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ABSTRACT: This study provides a method with which to measure the risk of climate variability to
agriculture among geographic regions, and analyses the potential risk to crop yields in Spain. Our
methodology comprised 3 steps: (1) models were developed for each region to estimate the risk of cli-
mate variability, and functional forms were derived from 60 yr of empirical data on wheat; (2) Monte
Carlo models were used to analyse in more detail the probabilistic properties of the agricultural
yields; (3) a risk factor index was applied to compare among 5 sites. An advantage of this method-
ological approach is that it links agricultural areas with representative meteorological stations and
uses a Monte Carlo approach to define large samples of crop yields that more accurately reflect the
statistical properties needed for risk analysis. The methods were robust enough to develop climate
and management scenario analysis, which was applied to 5 case studies that exemplify other
Mediterranean areas in which climate is a main source of agricultural risk and exerts pressure on
limited water supplies, for which there are competing demands. The results show that risk character-
ization is complex, owing to the multiple attributes of risk beyond climate variability, and that our

method of risk analysis facilitates comparisons among locations.
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1. INTRODUCTION

Over the last few decades, an increasing body of
observations has emphasized the importance of man-
aging climate risk to the optimization of crop choice
and farm income, especially in marginal areas (Jones
et al. 2000, Adams et al. 2004, Kumar et al. 2004, Bot-
terill & Wilhite 2005). Climate risks to agriculture vary
according to location, type of enterprise, and the effec-
tiveness of risk management (Iglesias & Moneo
2005). Crop production is sensitive not only to annual
changes but also to the seasonal distribution of precip-
itation (Mjelde et al. 1998, Ogallo et al. 2000).

Even if farmers’ behaviour is difficult to change (e.g.
owing to imposed policies or to a limitation of available
choices), an improved knowledge of crop-climate
interactions is certain to enhance farm performance
(Cane et al. 1994, Hammer et al. 1996, Hansen & Indeje
2004). Most assessments of regional climate risk pro-
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vide only probabilistic information on climate (Hansen
& Indeje 2004). Risk analysis has evolved from the
evaluation of probabilities of climate hazard alone to
more integrated approaches that include probabilistic
information on the system at risk, thus boosting the
relevance of results to risk management (Botterill &
Wilhite 2005, Wilhite 2005). This latter approach is
challenging owing to limitations in the availability and
validation of non-climatic data.

A major challenge facing all agriculture-climate
evaluations is the inclusion of both biophysical and
socioeconomic aspects in the methodology. Numerous
studies have wused agricultural simulation models
to capture these complex interactions. Approaches
which link crop models with global climate and sea-
sonal forecast models have been evaluated in Africa
(Hansen & Indeje 2004) and Australia (Hansen et al.
2004). Multiple regression models have been devel-
oped to represent process-based yield responses to
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these environmental and management variables: yield
functions have been used to evaluate the sensitivity
and adaptation to climate e.g. in Spain (Iglesias et al.
2000), California (Lobell et al. 2005) and globally
(Parry et al. 2004), and could be used to estimate the
risk associated with climate variability (as in Ferreyra
et al. 2001), with potential applications in crop in-
surance (Luo et al. 1994, Hertzler 2005).

There are many definitions of risk. Broadly speak-
ing, risk may be described as the capacity of a system
to suffer losses when exposed to an external stressor
(Wisner et al. 2004). The risk-hazards framework
applied in the United Nations International Strategy
for Disaster Reduction (UNISDR) has provided scien-
tists in the natural hazards community with a tested
methodology for evaluation of risk, that is ‘the proba-
bility of harmful consequences, or expected losses
resulting from interactions between natural or human
induced hazards and vulnerable conditions' (UNISDR
20023).

Regardless of the nuance of the analysis, risk is a rel-
ative measure —critical levels of risk must be defined
by the analyst. Every system is at risk, albeit that risk
levels differ in their causal structure, their evolution,
and the severity of their likely consequences. In this
study we focused on climate risk brought about by
drought, because drought has severe consequences in
Mediterranean systems, and the probability of its
occurrence dominates decision making (as do many
significant problems, especially those with non-linear
payoff functions) (Patt 1999).

Risk analysis bridges the gap between impact
assessment and policy formulation by directing policy
attention to the consequences (i.e. crop yield) rather
than to its agent (i.e. climate) (Rossi et al. 2003,
Botterill & Wilhite 2005, Garrote et al. 2007). This
approach underlines the causes of differential risk
among regions, such as small farm size, lack of credit
for diversification, farming on marginal lands, limited
knowledge, lack of local industry for off-farm supple-
mentary income, or inadequate policies.

