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ABSTRACT: This study deals with the parametrisation of the vertical thermal structure of the atmos-
pheric boundary layer up to 100 m above ground level over the industrial Mpumalanga Highveld in
South Africa. Potential air temperatures were calculated by similarity theory based algorithms. The
results were unsatisfactory for stable and unstable conditions in comparison to the measured data of
a 96 m tower. A higher accuracy was achieved with algorithms constructed by subjecting the mea-
sured data to multiple regression analysis. Potential air temperatures at various levels up to 96 m
above ground level were calculated with average errors of 0.82°C for stable conditions, 0.63°C for
unstable early-morning and late-afternoon conditions and 0.37°C for unstable daytime conditions.
The accuracy was sufficient to assess the thermal atmospheric stability of the boundary layer up to
100 m above ground level.
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1. INTRODUCTION

The thermal structure of the atmosphere is described
by the lapse rate of the temperature, which influences
the ability of the atmosphere to promote or inhibit ver-
tical motion of air (Preston-Whyte & Tyson 1993).
Knowledge of the vertical thermal structure of the
boundary layer is imperative for many purposes, e.g.
the modelling of air pollution dispersion. However,
continuous data are usually not available to determine
this, and therefore numerous models exist for the mod-
elling of thermal stability or heights of inversion layers
from ground-based data.

The South African Mpumalanga Highveld region
contains large coal fields and power stations which
generate almost half of Africa's electricity (Eskom
1994, Held et al. 1996). Considerable amounts of air
pollution are also generated and dispersed in the
atmosphere. Knowledge of the thermal structure over
this region is imperative to assess the air pollution dis-
persion and model the near-ground air pollution levels.
The Highveld is characterised by a flat surface with
minor topographical features or variations in altitude.
Therefore, it can be assumed that the radius of validity

*Email: beckers@uwosh.edu

israther large, and the results of the calculations at one
specific location can be transferred to large parts of the
entire region.

Climatic data for the calculation of boundary-layer
parameters were measured at a 96 m mast located in
the vicinity of a power station at Kendal (Fig. 1). Air
temperatures and wind data were measured at 1, 2, 5,
10, 20, 40, 65 and 96 m levels and 6 data sets h™* were
available from July 1993 to August 1994. Damage by
lightning caused major data gaps from January to
April 1994; however, there were still more than 40 000
data sets available for analysis.

2. CALCULATION OF THE VERTICAL THERMAL
STRUCTURE

Calculation of boundary-layer parameters refers
mainly to similarity theory, which is based on Monin &
Obukhov (1954). The calculation of the vertical profile
of air temperatures according to similarity theory is
based on the algorithms which are presented in, for
example, Jacobsen (1999), Pichler (1997) and Roedel
(2000).
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Fig. 1. Location of the research site: the South African Mpumalanga Highveld
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Fig. 2. Extrapolation of the surface roughness length, z;
examples at neutral conditions

The required surface roughness length for momen-
tum, z;, which can be extracted from tables should be
within the range between 0.1 and 0.5 (long grass to
savannah) (e.g. Jacobsen 1999, Oke 1987). Extrapola-
tion by exponential functions under neutral conditions
yields values between 0.2 and 5 m (Fig. 2). The heights
above ground level will be referred to as height AGL in
the following discussion.

The roughness length was estimated empirically by
iteration. Wind data for the different heights under
near-neutral conditions (Richardson number, [Ril <
0.03 or difference between potential temperatures at
1.2 and 10 m levels < 0.3°C) were calculated by the
logarithmic wind law and compared to the measured
values. The differences between calculated and mea-
sured values depending on z, values in the range from

0.03 to 0.8 m can be seen from Fig. 3. The bar high-
lights the z, range of minimum wind errors.

