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ABSTRACT: Lack of data on site-specific daily solar radiation (R,) is a significant impediment for
most crop modeling applications. For this reason, 5 methods for estimating R; were tested: the
Angstrom-Prescott equation (AP), the Supit - van Kappel formula (SK) and 3 temperature-based
methods: Campbell-Donatelli model, Hargreaves equation, and piecewise multiple linear regres-
sions with a breakpoint (PLR). To overcome the lack of long and continuous time series of R; mea-
surements at multiple sites, satellite-derived Rg from the HelioClim-1 database were tested against
observations from 2 stations, and then interpolated for 12 additional stations. When sunshine duration
data were available, the AP equation was best, because it (1) produced intercepts and slopes closest
to zero and unity, respectively and (2) had the lowest relative RMSE (9 to 18.6 %). When cloud cover
observations and data on maximum and minimum temperatures were available, the SK equation was
equally effective as AP in most assessment metrics. When the only data for a site were daily maxi-
mum and minimum temperatures, the PLR approach with a breakpoint, which reflects the value at
which the response of daily R; changes as a function of the extraterrestrial solar radiation R, and the
diurnal temperature range, performed best. The mean relative RMSE of the PLR approach was
<3.7 % higher than that of AP. The SK equation provided the most suitable simulation of measured Ry
for the CERES-Wheat crop model, while among the temperature-based methods PLR produced the
smallest yield errors. Future validation efforts should explore the validity of the PLR model in other
regions and under regimes with greater availability of Ry data
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1. INTRODUCTION

Global solar radiation (R,) reaching the earth's surface
is the energy source for photosynthesis and evapotran-
spiration (Podestd et al. 2004), and an important input
parameter for crop growth simulation models used in de-
cision making. In most countries, including Greece, long
and continuous records of daily R, are scarce because of
the cost of the measuring instruments required, as well
as their difficult maintenance and calibration (Hunt et al.
1998). Most first-order weather stations in Greece (~40)
measure temperature and rainfall, but only 2 of them
have long and reliable daily records of R,.

Various approaches have been developed to esti-
mate Ry at instrumented sites where Ry is not mea-
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sured: use of stochastic weather generators (e.g.
Mavromatis & Hansen 2001), linear interpolation tech-
niques (Grant et al. 2004, Soltani et al. 2004), higher
order statistics (Safi et al. 2002), neural networks
(Reddy & Ranjan 2003), and empirical approaches (e.g.
Mavromatis & Jagtap 2005). Stochastic weather gener-
ators can be used for risk analysis, but not for crop
model validation and simulation for a specific period,
as the weather generators cannot generate data to
match the actual weather at a particular time of inter-
est (e.g. Mavromatis & Hansen 2001). Linearly interpo-
lated R, data may be a good substitute for a few miss-
ing values at a particular site, but they cannot be
applied to stations without Ry measurements (Trnka et
al. 2005). The use of neural networks is limited by the
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nature of the method, which requires a relatively high
number of input variables and sufficient testing prior to
their application to a site that is distant from the region
where the relationships were originally established
(Trnka et al. 2005). Therefore, much effort has been
directed to empirical methods relying on the associa-
tion between solar radiation and weather variables
such as sunshine duration (Angstrém 1924, modified
by Prescott 1940, Rivington et al. 2005), temperature
(e.g. Bristow & Campbell 1984, Hargreaves et al.
1985), temperature in combination with cloud cover
(Supit & van Kappel 1998), or daily precipitation (e.g.
Hunt et al. 1998, Weiss et al. 2001, Weiss & Hays 2004).

Remote sensing data on Ry play an increasingly
important role as an alternative to in situ observations
(Lefevre et al. 2007). The main advantage is the avail-
ability of spatially continuous (grid) data with consis-
tent accuracy, measured by satellite at frequent and
regular time intervals. Furthermore, satellite assess-
ments are spatially more stable and less biased than
interpolations from ground station data (Stri 2007).
The HelioClim-1 database of the Ecole des Mines de
Paris contains daily Ry data for Europe, Africa and the
Atlantic Ocean from 1985 onward (Cros et al. 2004a).

The main objectives of this study were to evaluate (1)
the accuracy of several empirical models widely used for
estimating daily Ry versus a piecewise linear regression
model, a technique not reported to date for Rg modelling,
for 3 different data availability scenarios at 12 observa-
tion sites across Greece for the period 1985-1989 and for
the parameters sunshine duration, cloud cover + temper-
ature, and temperature only; (2) the effects of measured
and estimated R; on durum wheat Triticum du-

ever, free access is provided to only 5 yr of daily data
(1985-1989), and therefore this period was chosen for
the present study. Heliosat-2 converts satellite data
into assessments of the daily mean R, at ground level
for each day (Rigollier et al. 2004). It is based on the
principle that ‘the attenuation of the downwelling
shortwave radiation by the atmosphere over a pixel is
determined by the magnitude of change between the
reflectance that should be observed under a very clear
sky and that currently observed' (Lefevre et al. 2007,
p 243). The web-server performs an on-line spatial
linear interpolation to deliver a daily time-series of Ry
for any given location (Lefévre et al. 2007).

The quality of HC1 data have been assessed by sev-
eral comparisons between daily ground measurements
and satellite-derived solar radiation (Cros et al. 2004a,
Rigollier et al. 2004, Lefevre et al. 2007). A relative
accuracy of <20 % in relative root mean squared error
(RMSE) was found in these comparisons. To overcome
the limited availability of long and reliable daily Ry
measurements in Greece, the suitability of HC1 data
was tested against the observations from 2 stations
(Fig. 1) for 1985-1989.