Risk analysis is used loosely in many different con-
texts, from medicine to analysis of poverty and from
economic and social development to engineering
(Bonaccorso et al. 2003; see footnote 1). To charac-
terise risk in social systems, such as agriculture, it
is important to focus on the consequences of a per-
turbation (e.g. decreased crop yield), rather than its
agent (e.g. rainfall). In the context of agricultural
management, the concept of risk is often derived
from the climate sciences and the insurance litera-
ture. These approaches focus on the risk created

1See also www.unisdr.org/eng/library/lib-terminology-eng%
20home.htm

from an external hazard and aim to identify potential
damage; in contrast, the social sciences focus on the
internal dimension of the potential damage (Wisner
et al. 2004). In agriculture, the attributes of the inter-
nal dimension depend on the geographic area and
the social conditions. Some studies have incorporated
these concepts to analyze agricultural risk (Mjelde et
al. 1997, Messina et al. 1999, Ferreyra et al. 2001).
Nevertheless, there are no clear methodological ap-
proaches that include multi-stress relationships among
different geographic regions.

This study provides a methodology for measuring
agricultural risk to climate among geographic regions,
integrating both empirical and probabilistic informa-
tion, and analyses the effect of different risk scenarios
on potential yields. The analysis focuses on wheat
production: this cereal crop is a reference crop for
agricultural policy, has a wide array of insurance
products, and its yield level is an indicator of agricul-
tural technology. The approach is based on the (1)
development of empirical models for each region;
(2) diagnostic characterization of risk based on Monte
Carlo simulations; and (3) development of a risk factor
index in order to compare climate response among
different areas. By adopting this approach we can
answer 3 critical questions that relate to explicit con-
cerns of the agriculturalist: Where are the vulnerable
farming systems located? Are potential region-specific
measures necessary? Are worst-case scenarios an ade-
quate indicator of risk? By enabling an understanding
of these critical questions under the current climate
regime, the analysis in this study provides insights into
the range of risks of climate change.

2. DATA AND METHODS
2.1. Case studies and data sources

The methodology developed in this study was
applied to selected case studies in Spain. Climatic
and agricultural conditions are very diverse, owing to
the varied topography, climate, production systems,
technology, and social conditions (see Fig. 1 &
Table 1). Crop production in Spain varies by up to
20% percent from year to year, largely as a result of
highly variable weather conditions. Only 40% of the
land area of Spain is suitable for cultivation (Iglesias
et al. 2000). The climate in Spain is Mediterranean,
with hot, dry summers and cold, wet winters. In
general, precipitation is concentrated between Octo-
ber and April (southern regions) or May (northern
regions). Average seasonal temperature decreases
with increasing altitude and latitude. The weather is
characterised by large interannual variability. Sum-
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mer precipitation (June, July, and August) is well
below 100 mm in all regions except the northwest,
necessitating supplementary irrigation during part of
the crop cycle in order to obtain adequate production
levels. Coefficients of variation (CV) for precipitation
vary from 21 to 55%, implying a high risk of rainfed
crop failures and the need for supplementary irriga-
tion in order to meet full crop water requirements
and achieve potential yield.

Five sites were selected to represent the major rain-
fed and irrigated agricultural regions of Spain (Fig. 1).
Winter cereals, especially wheat, are grown in all
areas; barley is grown in marginal areas. The case
studies exemplify other Mediterranean regions where
climate is a main source of agricultural risk and exerts
pressure on limited water supplies (Iglesias et al.
2007a).
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Fig. 1. Location of study sites in Spain

Monthly time series of average, maximum and mini-
mum temperature, total precipitation, and number
of days per month with temperature below 0°C for
the period 1940 to 2000 were provided by the
Spanish National Meteorological Institute (INM, see
www.inm.es) for the stations listed in Table 1 and
Fig. 1. Annual crop production data for the 1940 to
2000 period at the provincial level (a province is an
administrative unit in Spain) for the selected sites were
obtained from the Statistical Division of the Spanish
Ministry of Agriculture (MAPA 2004).