It becomes apparent that the roughness length of
approximately 0.3 provides the best results and the
absolute deviations increase with height above
ground. The simple logarithmic law obviously requires
some adaptation to calculate wind speeds on the High-
veld under neutral conditions. The boundary layer
parameters u*, 6* and L were calculated by an itera-
tive and a non-iterative approach (Jacobsen 1999,
Louis 1979). Fig. 4 shows that the results of both
approaches yield almost identical results. Minor varia-
tions are apparent for small u* values, which could be
due to the simplification within this approach. The
results of the iterative approach were used for the
following calculations.
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Fig. 3. Mean difference between calculated and measured
wind speeds at different heights under neutral conditions
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stability can only be answered after exam-
ining the consequences on the lapse rates.

The comparison of lapse rates based on
measured and calculated data reveals that
unstable conditions between 10 and 20 m
generally correspond. However, higher
degrees of instability which occur usually
during strong noontime convection, are
seriously underestimated by the model
(average errors for 96 m potential air tem-
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Fig. 4. Correlation between the results of the iterative and the non-
iterative approach to calculate (a) the Monin—-Obukhov length (L) and

(b) friction velocity (u*)

u* (non-iterative) (m/s)

peratures are in excess of 1.3°C). This state-
1.0 ment is also valid based on the whole data
set, where the average potential air temper-
ature difference of the measured data is
considerably lower (average 0.58°C, stan-
dard deviation 0.47) than the one which is
based on the calculated values. The model
seems to overestimate the temperature

| decline in the upper layers. Furthermore,

the strong variation of lapse rates even at

the upper levels is not recognised by the
model calculations.

2.2. Calculation of potential air

temperatures during stable conditions

25553 cases with stable atmospheric lay-
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Fig. 5. Mean errors and standard deviation of errors of potential air
temperature calculations during unstable conditions

2.1. Calculation of potential air temperatures during
unstable conditions

The calculation of the potential temperatures at differ-
ent heights based on the algorithms derived from the
similarity theory were compared to the measured data.
The following accuracies were detected for all cases of
instability (L < 0: 18 216 data sets, L <-10: 9460 data sets
and L <-50: 4275 data sets) (Fig. 5).

Potential air temperature calculations which are
based on the described model are less accurate at
higher elevations. Average errors for 96 m are partly
more than twice the magnitude of errors for 20 m. The
differentiation between the 3 cases reveals further-
more, that the model shows its best performance for
weaker instabilities, whereas strongly unstable condi-
tions (small negative L) are associated with less accu-
rate prediction of potential air temperatures. The
question of whether the calculated potential tempera-
tures will be acceptable for the calculation of thermal

96 ering (L > 0) were available for the compari-

son between measured and calculated
potential temperatures. The calculation of
potential temperatures according to the
algorithms proved to be entirely out of the
range for cases during strong stability (small
positive L). Average errors of potential air
temperatures for 96 m AGL exceeded 5 °C for L < 100.
Useful results could only be obtained for weakly stable
conditions with L approximately larger than 100 (3542
valid cases). The increase in average errors with
height is clearly visible in Fig. 6.
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Fig. 6. Mean errors and standard deviation of errors of poten-
tial air temperature calculations during weakly stable condi-
tions (L > 100)
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Fig. 7. Correlation between the measured potential air-temperature differences at various levels

2.3. Evaluation of the results

The average errors of the calculation of vertical
potential air temperature profiles during stable condi-
tions are generally >1°C at heights of ~100 m AGL.
Furthermore, this method fails to discern between sta-
ble and unstable layers within the profile. It is there-
fore not suitable to reproduce the characteristics of the
thermal atmospheric layering within the boundary
layer. The reason for this result could be the inaccuracy
which comes along with the calculation of the
Monin-Obukhov length or the relevant scaling para-
meters. In addition to that it might be the special situa-
tion of the Highveld, with its elevation of more than
1600 m above sea level and other climatological partic-
ularities, which causes many uncertainties in the appli-
cation of the algorithms.

Table 1. Mean deviation (°C) between measured and cal-
culated potential air temperatures based on the linear
regression functions

Difference All Stability Instability
data (25739 cases) (18100 cases)
1.2-20m 0.43 0.35 0.55
1.2-40m 0.64 0.47 0.75
1.2-65m 0.77 0.76 0.77
1.2-96 m 0.95 0.96 0.95

3. VERTICAL PROFILE OF POTENTIAL AIR
TEMPERATURES

3.1. Undifferentiated linear regression model

Following observations of the previous test analyses,
it appeared to be meaningful to correlate 1.2-10 m
potential air temperature differences with 1.2-20 m,
1.2-40 m, 1.2-m and 1.2-96 m differences and estab-
lish a relationship with height AGL. Fig. 7 confirms the
strong correlations between the differences based on
10000 data sets.

