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1.  INTRODUCTION

One of the most important tasks of contemporary
urban planning is the creation of sustainable environ-
ments. This includes the design of outdoor spaces and
buildings that provide adequate ‘comfort’ to inhabi-
tants while optimizing energy, space, material and nat-
ural resources as well as meeting the aesthetic, cul-
tural, social, economic, ethical and religious norms of
the communities involved (Kennedy 2007). At its heart,
such design should ensure both the psychological and
physiological well being of inhabitants, of which ‘ther-
mal comfort’ is a key factor. In the ISO 7730 (1994)
standards (ISO: International Organization for Stan-
dardization), thermal comfort is defined as: ‘That con-
dition of mind which expresses satisfaction with the
thermal environment.’ Qualitatively, this definition is

one that can be easily agreed upon, but it is difficult
to quantify, given that each person is the expert on
his/her own thermal comfort. Thermal environments
are considered together with other factors such as air
and water quality, noise level and light in evaluating
the ‘environmental quality’.

The human body operates most efficiently at 37°C ±
1°C (body temperature; NIOSH 1986). A simple
change of 1°C outside this range can initiate symptoms
of hypothermia or heat stress. For efficient thermo-
regulation, the human body must operate at core tem-
peratures of between 35 and 40°C (Keim et al. 2002).
Once these limits are exceeded, serious health effects
ensue. According to the NIOSH (1986), heat exposure
can have both acute and chronic effects. Exposure to
short-term heat events can cause fainting, heat stroke,
heat rash, heat exhaustion, heat cramps, and death.
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Repeated exposure to high heat can result in chronic
problems such as reduced heat tolerance and kidney
stones (Keim et al. 2002). If employees perceive the
environmental quality of the workplace as unsatisfac-
tory, their working performance is known to adversely
affect productivity and efficiency, due to slower work
rates, increased numbers of errors and absenteeism.
Effects of extremes of temperature translate to every-
day life.

Usage levels of urban space are more likely to
increase if the outdoor environment is thermally com-
fortable (Nikoloupoulou & Steemers 2003, Hart et al.
2006). It is thought that thermal effects may be a limit-
ing factor to urban growth. An example would be the
2 cities examined in the present study—Phoenix, Ari-
zona and Colombo, Sri Lanka—where rising tempera-
tures have been of major concern. The studies being
conducted at Arizona State University (Jonathan Fink,
presented at the Sedona Conference on Stable Bound-
ary Layer, November 14 to 16, 2006) shows that thermal
comfort—as opposed to scarce water resources—may
be the limiting factor to growth of metropolitan Phoenix
in the future. Colombo has already been subject to
some outmigration toward cooler areas such as Kandy,
due to the increasing trend of thermal discomfort.

The perception of thermal comfort is affected by air
temperature, air movement (speed), humidity, cloth-
ing, activity level (i.e. the amount of physical work
done), mean radiant temperature (MRT, a measure of
thermal comfort) and many other factors. The MRT of
an environment is defined as the uniform surface tem-
perature of an imaginary black enclosure that would
result in the same heat loss by radiation from the per-
son as the actual non-uniform environment. Note that
a person does not experience room temperature,
rather, one experiences the heat lost from the body, the
latter being determined by 4 key parameters: air tem-
perature, humidity, MRT and air speed, all of which
are, to an extent, controllable. There is a miscon-
ception that what matters most for thermal comfort is
the air temperature, but the American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) has clearly identified MRT as equally
important in determining levels of comfort. The two
measures are somewhat interrelated; for example, a
1°F (0.55°C) increase in air temperature can be com-
pensated by a decrease of 1.39°F (0.77°C) in MRT and
vice versa (Koch 1962). Nevertheless, although the role
that MRT plays in thermal comfort has been under-
stood for several decades, it has not yet been inte-
grated into building control systems (Gan 2001).