2.2. Risk analysis framework

Fig. 2 summarizes the methodology. (1) Models
were developed for each region in order to estimate
the risk of climate variability: here we developed
multiple linear regression models with climatic data
as explanatory variables and validated the models for
the case studies. (2) Monte Carlo models were used
to analyse in more detail the probabilistic properties
of the agricultural yields. (3) A risk factor index was
applied in order to compare the risk of attaining low
yields owing to climate among 5 sites. An advantage
of this methodological approach is that it links agri-
cultural areas with representative meteorological
stations and uses a Monte Carlo approach to define
large samples of crop yields that more accurately
reflect the statistical properties needed for risk analy-
sis. The methods are robust enough to allow further
development of climate and management scenario
analysis.

Table 1. Environmental and agricultural characteristics of sites included in this study

Site Lat. Long. Altitude T,, Prec. Environmental characteristics Agricultural system
CN) (W) (m) (°C) (mm)
Northern Plateau
Burgos 42.37 3.63 894 10.2 630 High altitude, late spring Traditional low-input cereal
Valladolid 41.65 4.77 734 12,1 373 frost, large seasonal differ- production with limitations in
ences in temperature soils and terrain
La Rioja
Logronio 4245 2.33 353 13.4 383 Similar to Northern Plateau Grapevine area with high
sites, but with a longer technology; soils and climate
frost-free period adequate for cereal production
Guadalquivir Valley
Coérdoba 37.85 4.83 92 179 674 Mediterranean climate, long Highly productive cereals and
frost-free season and adequate  olive trees
winter precipitation for dryland
production, but with severe
recurrent drought periods
Southeast coast
Murcia 38.00 1.10 0 17.6 305 Coastal area with warm Cereal production only in
winters and extremely limited marginal areas; intensive irrigated
spring precipitation horticulture and citrus fruits
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dynamics of the data.

ﬂ The sites selected exhibited differ-
ences in seasonal temperature as well as
in the amount and distribution of pre-
cipitation (Fig. 1). To take into consider-
ation possible accumulative effects, we
calculated the 3 mo period of aggrega-
tion of all the climatic variables.

Real data with limited
probabilistic information

Simulated random series,
quantification of probability

Diagnostic risk level of
areas and scenarios

Variability in precipitation is very
high and recurrent drought periods

Fig. 2. Components of the risk analysis method used in this study

2.3. Empirical analysis

Multiple linear regression models were estimated
using climatic data as explanatory variables. Our goal
was to understand the components of yield variability
in a range of agro-climatic conditions. (1) Agricultural
data were transformed to take into account the yield
trend (see below for details). (2) Some climate vari-
ables were aggregated into seasonal time periods to
increase the correlation with agricultural variables. (3)
Multiple linear regression models were estimated.

Agricultural time series are non-stationary because
they nearly always present a trend. When variables are
non-stationary, normal regression analysis requires a
transformation of the data. When there is not enough
information about the causes of such a trend, the trans-
formation needed to generate a stationary variable
may be attained by simply removing deterministic
trends (that is by directly subtracting the trend value
from the observations or ‘simple detrending'); by tak-
ing first-differences (that is the variable in year t [Y}]
minus the variable in year t — 1 [Y;_4]); or by intro-
ducing an autoregressive term as an independent or
explanatory variable. In our case, we assumed that
there is a causal relationship between yield increase
and technological change; therefore, we used the tech-
nological and management variables to explain yield
trend. A time series X, (in our case technological and
management variables) is said to influence another
series Y, (in our case crop yield) if the future values of
Y, can be better predicted when the information con-
tained in X; is included than when that information is
excluded (Kang 1985).

We incorporated management indicators (farm equip-
ment and amount of fertiliser used) as explanatory or
independent variables in order to attempt to explain
the positive trend in the yield data. However, at times
the data exhibited some patterns that these manage-
ment indicators were not able to explain. In these
cases, autoregressive terms were included in the

affect agricultural production at all
sites. Drought characterisation is diffi-
cult owing to its spatial and temporal
properties, and consequently a range of indicators
are used (Bradford 2000, Keyantash & Dracup 2002;
see also www.drought.unl.edu/whatis/indices.htm). We
opted for the commonly used Standardised Precipita-
tion Index (SPI; McKee et al. 1993). The SPI calculates
the difference in accumulated precipitation between a
selected site and the average precipitation over the
total area considered within the aggregation period.
For its calculation, the precipitation record is normal-
ized so that all precipitation values vary around 0 and
areas with different climates can be compared relative
to each other (McKee et al. 1993). We decided on an
aggregated period of 12 mo and defined the threshold
of drought as SPI values less than -1, following pre-
vious work in Spain (Moneo 2005, Garrote et al. 2007,
Iglesias et al. 2007Db).