The average differences between the measured
values and the ones which were calculated by the
linear functions (Fig. 7) can be seen in Table 1. The
accuracy of the calculation decreases with height. Dif-
ferences during stable atmospheric layering can be
calculated up to 40 m AGL with an average error
<0.5°C; however, larger errors are noted for the
higher regions. The accuracy achieved by this un-
differentiated multiple-regression model already ex-
ceeds that for the similarity theory based approach.
Axis intercepts and slopes of the regression lines can
be correlated closely to the relevant height by loga-
rithmic functions (Fig. 8). This step enables the defini-
tion of a continuous function which relates the differ-
ence to the height.
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Fig. 8. Parameters of the linear functions for the continuous
calculation of potential air-temperature differences

The difference from bottom level (1.2 m) to the
height (h) can therefore be calculated using

Toz-n = (0.158 In(h) +0.925) Ty 5 10) +(0.708 In(h) — 2.23)

where h is height AGL (m) and I'g(; 5_p and I'y(1.5_10) are
the differences of potential air temperatures be-
tween 1.2 m and h and between 1.2 and 10 m, respec-
tively.

3.2. Differentiated multiple linear regression model

A higher grade of accuracy can be achieved by mul-
tiple linear regression after differentiating stable and
unstable atmospheric layering near the ground.

3.2.1. Stable atmospheric layering near the ground

Stable atmospheric layering for this purpose is
defined by positive potential air temperature differ-
ences between the 1.2 m and 10 m levels (09— 01, > 0).
The multiple regression analysis with implementation
of 0, (potential air temperature at 1.2 m height) and
To(1.2-10) Yields, e.g. for 96 m

To1.2-06) = 1.387 Tgq 510 — 0.0909 6, , +27.368

The corresponding accuracies can be seen in Table 2.

The separate consideration of stable cases under
implementation of only 2 independent variables al-
ready leads to an improvement of the calculations.
Differences between measured and calculated differ-
ences decrease slightly according to the relevant
averages and quantiles. Table 3 shows cross tables of
correlation coefficients for potential air temperature
differences between the 1.2 and 96 m levels based
on the parameters considered to be relevant for the
multiple regression. The strongest influencing factors
for differences between the bottom level and the

Table 2. Accuracy of difference calculations based on mul-
tiple regression for stable layering

Mean Quantile (°C) Median
(°C) (%) 90 % 75 % (°C)
ATg(1.2-96) 0.89 26 1.80 1.24 0.74

Table 3. Pearson correlation coefficient for various factors

during stable atmospheric layering. I'g,_96): difference of

potential air temperatures between 1.2 m and 96 m (K); 0 ,:

potential air temperature at 1.2 m AGL (K); 6*: potential tem-

perature scale; vy,: wind speed at 10 m height (m s71); Tog1.2-10)

difference of potential air temperatures between 1.2
and 10 m (K)

To1.2-96) 012 Che Vio To1.2-10)

Tona0s 1000 -0453 0539 -0420  0.812

01, 1.000 0.200 0.036 -0.294
0 1.000 -0.378 0.631
Vio 1.000 —0.471
To1.2-10) 1.000

other levels are obviously the differences between
the lowest levels (I'g(1.2-10); however, the variance of
the other variables also seems to be more or less
strongly related to the variance of the sought-after
differences.

Multiple-regression analysis with implementation of
all the variables in Table 3 yields

To12-20) = 1.101Tg1 5 1) —0.0512 v +0.618 6* —0.049 6, , +14.279

To1.240) = 1.097 Ty 510, — 0.0747 v, +0.998 6%~ 0.082 6, , +24.110
To1.2-65) = 0:998 Ty(15_10) —0.0865v,, +1.195 6*—0.107 6, , +31.671
To1.2-06) = 0.954 (1510 — 0.1040v, +1.325 6* —0.137 6, , +40.501

The inclusion of these variables into the multiple
linear regression leads to a further improvement of the
results, as can be seen from I'y(; 2 g6) in Table 4.