In the present study, we examined air temperature
and MRT in urban cores, in particular how spatial
planning (in terms of density of development) and
material adaptations may improve the thermal comfort

of Colombo and Phoenix, the climatic conditions of
which are hot-humid and hot-arid, respectively. The
major anthropogenically-induced urban temperature
anomalies are manifested in the Urban Heat Island
(UHI) effect, a microclimatic anomaly characterized by
warmer nighttime temperatures in the core of a city
compared to the surrounding rural environment. 

Although the UHI occurs in cities worldwide, it poses
a particular problem to the quality of life in warmer cli-
mates (Akbari 1995, Rosenfeld et al. 1998), since urban
warming leads to unpleasant outdoor conditions and
intensifies consumption of energy (at times of peak
energy demand) for the cooling of buildings (Ahmed
2003, Spagnolo & de Dear 2003, Johansson 2006,
Rosenlund et al. 2006). Improved urban designs that
maximise thermal comfort can raise the quality of life
in general, as well as helping urban dwellers cope
with episodes of hot weather (Kalkstein & Valimont
1986) and allowing year-long outdoor activities (Cor-
rea 1989). Local thermal climate also impacts on mor-
tality and morbidity, invasive species problems and
epidemic outbreaks. In addition, thermally comfort-
able outdoor spaces have a positive influence on indoor
climate (Rosenlund et al. 2006).

The results of the present study are intended to
help planners select UHI mitigation options in warm-
climate cities. An existing urban micrometeorological
model (ENVI-met) was used for the calculations, which
were evaluated against previously collected data.

2.  BACKGROUND

2.1.  Causes of UHI effect

Since the early work of Oke (1982), there is mount-
ing evidence that urban geometry and thermal proper-
ties of surface material in urban areas (i.e. land use)
are the major causes of UHIs (Oke 1987, Arnfield
1990). Urban geometry is measured in several different
ways: (1) the building height:street width (H:W) ratio,
measuring the street canyon (a 3-dimensional space
bounded by the planes of street buildings that abut it);
(2) the sky view factor (SVF), which signifies the frac-
tion of sky dome visible from a given outdoor point;
and (3) a ‘compactness index’ (Unger et al. 2006),
which is defined as the ratio of building surface area
(excluding the plan area) to the surface area of a cube
which has the same volume as the building. Todhunter
(1990) argued that for micro-scale phenomena urban
geometry is more important, but at the meso-scale
both geometry and surface thermal characteristics play
an equal role.

In addition to urban geometry and surface thermal
properties, the following factors also contribute to
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urban microclimate modifications: (1) anthropogenic
heat (heat waste from combustion and metabolism);
(2) urban ‘greenhouse’ effect (increased incoming
long-wave radiation from polluted urban atmosphere);
(3) evapotranspiration loss (reduction of green areas in
cities lead to more sensible than latent heat transfer);
and (4) wind shelter, i.e. reduced ability of wind to
carry heat either as sensible or latent turbulent heat
flux (Oke 1988, 1991, Todhunter 1990, Saitoh & Hoshi
1993). Oke (1988) argued that non-geometrical effects
such as heat capacity and anthropogenic heat release
may be linked to urban geometries, since high density
buildings are, by definition, associated with extensive
land use (more artificial surfaces) and intense human
activity (thus, higher amounts of waste heat). 

On the temporal scale, Tomita et al. (2006) showed
that the effect of urban geometry (i.e. SVF) and ther-
mal properties (such as thermal conductivity) affect
the UHI at different times of the day; the effect of
thermal properties is apparent in the early evening
while urban geometry exerts its influence both during
the daylight and evening hours. The link between
urban geometry and daytime air temperature in warm
climates is well documented. In the hot humid sum-
mer of Dhaka, Bangladesh, Ahmed (1994) found that
maximum air temperature decreased with increased
H:W ratio. Similarly, in the hot, dry climate of Fez,
Morocco, Johansson (2006) found that a very deep
street canyon had a considerably lower air tempera-
ture than a shallow street canyon. In hot, humid
Colombo, Sri Lanka, Emmanuel & Johansson (2006)
found intra-urban differences in maximum daily
temperatures of up to 7 K between sites of different
urban geometries.