2.1.2. Station data

The study included 12 representative sites from 35°
to 41°N latitude and 20° to 28°E longitude (Fig. 1).
Mean daily maximum and minimum air temperature,
sunshine duration and cloud cover for these sites
ranged from 19.2 to 22.9°C, 7.2 to 16.6°C, 5.8 to 8.1 h,

rum production, as simulated with the CERES- =
Wheat crop model. The results of this analysis
could also serve as a basis for selecting a suitable 5
method for estimating missing radiation data. “

2. MATERIALS AND METHODS

39
2.1. Data

2.1.1. Remotely sensed solar radiation

HelioClim-1 (HC1) is an integrated informa- 37
tion system that contains a database of global
irradiation data processed with the Heliosat-2
algorithm from a time series of Meteosat-4 to
Meteosat-7 images at reduced (sampled) B2 res-
olution (grid cell of about 30 x 30 km at the 3%
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equator). The HC1 dataset covers Europe,
Africa and the Atlantic Ocean and is available
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Fig. 1. Meteorological stations in Greece used for the evaluation of

from 1985 onwards through the SoDa website
(www.soda-is.com) (Cros et al. 2004a). How-

(*) solar radiation estimation methods and (+) HelioClim-1 versus

observed radiation data
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Table 1. Stations used for the evaluation of solar radiation estimation methods. Data shown are mean for 1985-1989. Alt.: altitude,
Ry: global solar radiation, Tyac and Tpip: maximum and minimum temperature, respectively

Station Lat. Long. Alt. Ry Tax Tin Sunshine Cloud cover
(°N) (°E) (m) MJIm2d?) (°C) (°C) duration (h) (octas)
Alexandroupoli 40.85 25.92 4 12.9 19.2 8.9 6.3 3.3
Ioannina 39.67 20.85 484 13.8 19.8 7.5 5.8 3.3
Corfu 39.62 19.92 4 15.0 22.5 12.0 7.1 3.1
Skyros 38.97 24.49 48 15.5 19.3 14.1 7.0 3.3
Agrinio 38.62 21.45 46 14.3 22.9 9.6 7.1 3.1
Argostoli 38.11 20.29 5 16.0 21.5 14.3 7.7 3.0
Samos 37.70 26.90 3 16.1 22.2 13.5 8.1 2.6
Tripoli 37.52 22.40 663 15.0 20.1 7.2 7.2 3.9
Naxos 37.08 25.37 3 16.8 20.4 15.3 7.4 2.7
Kalamata 37.07 22.02 7 15.4 22.4 11.2 7.6 3.1
Rodos 36.38 28.12 11 19.1 22.0 16.6 8.1 2.3
Heraklio 35.34 25.17 39 17.5 21.8 15.0 7.5 3.2

and 2.3 to 3.9 octas, respectively (Table 1). Sunshine
duration was measured by Campbell-Stokes sunshine
recorders. There were no missing data in the weather
records of the stations with the exception of sunshine
duration data. At 9 stations, gaps in sunshine data
were <3 % of the total days, and at 3 stations (Skyros,
Agrinio and Rodos), the gaps were approximately
10%. These sunshine duration time series were not
excluded from the analysis, since no years with >31
consecutive days of missing data or with >50 missing
days in total were identified. Mean daily values of the
satellite-derived radiation varied from 12.9 MJ m2 d-!
in Alexandroupoli to 19.1 MJ m~2 d~! in Rodos. The first
3 yr of data were used for fitting model parameters,
and the last 2 yr were used for model evaluation.

2.2. Estimation of solar radiation
2.2.1. Estimation using sunshine duration (AP model)

The equation postulated by Angstrt')m (1924) and
improved by Prescott (1940) was:

n
Ry = RA(OLA+bAN) (1)

where R, is the extraterrestrial solar radiation, o, and
b, are site specific empirical coefficients, and n and N
are the actual and astronomical sunshine duration,
respectively. N was calculated as a function of latitude
and day of the year according to Allen et al. (1998).

2.2.2. Estimation using cloud cover (SK model)

Non-linear relationships between daily Ry and cloud
cover observations were first suggested in the 1960s.
The formula proposed by Supit & van Kappel (1998)
was applied as:

C
R, = Ry[asy/Tax — Tin |+bs (?W) +Cg 2)

where: ag, bs and cg are site specific empirical con-
stants, Tpax and T, are the maximum and minimum
daily temperatures, and Cy is the mean total cloud
cover during daytime observations (in octas).

2.2.3. Estimation using temperature data (CD, H and
PLR models)

The central assumption in most temperature-based
methods is that, on clear days associated with high
transmittance and radiation, strong diurnal warming
and nocturnal cooling leads to a large daily tempera-
ture range (Tmax — Tmin). On overcast or rainy days,
cloudiness reduces incoming radiation during day-
time and outgoing radiation at night (Podesta et al.
2004). Donatelli & Campbell (1998) developed an ap-
proach which estimates R; on any given Day i as
the product between R, and a clear sky transmissivity
coefficient T:

R, = 3)

TRy {1~ exp(~b{0.017 exp[exp(~0.053+ Ty ) AT [ £(Toin 1) )]

where AT; is the daily air temperature range [AT; =
Tax,i = 0.5(Thin,i + Trini + 1)1 Tavg,i is the average air
temperature of Day i and f(Tin,i) is a function of Ty,
on Day it f(Tmin) = €XP(Tmin,i/ Tne)r and Ty is the sum-
mer night air temperature factor. Thus, the Campbell-
Donatelli model (CD model) requires 3 site-specific
empirical parameters: 1, b and T..