Owing to the large number of climate variables con-
sidered (one for each 1 mo and 3 mo period) and to the
high correlation between some variables, the climate
effects were studied separately. This may result in the
introduction of multicollinearity into the regression
and consequently decrease the degrees of freedom.
The 95 % confidence intervals were estimated in order
to avoid multicollinearity and improve particular
model estimation, assuming normality of the residuals
and considering significant relationships in the final
specification. We then used Akaike's (1973) and
Schwarz's (1978) criteria to assist in the selection of
suitable models. The semi-logarithmic transformation
of the independent variable is useful when inter-
preting the model's coefficients as semi-elasticities.

The model has the form

InY; =nY;_1 + 0p + pmacMac + oyperFerty + oy Tavy, +
(X,31‘Fr1't + OL41-PreCip1-t + aSijant + anDrt + Bt.Impt‘t (1)

where the model output (Y}) is the crop yield at a site in
Year t and the inputs are of 2 types: management and
climate variables (Table 2). We considered a range of
climate variables, such as average temperature (Tavy),
total precipitation (Precip;), maximum temperature
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Table 2. Agricultural variables included in crop-yield functions, and sources of data used. MAPA: Ministry of Agriculture,
Statistical Division; FAO: Food and Agriculture Organization, Statistical Division (available at http://apps.fao.org); INM: National
Institute of Meteorology (available at www.inm.es); SPI: Standardised Precipitation Index

Type of Name Definition Unit Source of
variable data
Output Y: Crop yield at a site in year ¢t tha! MAPA
Management  Mac, Engine power of farm equipment in year ¢ Cv MAPA
Fert, Total consumption of nitrogen fertilizer in year ¢ t FAO
Climate Tav; Average temperature in the ith month/3 mo period of year t °C INM
Tmax; Maximum temperature in the ith month/3 mo period of year ¢ °C INM
Precip; Total precipitation in the ith month/3 mo period in year ¢ mm INM
Fry No. of days with temperature below 0°C in the ith month/3 mo d INM
period in year ¢
Dr, Dummy variable indicating drought years lorOasa SPI elaborated
function of SPI  from INM data
Instrumental Imp, Impulse dummy variable lor0
variables

(Tmax;), number of days per month with temperature
below 0°C (Fry), and a dummy variable indicating
drought years (Dr,). Also, some impulse (Imp'’;) dummy
variables were added to the model in order to isolate
the effects of some anomalous years. A step dummy
switches from 0 to 1 in the anomaly year, and an
impulse dummy has a value of 1 only in that year
(Table 3 in ‘Results and Discussion' gives the years for
which dummy variables were used). In addition, we
considered a range of management variables—such
as farm equipment power (Mac,) and nitrogen fertilizer
(Fert) —that account for large increases in crop pro-
ductivity. These management variables are commonly
used in agricultural statistics at different spatial scales.
For example, data on the engine power of farm equip-
ment is collected as a proxy variable for technology
and investment in a farm or in the farming sector of
a district or country.

We estimated functions that only take into account
the production side of the farm. The climatic and tech-
nological variables considered define the supply com-
ponent but do not represent the demand component of
the farming system —an essential element of agricul-
tural risk, but one that is beyond the scope of this study.

2.4. Monte Carlo simulations

Monte Carlo simulations are widely used to derive
large samples sizes from short time series of observed
data (Robert & Casella 1999). The Monte Carlo method
is used in agriculture to characterize statistical prop-
erties of crop yield prices, as well as crop yield
in response to rainfall or other inputs (Limaye et al.
2004, Gibbons & Ramsden 2005, Lobell & Ortiz-
Monasterio 2006).

Here we applied Monte Carlo methods to derive
probability distribution functions of yield risk levels.
The approach consists of generating synthetic series of
yield variables using the Monte Carlo method and
Latin hypercube sampling (Just & Weninger 1999,
Atwood et al. 2003). Fig. 2 includes this step in the
overall methodology.

Monte Carlo methods are an important component
of uncertainty and probabilistic risk assessment, be-
cause they allow generation of random samples of
statistical distributions (Robert & Casella 2004). Monte
Carlo methods simulate the behaviour of a system in a
non-deterministic (stochastic) manner by using ran-
dom numbers as opposed to deterministic algorithms.
The Latin hypercube technique (McKay et al. 1979) is
a variation of the simple Monte Carlo technique that
employs a constrained sampling scheme used when
the dependent variable (y) is a function of several other
variables (x1, x2, ..., xk), as is the case for crop yield.