2.2.  UHI and human well-being

The human dimension of UHI is increasingly being
documented. Deosthali (1999), in their study in Pune,
India, found increasing levels of human discomfort,
expressed in terms of the temperature-humidity index
(THI). Studies in Colombo, Sri Lanka (Emmanuel 2005,
Johansson & Emmanuel 2006) show the deteriorating
outdoor conditions in terms of the relative strain index
(Kyle 1992) and physiologically equivalent tempera-
ture, PET (Mayer & Höppe 1987, also see Höppe 1999,
Matzarakis et al. 1999). Here, the relative strain index
is the ratio of the amount of sweat evaporation needed
for comfort to the amount of evaporation possible given
ambient atmospheric conditions, and PET is a thermal
index derived from the human energy balance for the
evaluation of the thermal component of different cli-
mates, defined as the air temperature at which, in a
typical indoor setting (without wind and solar radia-

tion), the heat budget of the human body is balanced
with the same core and skin temperature as under
the complex outdoor conditions to be assessed. Similar
findings have been reported from Dhaka, Bangladesh
(Ahmed, 2003); Cambridge, England (Nikolopoulou &
Steemers 2003) and Sydney, Australia (Spagnolo &
de Dear 2003).

Urban dwellers have also changed their everyday
behaviour in recent times, especially in medium and
high-income groups, spending more time indoors than
outdoors (Ahmed 2003). In the face of increasing dis-
comfort experienced when outdoors, one might expect
more human activities to occur indoors, necessitating
increased use of air-conditioning which, in turn,
exacerbates outdoor temperatures as the excess heat
is emitted to the urban air (de Schiller & Evans 1998,
Baker et al. 2002). Another consequence is the in-
creased use of water due to urbanization (Guharta-
kurta et al. 2005). This is especially problematic in hot,
dry areas where water resources are scarce. Further-
more, UHIs add to the urban mortality/morbidity con-
cerns (Kalkstein & Davis 1989, Greene & Kalkstein
1996). While heat waves in general are major health
hazards, urban areas exacerbate these problems, even
in temperate cities, during hot summers.

2.3.  Outdoor thermal comfort

Attempts toward quantifying urban thermal comfort
are relatively new, with early efforts traced only to the
1970s; for a review, see Jendritzky & Nübler (1981).
Although these attempts have helped modify existing
indoor climate models in the context of outdoor envi-
ronments, some new indices specifically suited for out-
door applications have also been developed recently,
the most prominent among them being the PET. 

ASHRAE’s Standard 55 (ASHRAE 1995) specifies
human comfort in terms of 6 variables: air temperature,
air velocity, relative humidity, MRT, clothing insulation
and metabolic rate (i.e. human activity). In an indoor
situation it may be reasonable to assume the air
temperature to be equal to MRT, but this is an over-
simplification in the context of urban thermal comfort
quantification due to a number of reasons ranging from
psychological to physiological factors (Höppe 2002).
Outdoors, large differences exist between MRTs,
particularly in areas with direct solar radiation; for
example, adjacent areas exposed to direct sunlight and
shade have different MRTs although the air tempera-
ture is essentially the same. Thus, MRT assumes
greater importance in estimating outdoor thermal
comfort.

The MRT is often calculated as the weighted aver-
age temperature of surrounding surfaces. It is more
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complicated to calculate the MRT in an outdoor urban
environment than indoor due to factors such as the
exposure to solar radiation, the varying shapes and
positions of buildings and the presence of objects such
as trees, etc. In the present paper, this task is made
easy by the simulation software which is able to gener-
ate MRT values for each cell at different heights above
ground.

3.  METHODOLOGY

The aim of the present study was to simulate MRT
and air temperatures arising from hypothetical or
planned changes to urban form (density) and thermal
properties of human-made surfaces within heavily
built up street canyons in Pettah, Colombo (6° 54’ N,
79° 54’ E, 7.3 m above sea level, a.s.l.) and the cen-
tral business district of Phoenix (33° 27’ N, 112° 04’ W,
338 m a.s.l.). The results were intended to help us
ascertain appropriate UHI mitigation options in the
context of warm climates.

