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1.  INTRODUCTION

The desert locust Schistocerca gregaria (Forskål), a
member of the family Acrididae, has been notorious
since ancient times as a recurring scourge in many
African, Middle Eastern, and Southwest Asian coun-
tries. Like all locusts, the desert locust differs from
grasshopper members of the Acrididae in its ability to
change its ‘phase’ from a solitary to a gregarious state
(gregarization) and back again, involving populations
changing their behavior, physiology, and ecology in
relation to density-dependent and environmental fac-
tors (Uvarov 1966, 1977). Gregarization is the result of
concentration and multiplication processes and takes
several generations to occur (Roffey & Popov 1968).
The gregarious phase is characterized by a high level
of activity, mobility, cohesiveness, and persistence of

populations (Popov 1997), leading to the formation of
bands and swarms. According to Dubey (1991) and
Symmons & Cressman (2001), the desert locust biolog-
ical cycle is highly weather sensitive; breeding does
not occur unless soil is wet enough to allow eggs to
absorb sufficient moisture to complete their develop-
ment, which is a function of soil temperature. After
hatching, development occurs more quickly at high
temperatures, and it relies on vegetation, closely cou-
pled with rainfall in these regions (Malo & Nicholson
1990, Anyamba & Tucker 2005); sexual maturation is
also stimulated by temperature and rainfall.

In increasing order of threat to crops, different stages
of desert locust populations are defined as recessions,
outbreaks, upsurges, and plagues. During recessions,
low-density desert locust populations are confined to
arid and hyper-arid areas, having adapted to a desert
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ecosystem characterized by erratic rainfall,
and migrate downwind between succes-
sive breeding zones. During outbreaks, a
marked increase in local population densi-
ties is accompanied by gregarization (Sym-
mons & Cressman 2001). During upsurges,
an unbroken sequence of successful breed-
ing through several generations in 2 or
more areas connected by migrations (see
references in Waloff 1966 and Burt et al.
2000) leads to an extremely large increase
in locust numbers over an expanding area.
Plague status is characterized by wide-
spread and heavy infestations, mainly
occurring as swarming populations (Sym-
mons & Cressman 2001); during plagues,
the radius of migrations is enlarged, and
displacements occurring between the sea-
sonal breeding areas range from hundreds
to thousands of kilometers (Popov 1997).

Desert locust-specific area varies strongly
between recession and plague years and
also shows a seasonal variability in terms
of geographical distribution (Fig. 1). The
movements of swarms and the geographi-
cal distribution of breeding sites are largely
controlled by agro-meteorological and cli-
matological conditions (Waloff 1966, Pedg-
ley 1997, Gommes 2003).

Usually downwind displacements drive
locusts toward horizontal flow convergence
areas where rainfall is liable to occur
(Rainey 1963). Spring breeding in the
Northwest African region takes place
mostly after cyclonic rains associated with
mid-latitude westerly disturbances (Waloff
1966). Later on, the convergent northern
and southern flows concentrate the swarms
into their summer breeding belt in the
proximity of the Inter Tropical Conver-
gence Zone (ITCZ); in West Africa, summer
breeding, from June to September, starts
when the ITCZ reaches about 15–17° N,
even though swarms may arrive several
weeks earlier (Popov 1997). Finally, winter
breeding occurs between October and
January during the ‘short or rains,’ which
fall during the southward passage of the
ITCZ (Waloff 1966).

If the length of the rainy season is longer
than normal and ecological conditions in
the breeding areas are favorable for the
settling and the rapid maturation of popu-
lations, then a second generation, or even
a partial third, may be produced before
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Fig. 1. Schistocercda gregaria. (a) Spring, (b) summer, and (c) winter desert locust
spread and breeding areas during recessions and plagues (modified from Popov
1997 and Roffey & Magor 2003). The limits of the recession area are displayed as
a bold continuous line, while those of the area subject to invasion during plagues
are displayed as a dash-dot line. Seasonal breeding areas during plagues and re-
cessions are displayed respectively as grey shaded contours and dark grey circles
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migration to a new breeding area. This means that the
above mentioned periods for each breeding season
may overlap and an unbroken succession of genera-
tions may take place; such a mechanism can play an
important role in upsurge events (Waloff 1966, Roffey
& Magor 2003).