2.5. Risk factor

Risk as a function of climate is evaluated following
the risk analysis of Ferreyra et al. (2001), who proposed
an approach to quantify outcome risk for each station
and climate scenario (ENSO and neutral years) based
on a comparison of the probability of exceeding a
given yield at each station with the corresponding
probability at a reference station. We adapted Ferreyra
et al.'s (2001) method to compare climate risk among 5
sites. We first selected a reference station and then
computed the empirical cumulative probability distrib-
ution (EPCF) of the variable of interest (yield) for both
the reference station (EPCF,) and the station of interest
(EPCF)). The risk factor (RF) curve is computed as
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RF; = log;o(EPCF,/EPCF,) @

The selection of a reference station was based on
the criteria of having a distribution of yields closer to
a ‘normal’ distribution (see ‘Results and Discussion’).
The logarithm was constructed so that RF values were
proportionally similar for EPCF ratios greater or lower
than 1, and that the reference level (indicating no shift
in probability with respect to the reference station) was
0 (Ferreyra et al. 2001). When comparing RF curves for
the different sites, 4 'reference quantiles’ were used for
the reference station: the 10th, 30th, 60th and 90th per-
centiles. At each location, when RF is 0, the probability
of the crop being at risk is the same as that at the refer-
ence station, which was selected to represent a normal
distribution of probability of crop yields. When RF is
>0, the crop is at risk: the probability of surpassing any
given outcome is smaller than that predicted at the
reference station. In contrast, when RF is <0, the prob-
ability of surpassing any given outcome is greater than
that predicted at the reference station.

3. RESULTS AND DISCUSSION
3.1. Empirical analysis
3.1.1. Crop yield variability

Despite a continued increase in crop yields owing to
improved technology and management, yield variabil-
ity has significantly increased over the last 3 decades.
The standard deviation of crop yield in 1970 to 2000 is
at least 3 times greater that in 1940 to 1970 at all sites.
In order to explain yield variability, we estimated re-
gression models that incorporated a range of variables.
Meteorological variables explain a large component of
the year-to-year crop yield variability, and drought
events are a key variable in all areas of the country
(Table 3).

We conducted several diagnostic tests on the esti-
mated functions in order to evaluate their adequacy
for simulating yield among geographic areas. Simu-
lated crop yields were highly correlated with the
observed vyields: the adjusted R? values range from
0.68 to 0.94, and the parameters in the multiple re-
gression functional forms are all significant at the
95% level (Table 3). The Ljung-Box Q test, based on
the autocorrelation plot, was calculated for all the
regressions, and White's general test (White 1980) for
each regression was used to test for the absence of
conditional heteroscedasticity.

Because the model presents a semi-logarithmic
transformation, the coefficients of the model can be
interpreted as semi-elasticities; that is, the propor-

tional change over the dependent variable when a unit
variation is produced over the explanatory variable.
For example, the most important factor for wheat
yields in Murcia has been drought, because a dry year
causes a yield reduction of approximately 21 %.

The derived models are coherent with the agro-
climatic processes at each site. The production func-
tion for wheat in Murcia is interpreted below as an
example (Fig. 3); we have the following estimated
model (where Y, is the estimated crop yield)

InY,= 2.0751 + 0.0017Mac; + 0.0035Precippar
+ 0.0034 Precipyay; — 0.0857 Tmax ;- 0.2138Dr;
—1.2966Imp1981; — 0.7908Imp1995; 3)

The variables that have a positive influence on wheat
yields are farm technology and precipitation during
March and May, while maximum temperature in July
and drought episodes are important negative variables.
The model recognises the drought event of 1981 and
1995 as being especially significant, in agreement with
the historical record of impacts of drought. Fig. 3 shows
the comparison of observed and simulated yields.

In all cases, meteorological variables explained a
larger component of the year-to-year crop yield vari-
ability than did technology variables, even though sites
have different significant climate variables. Drought
appears as a key variable affecting crop yield over
large areas of the country (Cérdoba, Murcia and Val-
ladolid), but is not significant in the sites that represent
the wetter areas (Burgos and Logrono). In general,
yields are negatively affected by high temperature —
especially in Murcia and Cérdoba, which are the
warmest sites. Low precipitation negatively affects
yield at all sites, except in Burgos (the reference station
for risk calculation, see below), especially in spring
and fall owing to an increase in the crop water stress.
In Cérdoba, precipitation variables are not significant
in the model, but the drought variable captures the
effect of water deficit on crop yield. In most cases,
winter and spring temperatures below 0 negatively
affect crop yield. However, meteorological variables
do not completely explain the evolution of yields and
observed technological improvement: mechanization
and fertilizers have clearly influenced the observed
increase in productivity in almost every case.