Data from 2 reference weather stations were used to
initiate the micro-scale numerical model ENVI-met, as
discussed below. For Colombo, Sri Lanka, the initial
data came from the Colombo International Airport,
Katunayake (7°10’ N, 79° 53’ E, 8.5 m a.s.l.) while
for Phoenix, data from the Gila Bend Army Base
(33° 18’ N, 112° 36’ W, 237 m a.s.l.) was used. Model
verification used a set of measured data from Colombo
proper (Emmanuel & Johansson 2006) and measured
data from the Arizona Department of Environmental
Quality (ADEQ) monitoring station (1.2 km WSW of
the Phoenix study area; see Fig. 2) (www.azdeq.gov/
environ/air/monitoring/monitor.html).

In the field of UHI mitigation, numerical models have
the obvious advantage over field measurements be-
cause of their controllability as well as time and
resource frugality. The non-linearity of the UHI
problem lends itself to numerical simulations and is
therefore increasingly popular in urban climatology
(Arnfield 2003).

Urban microclimate models vary widely with regard
to their physical basis and spatial/temporal resolution.
Ali-Toudert & Mayer (2006) provide a detailed critique
of contemporary models at the micro-scale with fine
temporal resolutions. They inferred that ENVI-met
(Bruse 1999) is perhaps the only micro-scale computa-
tional fluid dynamic model that is capable of analyzing
the thermal comfort regime within the street canyon
at fine resolutions (down to 0.5 × 0.5 m). We therefore
selected ENVI-met as the numerical model to analyze
the effect of UHI mitigation options in the present
study (Bruse 2004; a freeware version is available from
www.envi-met.com).

ENVI-met is a 3-dimensional non-hydrostatic model
for the simulation of surface–plant–air interactions,
especially within the urban canopy layer. It is
designed for the micro-scale with a typical horizontal
resolution from 0.5 to 10 m and a typical time frame
of 24 to 48 h with a time step of 10 s. This resolution
allows the investigation of small-scale interactions
between individual buildings, surfaces and plants
(Bruse 2004).

Input meteorological data required to initiate ENVI-
met simulations are:
• Wind speed and direction at 10 m above ground
• Roughness length (Zo)
• Initial temperature of the atmosphere
• Specific humidity at 2500 m
• Relative humidity at 2 m

The model calculation includes:
• Short- and long-wave radiation fluxes with respect to

shading, reflection and re-radiation from building
systems and the vegetation

• Transpiration, evaporation and sensible heat flux
from the vegetation into the air, including full sim-
ulation of all plant physical parameters (e.g. photo-
synthesis rate)

• Surface and wall temperatures for each grid point
and wall

• Water and heat exchange inside the soil system
• Calculation of bio-meteorological parameters such as

MRT or predicted mean vote (PMV) (Fanger 1970)
• Dispersion of inert gases and particles including

sedimentation of particles on leaves and surfaces.
A shortcoming of ENVI-met is that buildings,

which are modeled as blocks where width and
length are multiples of grid cells, have no thermal
mass and have constant indoor temperature. More-
over, albedo and thermal transmission (U-value) for
walls and roofs are the same for all buildings. Details
of the calculation procedures are described in Bruse
(1999, 2004) and Ali-Toudert & Mayer (2006). Topo-
graphical and urban morphological information for
our case studies were obtained from the Department
of Surveys, Sri Lanka and ‘Google Earth’ (http://
earth.google.com/). Also, building data for an area
16.7 km2 for Phoenix is available from Burian et al.
(2002).

The building morphology for the Pettah, Colombo
and Phoenix downtown areas are shown in Figs. 1 & 2
respectively. The 2 areas shown are approximately
0.2 × 0.15 and 0.15 × 0.15 km, respectively. Both sites
are heavily built up and the Colombo site is totally
devoid of greenery (minimal green cover is present in
the Phoenix case).