Fig. 9 shows again that the vertical profile of multiple
regression factors can be described by continuous
functions.

Table 4. Mean deviation of measured and calculated potential
air temperature differences based on multiple linear regres-
sion functions for stable atmospheric layering near the ground

Mean Quantile (°C) Median
(°C) (%) 90 % 75% (°C)
To1.2-20) 0.31 15 0.66 0.40 0.22
To(1.2-40) 0.52 20 1.11 0.70 0.39
To1.2-65) 0.68 22 1.37 0.95 0.56
To(1.2-96) 0.82 24 1.68 1.14 0.67
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Potential air temperature differences for different
heights can therefore by calculated using

Dogo-n =alguo10)—bVip+€0°—dO;, +e

where
a =-0.09941n(h) + 1.4208
b (s m™!) = -0.03261n(h) + 0.0467
c=0.4531In(h) - 0.7131
d (K1) = -0.05461n(h) + 0.1167

e = 16.3941n(h) - 35.571

Fig. 10 exemplifies the vertical profile of measured
and calculated potential air temperatures during stable
atmospheric layering near the ground. The examples
show that the multiple-regression analysis based on
the chosen independent variables is well suited to
reproduce the thermal atmospheric layering during
stable conditions. The largest errors at the higher lev-
els still occur during largely positive lapse rates at the
bottom levels. Other uncertainties are due to unstable
layers overlying shallow near-ground inversion layers,
e.g. in the summer morning and summer afternoon
examples. Additional analyses of these cases could
lead to a further decrease in the errors, but they would
also increase model complexity.

3.2.2. Unstable atmospheric layering near the ground

Unstable atmospheric layering for this purpose will
be defined by negative potential air temperature dif-
ferences between the 1.2 and 10 m levels (0;0— 014, <0).
Table 5 shows cross tables of correlation coefficients for
potential air temperature difference between 1.2 and

96 m based on various parameters which were consid-
ered to be relevant for the multiple regression.

It can be seen that 6* and v;q are very weakly cor-
related to the differences (absolute correlation coef-
ficients < 0.1). Therefore, only the variables I'y(; 5_10)
and 0, will be included in the multiple regression.
Multiple-regression analysis with inclusion of relevant
variables yields

To12-20) = 0117 Tg15_10) — 0.0691 6, , +18.398

To12-40) = 0117 (15 10, — 0.0819 6, , +22.117
To12-65 = 0-117 T 5_10) — 0.0708 6 , +19.229

To1.2-06) = 0106 g1 5_10) — 0.0839 6, , +23.302

Table 6 shows that the multiple regression provides
better results than the undifferentiated linear regres-
sion only for the higher levels. However, no improve-
ment was achieved for the calculation of potential air
temperatures at the lower levels. A differentiation
between cases with an absolute error in the calculation
of T'g(1.2-96) greater or smaller than 1°C was made for a

Table 5. Pearson correlation coefficient for various factors
during unstable atmospheric layering near ground (see
Table 3 for explanation of parameters)

To(1.2-96) 012 Ch Vio Toi1.2-10)
To(1.2-96) 1.000 -0.434 0.026 0.020 0.244
01, 1.000 -0.014 -0.149 -0.063
0* 1.000 0.054 0.010
Vio 1.000 0.068
To(1.2-10) 1.000
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Fig. 10. Vertical profile of measured and calculated potential air temperatures during stable atmospheric layering near ground

further investigation. Averages and deviations for the 2
groups regarding various parameters are listed in
Table 7.

The potential temperature scale (0*), the Monin-—
Obukhov length (L), the bottom level difference
(To(1.2-10)) and the precedent difference (I'¢(1.2-96)) take
on absolutely higher values and the wind speed a
slightly lower value for the larger error group. No con-
siderable differences can be seen for the other parame-
ter averages. Many parameters show a higher variabil-
ity (standard deviation) for the large error group.
These findings support the hypothesis that larger
errors occurred in the early morning or late afternoon,
with strong lapse rates at ground level and rapidly
changing conditions.