3.1.2. Sensitivity to drought

Sensitivity analysis is essential when testing models,
because models include parameters that represent
random components of the system. It is also necessary
to test the models that are unnecessarily complex.

We examined the sensitivity to drought via a likeli-
hood-ratio test. We tested whether the group of
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Table 3. Estimated wheat model coefficients (Estim), p-values, and adjusted R? values for different sites in Spain. Variables
defined in Table 2. DJF: December, January, February; MAM: March, April, May; SON: September, October, November

Variable Burgos Valladolid Logrono Cérdoba Murcia
Estim P Estim P Estim P Estim P Estim P

InY; 4 0.2891 0.0118

Mac 0.0033 0.0000 0.0020  0.0000 0.0040  0.0000 0.0017 0.0000

Fert 0.0006  0.0001

Tavpr 0.0645 0.0049

Tavsp, -0.1518  0.0047

Fryjay —-0.0404 0.0159

Frson -0.0106  0.0059

Frpjr —-0.0093  0.0492

Precipyar 0.0031  0.0216 0.0035  0.0013

Precipyay 0.0038  0.0033 0.0034 0.0025

Precippec -0.0017 0.0085

TmaxXjay -0.1514  0.0126

Tmaxyay -0.0262  0.0149

Tmaxy, -0.0857  0.0030

Tmaxyey -0.0532  0.0064

Tmaxyam -0.0937  0.0002

Tmaxson -0.0737  0.0909

Dr -0.1726  0.0423 -0.3320  0.0062 -0.2138  0.0110

Imp1949 -0.5296 0.0015

Imp1956 -0.9205  0.0006 0.4613 0.0050

Imp1968 0.7143  0.0255

Imp1981 -1.2966  0.0000

Imp1982 -0.8633 0.0000

Imp1992 -1.3424  0.0000

Imp1995 -0.7908  0.0006

Ljung-Box Q1 0.1728 0.678 0.0267  0.8700 1.3807 0.2400 0.0951  0.7580 0.0276  0.868

Ljung-Box Q2  0.2385 0.888 0.8034  0.6690 2.3803 0.3040 3.4666  0.1770 0.1332  0.936

Ljung-Box Q3 0.3834 0.944 1.6921  0.6390 3.7169 0.2940 3.5136  0.3190 0.3866  0.943

Ljung-Box Q4 1.2150  0.876 1.9645 0.7420 4.2278 0.3760 3.6255  0.4590 1.7918  0.774

White test 0.8724 0.5924 3.2038  0.0026 1.0850 0.3896 2.9930 0.0194 0.8287 0.6127

Log-likelihood 27.5386 3.4693 26.9150 2.8800 15.1369

R? 0.94 0.75 0.90 0.68 0.76

‘drought variables' contributed to the overall explana-
tion of the model. If the model was not sensitive to
drought, then it is likely that the model was unneces-
sarily complex. We compared the non-restrictive

Yield (t ha™)
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Fig. 3. Observed and fitted wheat yields i
during 1940 to 2000

Murcia, Spain

model (L) with an alternative restricted model that
excludes precipitation and drought as input variables
(Lr). According to the likelihood-ratio test, the likeli-
hood value can be expressed as 2[InL — InLg]; this
expression is distributed as a 2, where the degrees of
freedom are the number of restrictions imposed on
the model. Table 4 shows the likelihood-ratio test
values and p-values obtained. In most cases, the set
of drought variables are significant at p < 0.05, and
drought variables explain agricultural risk in all cases
except in Logrono and Burgos. These results agree
with the observations.

3.2. Monte Carlo simulation

We used Monte Carlo simulations to derive random
samples (10000 values) of statistical distributions of
crop vield, and therefore to analyse the distribution of
probabilities in order to obtain a certain yield (the risk
level). We evaluated the down-side risk (that is, the
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Table 4. Likelihood ratio to test drought effects on wheat yields among different
sites in Spain. L: non-restrictive model; Lg: restrictive model