A relatively simple method of relating Ry to daily
temperature range was proposed by Hargreaves et al.
(1985) (H model):

Rg = Rpag(Tax — Toun) + by (4)

where ay; and by are site-specific empirical constants.
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Non-linear models have also been proposed for esti-
mating daily R; from common meteorological vari-
ables. A generalized additive model (GAM) linking
proxies of cloudiness and atmospheric humidity to Ry
was proposed by Podesta et al. (2004). It is not uncom-
mon that the nature of the relationship between one or
more independent variables and a dependent variable
changes over the range of the independent variables.
Several studies conditioned 1 on either (1) the wet/dry
status of the current and/or previous day or (2) the pre-
cipitation amount or (3) the range in daily temperature
extremes (AT) (Acock & Pachepsky 2000, Winslow et
al. 2001, Spokas & Forcella 2006), based on the
assumption that AT is an important factor in determin-
ing the presence or absence of clouds (Mahmood &
Hubbard 2002), along with precipitation. A piecewise
multiple linear regression (PLR) model with 2 separate
regression equations was tested: one for R, values that
are less than or equal to a breakpoint ¢ and one for
Ry >c:

Rg = b01 + bllRA + b21AT
R = bOZ + blZRA + bzzAT

if Ry<c (5)

g ing>c

where by, by, bip and b,, are the 4 different inter-
cepts, and by; and by, refer to the slopes of the 2
regression lines below and above the breakpoint c,
respectively.

The empirical coefficients of the 5 R, estimation
models, including breakpoint ¢, were estimated with a
nonlinear least squares regression (Statsoft 2004). This
procedure aims at minimizing the loss function, which
is the sum of squared deviations of the dependent
variable from those predicted by the 5 models. To find
the best fitting set of parameters for each equation,
the efficient Levenberg-Marquardt algorithm was em-
ployed. The preset by the software defaults of the
parameter start values, step sizes and convergence
criteria, required by the estimation procedure, were
used. The mean of the dependent variable at each site
(see Table 1) was used by the least squares estimation
algorithm as the start value of breakpoint c.

R, was calculated as a function of latitude, day of the
year, solar angle and solar constant according to Allen
et al. (1998).

2.3. Crop simulations

The CERES-Wheat crop model (Ritchie & Otter 1985)
simulates daily wheat crop growth, development and
yield dynamically as a function of weather (T axr Trmin:
precipitation and Rg), planting date, N fertilizer man-
agement, cultivar and soil characteristics (Soltani et al.
2004). It accurately simulates grain yields in various
climates (e.g. Pecetti & Hollington 1997, Timsina &

Humphreys 2006). To overcome the inadequate length
(5 yr) of HC1 data, WGEN was used to provide long
term weather series for use with CERES-Wheat;
WGEN (Richardson & Wright 1984) is a widely used
stochastic weather generator that requires mean
monthly weather data of T,y and T, precipitation
and Ry to generate daily weather at a site. There are no
significant differences between crop simulation output
obtained with WGEN generated and actual weather
data (Soltani et al. 2000, Hartkamp et al. 2003); the
latter study also demonstrated the suitability of WGEN
for generating adequate long-term time series even
when model parameters were derived from relatively
short-term (<10 yr) daily weather data.

A standardized scenario for a durum wheat crop sim-
ulation was created within CERES-Wheat using the
same cultivar (SIMETO), planting date (25 October)
and soil profile at each location. With HC1 and
the daily R, estimated with the 5 models during
1985-1989, 6 sets of 5 yr daily weather data were
available for each site. Parameters for WGEN were
then calculated for each data set/location combination.
Sufficient weather data were next generated to simu-
late 99 wheat—fallow runs for each site. To consider the
weather effect during the fallow period on the follow-
ing wheat season, the ‘sequence’ option of the model,
allowing carrying over of soil water between seasons,
was employed. The Ritchie modification of the Priest-
ley-Taylor approach was used for estimating potential
evapotranspiration (ET). Simulation of nitrogen was
deactivated for these runs. We decided to focus on
simulated grain yield, crop biomass and growing
season ET output.

2.4. Model evaluation

To evaluate the model performance, regression- and
difference-based analyses were conducted. These in-
cluded the calculation of the mean bias error (MBE)
and root mean squared error (RMSE).

MBE = ¥ Ei=Oi 6)
i=1 n
n 1/2
Z(Ej_Oj)z
RMSE = [ 7)
n

where n is the number of observations, E; is the model
prediction and O; is the observed value for Day i. The
reduced major axis method for slope and intercepts
estimates was preferred to the more frequently used
ordinary least squares approach (Ricker 1984). The
data analysis tool IRENE (www.isci.it/tools) was used
for statistical analysis. The applicability of the esti-
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mated Ry to CERES-Wheat was evaluated by compar-
ing the median, and lower and upper quartiles of the
crop simulation output distributions derived with HC1,
and estimated radiation values. The non-parametric
Mann-Whitney U-test was used to assess whether crop
model output with various Ry inputs came from the
same distribution (5 % level of significance).

3. RESULTS AND DISCUSSION
3.1. Evaluation of HelioClim-1

A better agreement was found between the monthly
course of HC1 values and the ground measurements
for Athens than for Thessaloniki (Fig. 2). The average
bias was negative (underestimation) for the former site
(-8.5%) and positive (overestimation) for the latter
(+16.7%). This bias varied from one year to another
and its timing was not consistent among sites.

On daily basis, the relative MBE in Athens (data not
shown) varied from 3.8 % in July to 16.4 % in March.
Larger errors were estimated for Thessaloniki, ranging
from 6.8 % in May to 28.9 % in January. For 6 months,
the relative RMSE for Thessaloniki (data not shown)
was >20% (the acceptable deviation between daily

Measured
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o

Table 2. CERES-Wheat yield (at 0% moisture), evapotranspi-
ration (ET) and total biomass simulated on the basis of solar
radiation data for Thessaloniki and Athens. Obs: with actual
data; Sat: with satellite-derived data. Q50: median; Q25 and
Q75: quartiles. p: significance (Mann-Whitney U-test)