In order to test the efficacy of commonly suggested
UHI mitigation options, the present study simulated the
following scenarios for each site:
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• ‘Base’—existing situation
• ‘High albedo’—all artificial surfaces to be painted in

white
• ‘High density’—all buildings in the model area to be as

tall as the urban development regulations will permit
• ‘Green’—introduction of a row of street trees in each

street.
The parameters of each of these scenarios are

shown in Table 1. The variables are defined as: Uw,

thermal transmittance (or U-value) of walls (assumed
to be made of brick and rendered with mortar); Ur,
thermal transmittance of roofs (assumed to be made of
reinforced cement concrete and rendered, both sides);
and αw, αr and αs, albedo (ratio of reflected to incident
radiation) of walls, roofs and streets, respectively. The
high albedo scenario is assumed to be ‘all white’
(i.e. walls, roofs and street surfaces are white/light
colored).
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Fig. 1. Case study—Pettah, Col-
ombo. (a) Building footprint and
(b) ENVI-met representation.
Grid cells in ENVI-met panel are 5
× 5 m; numbers in gridcells: build-
ing height (m). Grey/black lines:
change in building height be-
tween adjacent buildings; NS and
EW: north–south and east–west 

running streets, respectively

Table 1. Parameters of UHI mitigation scenarios. See ‘Methodology’ for outline descriptions of the different scenarios

Scenario Parameters
Urban geometry Surface thermal properties Green cover

Pettah, Colombo, Sri Lanka
Base Uneven, to match existing geometry Uw = 1.94 Wm–2 K None

Ur = 6.00 Wm–2 K
αw = αr = αs = 0.60

Medium-density All buildings 18 m (6 stories) high Same as base scenario None
High-density All buildings 24 m (8 stories) high Same as base scenario None
Green Same as base scenario Same as base scenario 10 m (canopy) street trees at 20 m intervals

(Stem height = 10 m)
High albedo Same as base scenario Uw = 0.57 Wm–2 K None

Ur = 2.00 Wm–2 K
αw = αr = αs = 0.90

Downtown Phoenix, AZ, USA
Base Uneven, to match existing geometry Uw = 1.94 Wm–2 K Few trees to match existing green cover

Ur = 6.00 Wm–2 K
αw = αr = αs = 0.60

High-density All buildings 36 m high Same as base scenario Same as base scenario
Green Same as base scenario Same as base scenario 10 m (canopy) street trees at 20 m intervals

(Stem height = 10 m)
High albedo Same as base scenario Uw = 0.57 Wm–2 K Same as base scenario

U r = 2.00 Wm–2 K
αw = αr = αs = 0.90
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4.  RESULTS AND DISCUSSION

4.1.  Numerical modeling: applicability

Fig. 3 compares the ENVI-met simulations to actual
measured data for Pettah, Colombo (Emmanuel &
Johansson 2006) and downtown Phoenix (ADEQ). For
the Colombo case, the model tends to over-predict the
air temperature at night (average absolute difference
during 19:00 to 05:00 h = 0.27°C; root mean square
error RMSE = 1.06°C) and under-predicts during
the day (average absolute difference during 07:00 to
17:00 h = 1.83°C; RMSE = 2.73°C). In the Phoenix case,
the corresponding values are night = 1.99°C (RMSE =
2.8°C) and day = 2.00°C (RMSE = 2.61°C). Excessive
nighttime temperature predictions of ENVI-met were
also pointed out in previous works (e.g. Ali-Toudert &
Mayer 2006). One reason for the error is the absence of
regional exchange processes. This could be significant
in the Colombo case where the Indian Ocean lies only
0.5 km northwest of the modeled area shown on Fig. 1.
Another reason could be the absence of thermal mass
of buildings in the model. Furthermore, it is not pos-
sible to change the thermal properties of individual
buildings (only an average value for the entire area

could be given as a model input). Nevertheless, the
RMSEs are not unacceptably large in comparison to
the values usually recorded in the literature (e.g. Lee &
Fernando 2004), particularly considering the simplified
nature of the model. It is to be noted that the error
patterns are similar in both cases.