Up to now, the monitoring of favorable conditions
has focused on small-scale key elements to assess
where and when the onset of gregarization is likely to
take place. Nevertheless, the recurring simultaneous
occurrence of outbreaks and seasonal breeding over
wide regions suggests the existence of large-scale
forcing due to monthly time scale climatic anomalies.
The aim of this study was to analyze the relationship
between large-scale atmospheric dynamics and desert
locust infestations in West Africa. Recent availability of
long time series of weather/climate parameters pro-
vides a new opportunity to perform such an analysis.
Attention was focused on the African Easterly Jet
(AEJ), which is a major atmospheric feature in the
tropical climate dynamics.

The understanding of the role played by atmospheric
circulation patterns on upsurges could potentially lead
to seasonal upsurge forecasts and the implementation
of operational early warning systems.

2.  MATERIALS AND METHODS

In order to depict typical atmospheric circulation pat-
terns associated with West African desert locust
upsurges, and to attempt a comprehensive description
of processes inducing upsurge events, the zonal wind
cross sections (1979–2005) relative to the African and
European sectors were analyzed. Attention was focused
mainly on Northwest and West Africa, as these areas
are influenced by the Atlantic circulation.

The NCEP-DOE Reanalysis 2 project zonal wind
dataset (Kanamitsu et al. 2002) was provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
NCEP Reanalysis 2 data have a 2.5° spatial resolution,
a monthly temporal resolution and cover the period
January 1979 to December 2005.

Data series on desert locust population dynamics
rely on different sources. Many publications were con-
sulted, providing the chronological accounts of reces-
sions, outbreaks, upsurges, and plagues that occurred
in the past starting from 1925, with an annual temporal
resolution (e.g. Burt et al. 2000, Symmons & Cressman
2001).

Local reports concerning Schistocerca gregaria ob-
servations classified the presence/absence and the be-
havioral phase of populations over the temporal window
1992–2005 on a monthly basis. These data were stored
by the ECLO Locust Mapper Service (Locust and Other

Migratory Pests Group) at the United Nations Food and
Agriculture Organization (FAO) and provided as images
through a website (www.fao.org/ag/locusts/en/mapper/
index.html). Further information was derived from FAO
Desert Locust Bulletins and archives (www.fao.org/ag/
locusts/en/archives/archive/index.html). Since desert
locust data availability and reliability might be subject to
notable spatial and temporal variations, all available
data sources were integrated in order to obtain a cate-
gorical yearly list.

Two categories of years were extracted: years of up-
surge initiation in West Africa, representative of earlier
upsurge status (1980, 1985, 1993, 2003), and years
of deep recession, when no relevant infestation was
reported (1981, 1982, 1983, 1990, 1991, 2001, 2005).

The monthly zonal wind was analyzed for the 2 cate-
gories in order to highlight differences in the large-
scale circulation patterns. A cross-section of zonal wind
on the entire troposphere depth (1000 to 100 hPa) was
analyzed between 20° S and 90° N. Monthly compos-
ites of the cross sections were computed as differences
between the means of the 2 categories. Statistical
inference was carried out to obtain the significance of
those differences using the Wilcoxon test at the 95%
confidence level. This non-parametric test leads to null
hypothesis rejection for the area where the zonal wind
shows a notable difference in upsurge years.

To confirm the statistical analysis, on account of the
small samples sizes (4 and 7 yr), an ordinary bootstrap
resampling was performed using R boot library (R
Development Core Team 2007).

No relevant dissimilarities in the circulation patterns
and in jet stream streaks were found between categor-
ical averages resulting from original gridded data and
those resulting from resampled sets (Figs. 2 & 3).

3.  RESULTS

Composites of zonal wind cross sections in March,
April, and May (Fig. 2) show significant evidence, at
the 95% confidence level, of the association between
well defined spring climate anomalies and desert
locust upsurge-onset occurrence years. Specifically,
significant differences in the structure and intensity
of upper-tropospheric westerlies in March were found
(Fig. 2a,d,g). In upsurge years, the northern branch
jet streak is located between 70 and 80 °N, whereas
in recession years, it is located southern around 60° N
(Fig. 2a,d). During spring to summer, the jet streak
southern position is responsible for a pure Atlantic
flow regime with a wetter than normal condition over
the west Mediterranean basin (Baldi et al. 2006).
This southward shift of the sub-tropical jet could
ensure favorable conditions for sustaining a sequence
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of successful breeding over Morocco, Algeria, and
Mauritania before the monsoon initiation, promoting
the growth of desert locust populations. At same
time, the tropical pattern is characterized by a
stronger easterly circulation due to an intensification
of the tropical easterly jet during upsurge years.