Yield ET Biomass
(kg/ha) (mm) (kg/ha)
Obs Sat Obs Sat Obs Sat

Thessaloniki
Q50 3303 3527 275 288 7355 8446
P 0.228 0.054 <0.001
Q25 2576 2171 255 260 5928 6404
Q75 3765 4248 297 314 8123 9479
Athens
Q50 2814 2714 255 248 6996 6467
P 0.385 0.166 0.040
Q25 2064 2137 227 228 4898 4527
Q75 3638 3270 283 269 8348 7361

measured and calculated irradiation: Cros et al. 2004a,b).
RMSE in Athens remained within the accepted range
for all months and ranged from 4 % in July to 16.4 %
in March. Errors were smaller in spring and summer,
when clear skies prevail, and greater with overcast
skies during autumn and winter. Similar trends and
comparable ranges of errors were reported by Rigollier

et al. (2004) and Lefevre et al. (2007). The consis-

tent overestimation of actual daily measure-

ments in Thessaloniki (Fig. 2), a site located by

a Thessaloniki 1985-1989

- — n n
c o o o
3

Solar radiation (MJ m-2d-1)
w

the sea, is related to (1) spatial sampling and
filtering of satellite data that may include mea-
surements over the sea (a cloud index lower than
measured over land is expected, since there are
generally fewer clouds over sea than over land)
and (2) the very high value of the cloud reflectiv-
ity within the Heliosat-2 algorithm (Dagestad
2005).

The overestimation and underestimation of
the measured Ry in Thessaloniki and Athens,
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respectively, resulted in a corresponding in-

1989 crease by 6.8% and a decrease by 2.7 % in the
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median values of the simulated yields (Table 2).
These discrepancies, however, were not statisti-
cally significant according to the p values of the
Mann-Whitney U-test. The upper quartiles pre-
sented similar trends in the deviations of simu-
lated yields and the lower quartiles had the
opposite trend. The median values of simulated
biomass produced with HC1 data, significantly
overpredicted and underpredicted the yield
obtained with on-site radiation data from Thes-

1985 1986 1987 1988

Fig. 2. Actual versus HelioClim-1 derived solar radiation for (a) Thes-

saloniki and (b) Athens during 1985-1989 (n =5 x 12)

LI B I B B B B B

saloniki and Athens by 14.8 and 7.6 %, respec-

1989 tively (Table 2). The U-test did not identify any

significant deviations in the median values of
modeled ET obtained with the 2 sources of R;.
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The above-mentioned results lead us to conclude
that (1) since the majority of deviations between histor-
ical and estimated Ry were within the accepted range,
HC1 data are a useful alternative to in situ radiation
observations, and (2) at sites where only temperature
and precipitation data are available, daily solar radia-
tion data derived from Meteosat images can be used as
input in the CERES-Wheat model, at least for wheat
yield and ET (on which we focus below).

3.2. Solar radiation estimation methods
3.2.1. Regression-based evaluation

The regression-based statistics for the calibration
and the independent datasets are summarized in
Table 3. Of the 5 R; estimation methods, the AP
approach ranked first, because it had the intercepts
and slopes closest to zero and unity, respectively. The
SK equation was also efficient and ranked second. Of
the 3 temperature-based models, PLR significantly out-
performed the CD and H models. PLR using only daily
extreme temperatures presented similar or better

regression line slopes and intercept values than the SK
equation, which requires additional cloud information.
The H equation was the least successful for estimating
daily solar radiation. These results generally agree
with previous studies, which also recognized the supe-
riority of approaches based on the sunshine duration,
despite the need for site-specific parameterization for
deriving the empirical coefficients o, and b, of the AP
equation.

All 5 radiation models overestimated low R, values
(overcast skies) and underestimated the middle and
high range of observed radiation (clear skies), as
indicated by the positive slopes and the negative
intercepts of the regression analysis results. Similar
trends for these models were reported by Trnka et al.
(2005) in central European lowlands. Forcing factors
that were not included in the models but may be
associated with daily radiation forcing are probably
responsible for the systematic biases at the extremes
of the observed Rg distribution. For example, large-
scale advection, dust storms, seasonal burning, grass-
land fires, and pollution from fires may significantly
influence recorded radiation (e.g. Thornton & Run-
ning 1999). In addition, and with regards to cloud

Table 3. Regression-based evaluation of 5 methods for estimation of solar radiation, for the calibration (1985-1987) and validation
(1988-1989) periods. Int.: intercept (MJ m~2 d-!). PLR: Piecewise linear regression

Angstrém-Prescott Supit-van Kappel Hargreaves Campbell-Donatelli PLR
(Eq. 1) (Eq. 2) (Eq. 4) (Eq. 3) (Eq. 5)