Since our purpose here is to compare the relative
effects of individual UHI mitigation strategies for each
city separately, it is felt that the ENVI-met results are
useful even with the above-cited limitations.

4.2.  Comparison of mitigation strategies for Colombo

Fig. 1 shows the existing building density in the
heavily built-up commercial sector in the historic com-
mercial area (Pettah) of Colombo, Sri Lanka. This area
is typical of the high population density neighborhoods
of Colombo. Colombo itself is typical of many warm,
humid major cities in the developing world where high
population density, scarce land availability, and the
economic importance of capital cities have contributed
to lop-sided urbanization centered on a few cities,
resulting in significant UHI problems. The built fabric
is characterized by wall-to-wall medium rise buildings
(3 to 4 stories) on narrow streets. Surface cover is
dominated by paved/asphalted streets with few trees.

Fig. 4 shows air temperature patterns at mid-canyon
(1.2 m above street surface) for 2 streets in Colombo:
(a) a north–south running street (1st Cross Street) and
(b) an east–west running street (Prince Street), for a
clear day in April 2003. The following general observa-
tions could be made:
• The largest daytime air temperature decrease occurs

with higher albedo 
• Density manipulation strategies lead to the second

lowest daytime air temperatures
• No discernible improvement is seen with the green

scenario.

4.3.  Comparison of mitigation strategies for 
downtown Phoenix

As shown in Fig. 2, the land cover in downtown
Phoenix is dominated by paved surfaces and tall (‘sky
scraper’) buildings. As expected from a typical urban
setting, the vegetation cover is sparse.

A comparison of air temperature patterns shown in
Fig. 5 (which gives data for a north–south running
street) reveals the following:
• None of the mitigation options produce significant air

temperature differences during the day
• The ‘high albedo’ scenario produces somewhat lower

daytime but higher nighttime air temperatures

247

Measured
Predicted

35

33

31

29

27

25

36

34

32

30

28

26

24

22

20
01 03 05 07 09 11 13 15 17 19 21 23

Downtown Phoenix

Local time (h)

Pettah, Colombo

A
ir 

te
m

p
er

at
ur

e 
(°

C
)

Fig. 3. Comparison of ENVI-met simulations with measured 
data for Pettah, Colombo, and downtown Phoenix



Clim Res 34: 241–251, 2007

• The lowest overall temperatures (day averaged)
occur with high density.
While the differences in air temperature appear

small, greater variation was seen in terms of MRT.
Table 2 lists the range of MRT and air temperatures
1.2 m above the street, obtained from spatial distribu-
tions calculated by ENVI-met. An example of MRT
patterns in daytime and nighttime for the Colombo
case is shown in Fig. 6. According to Table 2, the low-
est spread of MRT for Pettah, Colombo, occured in the
‘high density’ scenario, and the daytime differences
are striking. The MRT variations in the ‘high density’
scenario were 36 to 42°C while the base scenario had a
range of 45 to 66°C (north–south street). Variations in
nighttime MRT were small. Similar patterns are seen
in the Phoenix case as well (Table 2).

It appears that urban density (taller buildings) has
a positive mitigating effect in the downtown core of
both cities, although we found it had a greater effect
on MRT than air temperatures. Since MRT is critical
to outdoor thermal comfort, it is likely that high den-
sity development will lead to lower thermal dis-
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Table 2. Mean radiant temperature (MRT, °C) and air temperature
(°C) variations within street canyons during the day (14:00 h) and
night (21:00 h) in Pettah, Colombo and downtown Phoenix, Arizona.
Data are for 1.2 m above street surface, except for Phoenix air
temperature data (building rooftop). Scenarios—B: base; HA:
high albedo; G: green; MD: medium density; HD: high density. (–) 

Simulation not run

B HA G MD HD

MRT
Colombo
Prince St. (E–W)
Day 48–66 63–69 46–62 40–58 36–42
Night 22–24 22–23 22–24 22–23 21–22