Significant positive differences of zonal wind were
found in April,centered at 10–15° N and at 700–500 hPa,
corresponding to the AEJ (Cook 1999), pointing out a
weaker easterly jet flow over West Africa (Fig. 2b,e,h).

Finally, in May, significant differences at 5–25° N and
at 1000–700 hPa (Fig. 2c,f,i) are suggestive of easterly cir-
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Fig. 2. Zonal wind (m s–1) cross section at longitude 10° E. (a–c) Mean over years of locust upsurge onset, and (d–f) mean over years
of locust recession in (a,d) March, (b,e) April, and (c,f) May. (g–i) Composite of locust upsurge – recession years in (g) March, (h)
April, and (i) May; regions where the Wilcoxon test indicated significance exceeding 95% are delimited by a dashed contour
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culation anomaly advection over the tropics; furthermore,
a low level anomaly was present between 15 and 25° N,
indicating a weaker north-easterly low level flow or a
stronger westerly flow. As a result, more moisture is avail-
able over the West Sahel region where the desert locust is
expected to move during spring southward displacement.

4.  DISCUSSION

At the onset of an upsurge, the desert locust is con-
fined to the arid and semi-arid recession regions,
where rainfall regimes are erratic and constitute the
main limiting factor along with low level moisture air
circulation. Widespread rainfall in winter and spring
over the winter–spring breeding areas have played
a key role in many upsurges in the past (Bennett 1976,
Pedgley 1979, Roffey 1982, Burt et al. 2000). In partic-
ular, rainfall in March in Northwest Africa can provide
simultaneous conditions for sustaining a sequence of
successful breeding over a large area before the mon-
soon initiation, promoting the growth of populations
and therefore the upsurge (Bennett 1976). Further-
more, a weaker AEJ in April, along with a weaker low-
level easterly circulation in May, fosters soil moisture
over West Sahel, sustaining favorable breeding condi-
tions (Fontaine et al. 1995, Cook 1999, Grist & Nichol-
son 2001). The anomalous AEJ pattern in upsurge
years has important implications. In fact, the AEJ is
among the major atmospheric features in tropical cir-
culation over Africa. It can act as a major physical link
between large-scale and local dynamics determining
rainfall distribution and thermal anomalies locally
(Leroux 2001) and thus environmental conditions that
are, or are not, favorable for locust outbreaks. More-
over, the AEJ is teleconnected to global-scale climatic
anomalies such as Pacific Ocean anomalies (ENSO
events), Indian Monsoon anomalies, and sea surface
temperatures in the tropical Atlantic Ocean (e.g. see
Cook 1999, Sultan & Janicot 2003, Sultan et al. 2003).

5.  CONCLUSIONS

The desert locust upsurge mechanism in West Africa
is linked with 2 spring climate patterns acting as forc-
ing mechanisms: a stronger westerly mid-latitude cir-
culation in March followed by a weakened AEJ and a
strengthened moisture advection from April to May.

An understanding of desert locust upsurge mech-
anisms is of utmost importance for survey and control
operations in order to forecast and prevent new
plagues. In this context, the potential for a climatic
prognostic model for desert locust invasions is unques-
tionable and can be considered the basis for imple-
menting a ‘new generation’ of operational early warn-
ing systems, allowing seasonal planning and a more
appropriate management of resources. Even if further
work remains to be carried out, the identification of the
AEJ as a possible dynamical link between large- and
local-scale desert locust upsurges provides hope for
the development of such a ‘new generation’ of early
warning systems.
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Fig. 3. Zonal wind (m s–1) cross section at longitude 10°E for bootstrapped samples. (a–c) Mean over locust upsurge onset, and 
(d–f) mean over years of locust recession in (a,d) March, (b,e) April, and (c,f) May
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