Int. Slope Int. Slope Int. Slope Int. Slope Int. Slope
Calibration
Alexandroupoli -0.77 1.06 -0.69 1.05 -1.45 1.11 -0.98 1.08 -0.85 1.06
Ioannina -0.49 1.04 -0.54 1.04 -1.08 1.08 0.38 0.99 -0.69 1.05
Corfu 0.47 0.97 -0.48 1.03 -1.28 1.08 -0.85 1.06 -0.66 1.04
Skyros -1.10 1.06 -0.63 1.04 -3.40 1.22 -1.82 1.12 -0.95 1.06
Agrinio -1.04 1.06 -0.48 1.03 -1.07 1.07 -1.18 1.08 -0.61 1.04
Argostoli -1.16 1.06 -0.60 1.04 -1.78 1.11 -2.05 1.12 -0.77 1.05
Samos -0.50 1.03 -0.63 1.04 -2.12 1.13 -1.49 1.10 -1.12 1.07
Tripoli -1.38 1.08 -0.70 1.05 -1.33 1.09 0.54 0.99 -0.75 1.05
Naxos -0.48 1.03 -0.59 1.03 -6.40 1.38 —4.42 1.24 -1.04 1.06
Kalamata -0.87 1.05 -0.58 1.04 -1.49 1.10 -1.30 1.08 -0.77 1.05
Rodos -0.12 1.01 -0.65 1.03 -2.93 1.15 -2.81 1.14 -1.19 1.06
Heraklio -0.59 1.03 -0.97 1.06 -4.15 1.24 -2.16 1.13 -1.05 1.06
All stations -0.70 1.04 -0.63 1.04 -2.37 1.15 -1.51 1.09 -0.87 1.05
Validation
Alexandroupoli -1.16 1.04 -1.42 1.03 -3.43 1.19 -1.75 1.06 -1.15 1.05
Ioannina -0.55 0.99 -1.37 1.05 -1.84 1.09 -1.22 1.04 -1.82 1.10
Corfu -1.61 1.05 -1.42 1.05 2.07 0.90 -2.40 1.10 -1.64 1.07
Skyros -1.20 1.09 -1.95 1.10 -4.05 1.24 -2.75 1.15 -1.23 1.06
Agrinio -1.39 1.03 -1.09 1.04 -1.98 1.09 -2.62 1.11 -1.58 1.07
Argostoli -1.91 1.06 -1.41 1.06 -1.65 1.09 -2.39 1.12 -1.11 1.05
Samos -1.70 1.05 -2.08 1.06 -2.99 1.11 -2.97 1.12 -1.72 1.07
Tripoli -1.79 1.07 -1.69 1.07 -1.62 1.08 -0.08 0.99 -0.99 1.04
Naxos -1.41 1.05 -1.51 1.06 —-6.46 1.34 -5.26 1.27 -1.74 1.08
Kalamata -1.67 1.06 -1.81 1.06 -1.83 1.09 -1.67 1.07 -1.02 1.05
Rodos -0.65 1.00 -0.83 1.04 -2.49 1.17 -1.76 1.10 -0.39 1.02
Heraklio -1.13 1.05 -2.24 1.09 -4.09 1.21 -1.89 1.10 -1.29 1.06
All stations -1.35 1.05 -1.57 1.06 -2.53 1.13 -2.23 1.10 -1.31 1.06
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observations required by the SK formula, observers
have a tendency to underestimate low and overesti-
mate high overcast conditions (Brinsfield et al. 1984).
The same authors also noted that underlying sur-
face conditions can potentially introduce errors in the
estimates. Furthermore, various other atmospheric
constituents such as O,, CO,, O3 CH,, and anthro-
pogenic gases also influence the amount of incident
radiation, and thus affect the performance of this
type of model.

3.2.2. Difference-based evaluation

All models consistently presented positive MBE
errors (Table 4), probably for the reasons reported in
Section 3.2.1. The methods using temperature data
only, outperformed the AP and SK equations. PLR was
the best approach for the independent dataset, as it
had the lowest MBE. The relative value of MBE for all
stations combined was 2.5%, ranging from -0.3%
(underestimation) for Rodos to 4.1% (overestimation)
for Samos. The average relative MBE for the AP and
SK models were higher than the MBE found by Trnka
et al. (2005) for the lowlands in central Europe—4.2
and 3.9% (see Table 4) versus 1.1 and 1.7 %). Supit &
van Kappel (1998) also reported a lower relative MBE
for the AP model (3.6 %) but an identical one for SK.
CD model performed better in central Europe (Trnka
et al. 2005), showing a lower value for relative MBE
(2.9 vs. 3.8% in Table 4). The opposite was true for H
(6.3 vs. 3.5% in Table 4).

The accuracy of the models expressed in terms of the
RMSE is consistent with the results obtained with the
regression-based analysis. Comparing model perfor-
mance for all stations combined, there was an increase

by 1.3% or less in average relative RMSE by employ-
ing SK instead of AP, and by 3.7 % or less by selecting
PLR (Table 5). The corresponding errors were much
larger with the H and CD formulas. In comparison with
AP, H increased the relative RMSE by 13.4% for the
calibration and by 12.8 % for the validation period. The
respective metrics for CD relative to AP were 8.8 and
8.7%. The average error of AP expressed in terms of
relative RMSE was similar to that in central Europe
(13.8 and 15.4 % [see Table 5] versus 14.5%) (Trnka et
al. 2005) and lower than the 17.2 % reported by Supit &
van Kappel (1998). SK performed much better with
regard to relative RMSE in this study compared with
Trnka et al. (2005) and Supit & van Kappel (1998) —
15.1 and 16.4 % (see Table 5) versus 24.7 % in the first
study and 22.6 % in the latter. The RMSE values pro-
duced with CD were well within the range of 2.5 to
5.0 MJ m2 d! reported by Donatelli & Campbell
(1998) from 11 stations all over the world, and the
mean relative RMSE value of 32 % reported by Trnka
et al. (2005) overestimated the respective error statis-
tics, compared to those in Table 5. The H model also
performed better under Mediterranean conditions
than in central Europe (26.6 and 28.8 % in this study
versus 32 % in Trnka et al. [2005]).

3.2.3. Spatial structure of empirical model parameters

The empirical coefficients of the AP, SK, CD and H
models, estimated with the nonlinear least squares
estimation methodology summarized in Section 2.2.3,
are presented in Table 6. Only the empirical para-
meters from the AP equation showed a relatively
strong linear association with latitude. The site specific
parameter o, decreased linearly with increasing lati-

Table 4. Difference-based evaluation of 5 methods for estimation of solar radiation, for the validation period (1988-1989); actual
mean bias error (MBE) (MJ m~2 d™!) and relative MBE (MBE / mean x 100). PLR: Piecewise linear regression

Angstrém-Prescott Supit-van Kappel
(Eq. 1) (Eq. 2)

Actual Relative Actual Relative
Alexandroupoli  0.70 5.8 0.97 7.7
Ioannina 0.63 4.5 0.59 4.3
Corfu 0.75 5.0 0.66 4.4
Skyros -0.23 -1.4 0.31 2.0
Agrinio 0.87 5.9 0.49 3.5
Argostoli 0.82 5.1 0.46 2.9
Samos 0.82 5.2 1.10 7.0
Tripoli 0.71 4.7 0.58 3.8
Naxos 0.48 2.9 0.46 2.7
Kalamata 0.72 4.7 0.80 5.3
Rodos 0.66 3.5 0.02 0.1
Heraklio 0.31 1.8 0.59 3.4
All stations 0.64 4.2 0.59 3.9