skewed data. Nevertheless, Cérdoba
and especially Logrono have a higher

probability of obtaining results over the

Burgos  Valladolid  Logrono Coérdoba Murcia mean, as indicated by the skewness co-
L _— 347 26,01 . "y efficients above +1. Kurtosis is a para-
n . . . . . :
InLy 2342 468 2391 933 “3'90 meter that .descrllbes the .s‘hape of. a
Likelihood 8.24 16.30 7.41 10.42 36.68 random variable's probability density
ratio-like test function. The kurtosis coefficients of the
df 1 2 1 1 3 data presented in Table 5 are greater
1 (0= 0.995) 7.88 1060 7.88 7.88 12.80 than 3, indicating leptokurtic distribu-
X’ (=095  3.84 5.99 3.84 3.84 7.81 : o e g lep 16 GIStb
P 0.005 0.000 0.007 0.002 0.000 tions: that is, that the probability distrib-
ution functions of the yields are simulta-

probability of having low yields), because this is the
measure that most interests farmers and other agricul-
tural stakeholders. Our results show large differences
in risk levels on cumulative distribution functions
among the sites (Fig. 4). The cumulative distribution
functions show that the probability of having ‘low
yields' is higher in Murcia and Valladolid and lower in
Logronio and Coérdoba. However, a more complex
analysis would require one to standardise the means to
account for differences in the agricultural systems of
each area.

The statistical properties of the data shown in Fig. 5
are presented in Table 5. The variation coefficient is
useful as a non-dimensional indicator of variability.
Burgos and Logrofio have a low variation coefficient,
while Cérdoba has the highest. However, the variation
coefficient is not a complete indicator, and it is neces-
sary to analyze the ‘down side risk' —i.e. the probabil-
ity of having low yields. In general, the skewness coeffi-
cients do not indicate a large probability of low yield,
because only values below -1 indicate very negatively
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neously ‘peaked’ and have 'fat tails'.

The next step is to make comparisons among
the geographic areas. We selected Burgos as the refer-
ence station for comparison because it presents a yield
distribution function near normal’ (Fig. 5). The analy-
sis shows that risk characterization is complex, owing
to the multiple attributes of risk beyond variability;
therefore, we further analyse a risk measure in the
following section.

3.3. Risk factor

RF curves were estimated for yields at each site
(Fig. 6). Burgos was selected as the reference station
because the yield distribution here is nearly ‘normal’
(Fig. 5), the yield variability is explained only by
technology and climate variables, and the model does
not include impulse interventions (see Table 3). To
include the comparative analysis with the risk curves,
it was necessary to standardise the data. As in Ferreyra
et al. (2001), we compared RF curves and focused
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Fig. 4. Accumulated density probability functions of wheat crop yvield in different locations in Spain. Left: non-standardized;
right: standardized
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Fig. 5. Distribution function of simulated yields in Burgos;
distribution is normal, with mean = 3.53 and SD = 0.54

Table 5. Statistical properties of wheat simulations

Burgos Valladolid Logrono Cérdoba Murcia
Mean 3.53 2.74 4.98 3.46 0.85
Median 3.53 2.72 4.85 3.27 0.84
Mode 3.56 2.65 4.86 2.72 0.81
SD 0.54 0.68 0.87 1.25 0.19
(2% 0.15 0.25 0.17 0.36 0.22
Maximum  6.47 7.01 16.36 16.89 2.99
Minimum  0.01 0.27 2.62 0.81 0.10
Skewness -0.15 0.14 4.12 1.55 0.30
Kurtosis 4.08 5.03 26.66 8.97 8.39

our discussion on 4 ‘reference quantiles’, the 10th,
33rd, 66th, and 90th percentiles (denoted qio, 33, Qs6
and qq), for the reference set. These quantiles define
outcomes (1) ‘much below normal’ (outcomes < q),
(2) 'below normal’ (outcomes < q33), (3) ‘above normal’
(outcomes > qgg), and (iv) ‘much above normal’ (out-
comes > Qoo)-

The risk curves show that the probability of not
exceeding qjo in Cérdoba and Valladolid is higher than
the reference set probability, meaning that these are
the regions with more risk in the context of 'much
below normal’ yields. In contrast, Logrono (La Rioja)
has the lowest risk factor and Murcia has almost the
same risk level as Burgos in this quantile. The results
are similar when the yields are ‘below normal’, except
in Murcia, which has the lowest risk factor in this situ-
ation. Therefore, the probability of exceeding ‘below
normal’ yields is greater in Murcia than in the other
areas.

In the case of ‘above normal’ and ‘'much above nor-
mal' yields, Cérdoba has the lowest risk factor, so the
probability of exceeding a determined level of yield is
larger in Coérdoba than in other areas. Murcia is the
area with the most risk of not exceeding these high lev-
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Fig. 6. Yield factor curve for wheat at selected sites in Spain.

