized by all methods except the MLR, which assumes
constant relationships with land-use derivatives. The
problem could also potentially be solved by using local
regression models like moving window regression
(Lloyd 2007) or geographically weighted regression
(Fotheringham et al. 2002).

Thus, to preserve the detailed, urban-originated air
temperature pattern and correct the inaccuracy of the
MLR method, the RK algorithm, which incorporates both
deterministic and stochastic components, is recom-
mended. This multidimensional algorithm, supported by
physically meaningful environmental variables, gives the
most reliable spatial pattern of the UHI with cliff, plateau
and peak zones, together with a clear spatial drift.

5.  SUMMARY

Based on the results for the 7 cases of the UHI in
Wroc8aw, it can be concluded that of the 5 methods of
spatial interpolation that were compared (IDW, RST,
OK, MLR and RK), the IDW method produced the least
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reliable results and, consequently, the least accurate
maps. This method is characterized by the largest CV
errors and a strong tendency to generate the so-called
‘bull’s-eye’ effect, and is therefore both statistically
and visually unreliable. The ‘bull’s-eye’ effect was not
as clearly visible in the 2 other distance-based algo-
rithms, RST and OK. Generally, the RST and OK gave
similar results, which may be considered acceptable,
albeit generalized, within the convex hull area of the
sampling points. Outside the convex hull, where
extrapolation, not interpolation was performed, these
methods were not adequate.

Introduction of physically meaningful environmental
variables for the MLR improves the quality of the
maps, despite the usually worse CV results for the
MLR than for the OK and the RST. Reflecting different
land-use characteristics, this approach gives a more
realistic UHI spatial pattern compared to the ‘geomet-
ric’ spatialization algorithms IDW, RST, OK. From the
set of potential predictors; NDVI, z0, μ and QA are of
great significance for the UHI cases studied. These
results are especially important considering that some
Central and Eastern European cities are still missing
detailed and up-to-date spatial information on build-
ings geometry, which is needed to calculate, e.g. sky
view factor. The parameters included in the present
MLR model explained 66 to 81% of the air temperature
variance, suggesting that part of the variance may be
explained by other factors or that the spatial process
might not be stationary. This situation may be caused
by specific meteorological conditions, especially by
winds that can generalize or shift the whole UHI ‘cell’
leeward. The problem is solved in the RK by adding
the OK-spatialized regression residuals (stochastic
part) to the regression-interpolated surface (deter-
ministic part). In fact, meteorological conditions are
treated here as a stochastic element. Such a procedure
results in smaller CV errors in almost all cases and pre-
serves spatial drift, retaining the land-use characteris-
tics of the UHI. However, if the physical processes
responsible for the UHI in a given case (wind for exam-
ple) are known, effort should be made to include these
at the first step of RK. This could probably improve
both the MLR and RK CV statistics and make the mod-
els more robust and physically meaningful. 

The methods presented here are intended for the
spatialization of existing (measured) UHIs and should
not be used to predict this phenomenon in the context
of planning changes in land-use types or in other
UHI drivers such as anthropogenic heat, albedo, etc.
Nevertheless, it has been useful to show that the
various interpolation schemes may result in different
spatial patterns of UHIs. This may affect the results of
modeling studies (e.g. urban pollution modeling),
where information on air temperature is a key element.

Finally, we can conclude that the comparison of
several interpolation algorithms in the case study of
the UHI formed in a medium-sized city (Wroc8aw)
located in a relatively flat terrain, shows the RK to be
the most accurate spatialization technique.
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