Hargreaves Campbell-Donatelli PLR
(Eq. 4) (Eq. 3) (Eq. 5)
Actual Relative Actual Relative Actual Relative
0.92 7.3 0.99 7.9 0.49 3.9
0.52 3.8 0.62 4.5 0.41 3.0
-0.50 -3.4 0.82 5.5 0.50 3.4
0.30 1.9 0.37 2.4 0.22 1.4
0.63 4.5 0.94 6.6 0.55 3.9
0.19 1.2 0.37 2.3 0.37 2.3
1.13 7.2 1.00 6.4 0.65 4.1
0.32 2.1 0.18 1.2 0.32 2.1
0.59 3.5 0.60 3.6 0.30 1.8
0.36 2.4 0.51 34 0.30 2.0
-0.66 -3.5 -0.09 -0.5 -0.06 -0.3
0.27 1.5 0.13 0.7 0.22 1.3
0.53 3.5 0.55 3.8 0.37 2.5
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Table 5. Difference-based evaluation of 5 methods for estimation of solar radiation for the calibration (1985-1987) and evaluation
(1988-1989) periods; actual root mean squared error (RMSE) and relative RMSE (RMSE / mean x 100). PLR: Piecewise linear

regression
Angstrom-Prescott Supit-van Kappel Hargreaves Campbell-Donatelli PLR
(Eq. 1) (Eq. 2) (Eq. 4) (Eq. 3) (Eq. 5)
Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative

Calibration
Alexandroupoli  3.00 19.2 3.16 19.8 5.31 284 4.16 27.7 2.99 22.0
Ioannina 2.15 19.3 2.15 20.4 3.02 28.6 2.78 27.6 2.42 21.8
Corfu 1.90 12.6 2.10 13.9 3.38 224 3.00 19.9 2.44 16.2
Skyros 2.45 14.7 2.51 16.2 5.56 36.0 4.23 27.4 3.07 19.9
Agrinio 1.96 13.6 2.10 14.6 3.10 21.6 2.82 19.6 2.34 16.3
Argostoli 2.10 13.1 2.30 14.4 3.90 24.4 3.45 21.6 2.62 16.4
Samos 2.01 12.5 2.19 13.5 3.93 24.2 3.78 23.2 2.90 17.8
Tripoli 2.39 16.0 2.46 16.4 3.35 224 3.22 21.5 2.51 16.8
Naxos 1.84 10.9 2.12 12.5 6.39 37.8 4.20 24.8 2.78 16.4
Kalamata 1.99 12.6 2.17 14.0 3.42 22.1 3.01 19.5 2.49 16.1
Rodos 1.74 9.0 2.11 111 4.34 22.8 3.62 19.0 2.81 14.8
Heraklio 2.09 11.9 2.55 14.6 5.05 28.8 3.43 19.6 2.67 15.2
All stations 2.14 13.8 2.33 15.1 4.23 26.6 3.48 22.6 2.67 17.5
Evaluation
Alexandroupoli  2.50 24.7 2.60 25.2 3.73 42.3 3.64 33.1 2.88 23.8
Ioannina 2.68 15.7 2.79 15.6 3.91 21.9 3.77 20.1 2.98 17.5
Corfu 2.54 16.8 2.41 16.2 3.57 23.9 3.61 24.2 2.67 17.9
Skyros 2.99 18.6 2.79 18.0 5.65 36.5 4.30 27.8 3.11 20.1
Agrinio 2.29 15.4 2.36 16.7 3.30 23.3 2.99 21.1 2.46 17.4
Argostoli 2.16 13.5 2.58 16.1 4.77 29.8 4.37 27.3 2.91 18.2
Samos 2.50 15.9 2.62 16.6 4.38 27.8 4.15 26.4 3.04 19.3
Tripoli 2.34 15.5 2.50 16.6 3.42 22.7 3.16 21.0 2.56 17.0
Naxos 2.02 12.0 2.38 14.2 6.51 38.8 4.47 26.7 2.90 17.3
Kalamata 2.11 13.9 2.43 16.0 3.69 24.3 3.35 22.0 2.42 15.9
Rodos 2.04 10.7 2.22 11.6 4.50 23.5 3.58 18.7 2.79 14.6
Heraklio 2.12 12.1 2.51 14.3 5.37 30.6 3.63 20.7 2.73 15.6
All stations 2.36 15.4 2.52 16.4 4.40 28.8 3.75 24.1 2.79 17.9

Table 6. Empirical coefficients of Egs. (1) to (4) estimated for the calibration period (1985-1987)

Angstrém-Prescott Supit-van Kappel Campbell-Donatelli Hargreaves

(Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4)
Olp ba ag bg Cs T b The ay by
Alexandroupoli 0.19 0.52 0.05 0.46 -1.03 0.72 0.34 68.4 0.17 -1.92
Ioannina 0.25 0.49 0.06 0.38 -0.07 0.65 0.31 51.5 0.15 -0.82
Corfu 0.24 0.50 0.05 0.53 -0.31 0.67 0.35 18.1 0.19 -1.90
Skyros 0.26 0.50 0.04 0.56 1.10 0.62 0.72 6.3 0.24 0.41
Agrinio 0.20 0.52 0.05 0.50 -1.85 0.68 0.23 29.3 0.17 -3.04
Argostoli 0.24 0.50 0.06 0.53 -0.24 0.66 0.76 15.2 0.22 -1.22
Samos 0.25 0.46 0.05 0.48 1.16 0.64 0.90 29.2 0.19 0.43
Tripoli 0.22 0.51 0.07 0.41 0.12 0.64 0.29 19.1 0.15 -0.47
Naxos 0.28 0.48 0.03 0.61 0.80 0.62 0.52 4.1 0.20 3.95
Kalamata 0.23 0.49 0.06 0.46 -0.67 0.69 0.28 20.5 0.19 -2.62
Rodos 0.33 0.47 0.06 0.56 1.45 0.69 1.89 15.4 0.25 1.39
Heraklio 0.34 0.40 0.05 0.50 2.45 0.64 0.41 6.2 0.21 2.01
tude (o, = —-0.022Lat + 1.085, r* = 0.53, where r? The estimated empirical parameters of the PLR

is the coefficient of determination) and ranged from
0.19 in Alexandroupoli to 0.34 in Heraklio (Table 6).
The opposite trend was found for parameter by (ba =
0.016Lat — 0.103, 1% = 0.52). No latitudinal linear trend
was found for the empirical coefficients of SK, CD and
H models.