The 4 values on the x-axis indicate (from L to R) the yield for

percentiles g0, q33, gos @and goo. The scale on the y-axis indi-

cates the ratio of cumulative probabilities. Negative values of

the risk factor (RF) indicate lower risk in the percentile con-

sidered; positive values of RF indicate a higher risk in the
percentile considered

els of yield. The remainder of the sites have a similar
probability of exceeding ‘much above normal’ out-
comes. In fact, the risk level depends on the level of the
yields. Locations with higher yield do not have lower
risk. For example, Cérdoba has a higher average yield
than does Murcia, and at the same time has a greater
risk of not exceeding above or much above normal
yields than Murcia.

4. CONCLUSIONS

Over the next few decades, a central goal in agricul-
tural decision-making will be to decrease the risk asso-
ciated with a changing climate. Fundamental to this
aim is the development of our ability to quantify cli-
mate risks associated with different geographical
locations. Previous studies have used crop models to
represent agricultural responses to climate (Saarikko &
Carter 1996, Wolf et al. 1996, Hansen & Jones 2000,
Parry et al. 2004, Lobell & Ortiz-Monasterio 2006),
mainly owing to the lack of observed data. While these
approaches have proven effective when analyzing
potential scenarios, their lack of historical perspective
limits their application by stakeholders. Our results
show that observed yield patterns contain substantial
information on the relative importance of climate
and management variables for yield variability. The
method developed in this study links observations with
the analysis of probabilistic properties of climate-
driven agricultural yields. Spatial and temporal vari-
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ability in climate was considered, thus responding to
the critical need for knowledge on crop responses to
rainfall and extreme temperature events. Our methods
were applied over a transect of climatic conditions in
Spain, and the information obtained is potentially
valuable to our understanding of past and future
climate constraints.

In general, the yield of wheat in Spain has exhibited
an increasing trend and increased variability over the
period 1940 to 2000, especially since the 1970s. We
evaluated the influence of climatic and non-climatic
variables on final crop yield. Our results show that
rainfed yields are negatively affected by high temper-
ature—over a threshold that increases evapotranspi-
ration and therefore hydrological stress—and by low
precipitation, especially in the spring. Winter and
spring temperatures below freezing are also factors
that negatively impact crop yield. Drought affects a
great portion of the crop production in Spain, implying
that competition for the use of water plays a crucial
role in agricultural decisions.

Here we derived random samples of data to evaluate
the probability of achieving low yields as a conse-
quence of critical climate variables: such statistical dis-
tributions of crop yields are used for developing agri-
cultural insurance products to climate (Iglesias et al.
2006). Finally, the method of deriving a risk factor was
compared among 5 sites. Our results agree with the
agronomic knowledge of crop responses to climate,
but the risk ranking of the regions is not intuitive when
only considering isolated variables. For example, Mur-
cia is a very drought-sensitive region, and the common
perception is that the risk of crop production is higher.
Our results show that the integration of a range of cli-
matic variables is crucial for quantifying agricultural
risk and establishing a risk level for management alter-
natives. Farmers and agricultural planners may use the
derived models to estimate the probably of achieving
a target yield level in different climate scenarios.
New advances in monitoring and forecasting seasonal
weather, especially drought, may include the derived
models in order to develop early warning systems.
Forecasts of expected future yields are very important
for planning inputs or production, or for scheduling
loans to farmers. The information derived from the risk
analysis can be directly used by insurance companies
in order to evaluate the risk premium from the esti-
mated yield functions and the probability of drought.

The methods used here only address the supply side
of agricultural risk; markets and policies were not con-
sidered, and these will certainly determine the results
of agricultural activities, especially in Europe (Rounse-
well et al. 2005). Major limitations of our results arise
from the simplicity of the variables considered in the
empirical models, the aggregation of some data vari-

ables, and the quality of data. The limitations in the
application of the approach are a consequence of the
availability of data in many regions. Nevertheless,
climate-driven crop models could provide proxy crop
yield data, and it may be important to compare the
results of climate risks derived from them.

Finally, the approach presented here can be readily
extended to analyse additional crop production factors
that interact with climate, such as water demand, fer-
tiliser applications, and diffuse pollution. While simple
functions of crop-climate interaction will never pro-
vide the detail possible with more complex models, the
direct interpretation of the results by farmers and
policy-makers may be of great value to the risk
management decision-making process.
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