1st Cross St. (N–S)
Day 45–66 45–69 46–62 40–46 36–42
Night 22–24 21–23 22–24 22–23 21–22

Phoenix
Adams St. (E–W)
Day 51–83 57–87 51–83 – 51–79
Night 29–33 30–35 29–33 – 29–34

N Central Avenue (N–S)
Day 51–79 57–92 51–83 – 51–83
Night 28–33 30–34 28–34 – 29–34

Air temperature
Colombo
Prince St. (E–W)
Day 31.6–31.8 30.4–30.5 31.5–31.7 31.3–31.4 31.3–31.4
Night 28.8–29.0 28.2–28.4 28.5–29.0 28.7–28.9 29.2–29.3

1st Cross St. (N–S)
Day 31.5–31.7 30.3–30.4 31.5–31.6 31.3–31.5 31.3–31.4
Night 28.8–29.0 28.3–28.4 28.5–28.9 28.7–28.9 29.2–29.3

Phoenix
Adams St. (E–W)
Day 31.0–31.2 30.5–30.7 31.0–31.2 – 30.7–30.9
Night 28.0–28.2 28.1–28.3 27.9–28.1 – 27.9–28.1

N Central Avenue (N–S)
Day 31.0–31.2 30.5–30.7 31.0–31.2 – 30.7–30.9
Night 28.0–28.2 28.1–28.3 27.9–28.1 – 27.9–28.1
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comfort in the heavily built sections of these cities.
This is especially true in the daytime hours where
many human activities take place in urban street
canyons.

The increase of albedo is a suitable mitigation option
for daytime UHI, which is measured by the air temper-
ature (Fig. 3). However, it must be kept in mind that
the ‘high albedo’ scenario used in the present study
assumes a light color for all urban surfaces (including
streets). This is highly unlikely. Furthermore, the un-
expected nighttime warming in the Phoenix case
could be a problem, for which a likely explanation is
the low building density even in the city core.
Although there are tower-like buildings in the down-
town core, the building density remains low (i.e. high
SVF). It may also be a limitation of ENVI-met where
buildings are not assigned thermal mass, and variation
in thermal properties from one building to another is
not possible. 

The purpose of mitigating the UHI phenomenon is to
enhance urban quality of life by promoting comfort-
able outdoor urban space. Since a significant portion of
outdoor urban life happens during the daytime, urban
density manipulation might prove a feasible UHI miti-
gation option. However, higher density development
may have adverse effects on air movement (e.g. buffet-
ing, turbulence) and pollution dispersal as well as
on human health. These possible effects are not
addressed in the present study.

Urban activities occur in clusters or patterns. An
activity like shopping may involve transport to and
from the shopping district, walking about in the
shopping district, resting, eating, etc. A successful
enhancement of urban quality of life will necessitate

the development of strategies for UHI mitigation that
address the entirety of such activity patterns. A combi-
nation of urban design options (high-density buildings
or shading strategies to reduce outdoor MRT, plus
enhancement of urban wind movement and pollution
dispersal) will be needed to achieve this overarching
goal.

5.  CONCLUSIONS

One of the design implications of the present study is
that density enhancement is a viable UHI mitigation
option for cities in warm climates. In the high density
settings of Colombo, it appears that thermal property
manipulation is a suitable alternative, considering the
limited wind movement and pollution dispersion limi-
tations of density development. Here, high albedo
leads to significantly lower daytime temperatures,
which may reduce photochemical formation of certain
pollutants, although this option may not help in terms
of thermal comfort. In the case of Phoenix, the daytime
reduction of temperature for high albedo and high
density scenarios is much lower compared to the case
of Colombo, but the improvements in MRT for thermal
comfort are marginally better for the high density
scenario. 

A further implication is that some UHI mitigation
options are more likely to show improvements in MRT
than air temperatures (see, for example, Ali-Toudert et
al. 2005). From an urban design point of view, mitiga-
tion options ought to focus on thermal comfort
enhancement (including the MRT) rather than merely
attempting to control air temperatures.
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