model for R; < ¢ were compared with those obtained
for Ry > c against latitude in Fig. 3. The average Ry at
each site (see Table 1) was assigned by the least
squares estimation algorithm as the most appropriate
for breakpoint c. The increased parameter by, (the
coefficient of R,) has greater influence on the estima-
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Fig. 3. Empirical coefficients of (a) extraterrestrial solar radia-
tion (R,), (b) diurnal temperature range (AT) and (c) intercepts
of Eq. (5) against latitude for Ry < c¢ (#) and for Ry > ¢ (O)

tion of solar radiation when Ry > ¢ than when Ry < c.
This is because both b,, and by, (the coefficient for AT
and the intercept, respectively; see Eq. 5) present
lower values under higher radiation. The coefficients
of R, decreased linearly with increasing latitude
(Fig. 3a), more than when Ry > ¢ (r2 = 0.62). The differ-
ence in the coefficient of AT on either side of the break-
point ¢ declined as latitude increased (Fig. 3b), but
with generally higher values when Ry < c¢. The inter-
cept values with R; > ¢ were much lower compared to

those under low radiation and both showed a weak
relationship with latitude (Fig. 3c).

Although the use of HC1 data appeared to be ade-
quate for the purpose of this work, the site specific
empirical coefficients of the 5 R; models in Table 6 and
Fig. 3 should be used with caution elsewhere, since
their estimates using the satellite-derived and actual
radiation may be different in other geographical areas.

3.2.4. Crop simulations

The relative differences (%), in the median (Q50),
lower and upper quartiles (Q25 and Q75) of wheat
yield and ET simulated with HC1 and estimated with
the 5 solar radiation models, are compared in Table 7.
In agreement with Trnka et al. (2007), even the
approaches that showed the lowest bias in R; esti-
mates, i.e. the AP and SK models, led to significant dis-
tortions of crop model output. Across all sites, each
model was able to produce solar radiation data that
resulted in either closely matching or largely different
yield estimates for all quartiles. The CD, H and PLR
approaches tended to underestimate the quartiles of
yield across most geographical locations. AP and SK,
on the other hand, overestimated the yield quartiles in
most locations, showing lower yield discrepancies.
When comparing the average of the absolute values for
each of the 3 quartiles at all sites, SK provided the best
results, and AP ranked second (Table 7). Rivington et
al. (2006) and Trnka et al. (2007), on the other hand,
found the AP model to be the most suitable source of
Ry for crop growth models in the UK and central
Europe, respectively. Among the temperature-based
models, PLR produced the smallest and H the largest
errors. The Mann-Whitney U-test identified 2 sites
(Corfu and Argostoli) with statistically significant devi-
ations in the distributions of simulated yield using Ry
estimated with SK, and 3 sites with equally signifi-
cantly deviations when PLR was employed.

All models resulted in lower estimates of relative
quartile errors for ET than for yield (Table 7). Further-
more, all methods tended to overpredict the quartiles
of ET for most sites; the H model had the largest devi-
ations. As for yield, when SK was compared with AP, it
produced slightly lower average discrepancies for the
50th and 75th percentiles. Among the temperature-
based models, CD marginally outperformed PLR in
terms of the upper and lower quartiles, while H was
the poorest performer. The superiority of CD over 2
other temperature-based models (not used in this
study) was reported by Bellocchi et al. (2003). These
authors recommended the use of a radiation model
that accounts for seasonality (such as CD) as a radia-
tion source for crop models.
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Table 7. Comparison of the relative differences (%) between solar radiation values derived from HelioClim-1 data and estimates
with Egs. (1) to (5); median (Q50) and lower and upper quartiles (Q25 and Q75) of simulated wheat yield and evapotranspiration.
*Significant differences (Mann-Whitney U-test, 5 % level). PLR: Piecewise linear regression

Angstrom-Prescott Supit-van Kappel Hargreaves Campbell-Donatelli PLR
(Eq. 1) (Eq. 2) (Eq. 4) (Eq. 3) (Eq. 5)

Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75
Wheat yield
Alexandroupoli -24 -04 -1.2 -1.0 03 14 -7.9 47 -4.7 -1.5 -08 04 -20 11 -1.5
loannina 28 35 32 4.0 3.0 27 6.6 7.5* 83 1.2 27 37 26 19 21
Corfu 7.8 4.6* 4.0 10.0 5.1* 3.7 9.8 4.2* 3.1 39 -03 -14 6.0 09 -0.7
Skyros -29 23 13 -4.0 25 -4.0 -44.9 -184 -21.5 -222 -09 -10.8 -87 -06 0.2
Agrinio 8.8 44* 29 05 -19 -09 23 -26 -0.7 52 16 04 21 -51 -73
Argostoli 25 3.3* 25 -4.6 -4.8*-5.0 02 -01 -1.8 -3.6 -3.5* -46 -10.8 -11.9*-13.3
Samos -6.7 -59 -43 52 30 28 154 11.9* 11.7 37 18 27 6.5 20 -07
Tripoli 3.7 43 47 -0.3 -0.7 -0.9 0.5 1.8 22 -2.1 -44* -6.7 1.6 -22 -1.2
Naxos -7.6 -5.7 26 -6.4-11.3 0.3 -51.3 —-47.4*-25.1 -354 -324 -6.7 -18.2 -148 22
Kalamata 10.9 9.2* 7.5 36 25 23 -0.1 -1.0 -0.8 -3.5 -4.5* -53 -33 -51* -6.3
Rodos 29 16 09 40 32 14 12.7 9.9* 83 6.0 44* 29 -14 -39* -55
Heraklio -93 26 0.0 -11.9 45 4.9 -30.2 -6.7 10.8 -120 13 -02 -87 18 -3.0
All stations 57 4.0 29 46 36 25 152 9.7 83 84 49 38 6.0 43 3.7
Evapotranspiration
Alexandroupoli 20 1.1 1.0 08 04 03 0.4 1.1 0.0 08 1.1 0.0 20 20 13
Ioannina 1.0 07 12 16 13 1.2 1.6 1.3 2.8 -1.0 -1.2 0.0 16 12 14
Corfu 46 54* 4.1 42 4.8* 33 6.4 6.1 4.4 39 48* 22 6.0 6.3* 4.1
Skyros -1.5 21 20 -44 -03 1.5 -0.7 21 4.1 -1.5 12 1.5 0.7 06 1.0
Agrinio 39 3.5* 32 06 06 0.6 0.6 1.2 1.2 32 3.6* 32 29 23 12
Argostoli 03 05 -03 -3.9 -3.8*-39 -0.3 -06 -0.6 -1.3 -19 -18 -3.6 -3.8* -3.
Samos 14 10 12 53 39* 37 11.3 10.4* 10.3 6.7 57 6.5 81 6.2* 59
Tripoli 3.0 34* 36 05 06 1.0 0.5 1.0 1.0 -40 -53* -44 -03 05 02
Naxos 0.0 -02 1.9 05 04 26 -24 -17 34 00 -08 23 -05 -08 30
Kalamata 51 59* 5.0 22 3.0 21 26 3.3 27 00 09 03 1.6 23* 1.8
Rodos 1.3 09 09 16 15 1.7 76 70" 7.5 41 4.0* 46 35 3.1* 38
Heraklio -04 05 1.5 04 16 31 -3.2 1.6 4.0 -1.4 08 1.5 07 1.0 1.8
All stations 20 21 22 22 19 21 3.1 3.1 3.5 23 26 24 26 25 25

4. CONCLUSIONS

Five methods for estimating daily global radiation
were tested in Greece to determine the most appropri-
ate source of daily solar radiation data when direct
measurements are not available. Three different sce-
narios were investigated. When sunshine duration
data was available at a site, the AP model is the best
choice according to the (1) regression-based statistics,
and (2) lowest relative RMSE (average values across
sites were 13.8 and 15.4% for the calibration and
independent periods, respectively). When the loca-
tions of interest do not have sunshine duration records,
but reliable cloud cover observations and daily
extreme temperature data, the SK model was as effi-
cient as AP in most assessment metrics. When only
daily T,.x and T, are measured on-site, the PLR
approach with a breakpoint (Eq. 5), which reflects the
value at which the behavior of daily Ry changes as a
function of the extraterrestrial solar radiation (R,) and
the diurnal temperature range (AT), was best. Com-
pared with the AP equation, the PLR approach in-
creased mean relative RMSE by <3.7%. The H equa-

tion was the least successful for estimating solar radia-
tion, confirming the conclusions of Choisnel et al.
(1992) regarding its limited applicability in Europe,
due to its low accuracy.

This study, in agreement with the concluding remarks
of Rivington et al. (2006), also demonstrated a sub-
stantial range in model performance across different
assessment metrics (i.e, regression-based versus dif-
ference-based metrics). For example, AP ranked first
according to RMSE values and regression-based statis-
tics, but had the highest mean MBE error. Therefore,
as Rivington et al. (2006) recommended: (1) practition-
ers need to be aware of the variation in the model's
performance based on different assessment statistics
and (2) applying multiple different metrics for assess-
ment of introduced uncertainty is suggested.

Even the models yielding the lowest errors in Ry esti-
mates significantly distorted the crop simulation out-
put. The SK model was the most suitable, and the AP
model ranked second, as substitutes for measured
solar radiation, with regard to reducing the amount of
uncertainty in estimates of yield (simulated with
CERES-Wheat), and of ET for the crop scenario con-
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sidered. Among the methods using temperature data
only, PLR produced the smallest and the H the largest
yield errors.

Extensive validation of the models tested in this
study is constrained by the limited availability of radi-
ation observations in Greece. This limitation implies
that the present results should be used with caution
elsewhere. The performance of PLR should be investi-
gated in other regions/regimes with greater availabil-
ity of actual Ry data. Furthermore, the presence of a
seasonal cycle in the observed (satellite) and modeled
radiation and its effect on variability complicates the
interpretation of the results. For comparability we
adopted the same methodology as other studies in
Europe (e.g. Supit & van Kappel 1998, Trnka et al.
2005), and we developed the models using the raw Ry
series rather their anomalies from the mean. Neverthe-
less, a priori there is no reason to assume that model
performance depends on the seasonal cycle.

Other approaches such as (1) generalized linear/
non-linear models (including the GAM approach pro-
posed by Podesta et al. 2004) and multiple regressions
linking proxies of cloudiness and atmospheric humid-
ity to daily Ry, and (2) the empirical formula developed
by Winslow et al. (2001), which requires also daily pre-
cipitation data in addition to extreme temperatures,
have also been investigated without showing any
improvement in solar radiation prediction. We present
only those models for estimating daily R, that are fairly
easy to implement and are not too complex or data
intensive. For this reason, we think that the differences
in model performance reported in this study, as in sim-
ilar studies (Trnka et al. 2005, 2007), cannot be attrib-
uted to the differences in their complexity, but rather to
the fact that some weather parameters are better pre-
dictors of daily Ry than others (e.g. sunshine duration
versus air temperature), since they are better proxies
for the amount of cloudiness and humidity and thus
atmospheric transmittance.
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