Another aspect becomes apparent in Fig. 11. The left
graph shows the number of cases with unstable ther-
mal layering based on the differences of potential
air temperatures at ground levels. Considerable num-
bers occur from 06:00/07:00 h in the morning to
16:00/17:00 h in the afternoon. The right graphs dis-
play the percentage of cases with calculation errors >1

Table 6. Mean deviation of measured and calculated potential

air temperature differences based on the multiple linear

regression functions or unstable atmospheric layering
near ground

Mean Quantile (°C) Median
(°C) SD (%) 90% 75% (°C)
To(1.2-20) 0.68 0.50 34.28 1.40 1.03 0.58
To(1.2-40) 0.72 0.54 35.67 1.47 1.07 0.61
TCo(1.2-65) 0.71 0.56 42.68 1.40 1.01 0.60
To(1.2-96) 0.75 0.61 53.15 1.51 1.03 0.62

Table 7. Mean and standard deviations of various parameters,
differentiated after Al'g(; ,_g6) larger or smaller than 1°C

Mean SD
Are(m 96) Are[lz 96) Areu,z-ge) Are(1.2-96}
>1 <1 >1 <1

0 -5.11 -3.29 105.89 91.46
L (m) -241.10 -168.34 3413.07 3859.74
vip (ms™) 2.68 2.99 1.51 1.53
TCo1.2-10) (K) -1.40 -1.03 1.09 0.66
To(1.2-20) (K) -2.09 -1.95 1.31 0.88
To(1.2-40) (K) -2.07 -2.02 1.49 0.90
TCo1.2-65) (K) -1.64 -1.60 1.60 0.79
To(1.2-96) (K) -1.41 -1.41 1.82 0.76
Precedent 0.38 0.26 5.07 1.30
To(1.2-96) (K)

and 2°C. The probability of larger errors takes on the
highest values during the early morning and towards
the late afternoon, whereby the values from 18:00 to
05:00 h only refer to a comparatively small absolute
number of cases. The critical cases are therefore obvi-
ously from 06:00 to 09:00 h and from 16:00 to 17:00 h,
whereas calculation for the noontime appear to be
more accurate.

The reason for this could be that convective heat
transfer does not reach higher regions of the boundary
layer during times of relatively weak insolation. There-
fore it is meaningful to address this problem by intro-
ducing another variable such as the solar angle as an
external factor for the calculations. The implementa-
tion of the solar angle as an independent variable in
the multiple regression did not improve the results;
however, a distinction of cases with solar angles larger
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Fig. 11. Left graph: absolute number of cases with thermal instability; right graphs: percentage of cases with large errors
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or smaller than 20° with a subsequent implementation
led to a considerable decrease in the calculation errors.
It was meaningful with regard to minimizing the errors
of the approach to re-introduce the wind speed at 10 m
as an independent variable after the subdivision of the
dataset into the 2 groups.

Linear multiple regression analysis for the 14744
cases with solar angles (y) > 20° yielded the following
algorithms:

as a suitable parameter to subdivide the dataset in a
way that enables more accurate calculations based on
the other variables.

Table 8 shows that considerable improvements in
the accuracy were achieved by this differentiation.

Linear multiple regression analysis for the 3356
cases with solar angles (y) < 20° yielded the following
algorithms:

To1.2-20) = 0.976 Ty 5 1) +0.0166 v, —0.0394 6, , +0.00700y +11.017
To1.2-20) = 0.940 g1 5y, +0.0013v;, —0.0362 8, , +0.00154y +9.530 Faas = 0BT .1 ~ 00118730 ~0.0608 B, ~0,00505% + 17380
To1.2-40) = 0.940 Tg(1 5 10 —0.0199v,, —0.0402 8, , +0.00040 +10.719

To12-65 = 0.906 g1 5_10) — 0.0558 vy, — 0.0698 6, , —0.000292 +20.439

To2-65) = 0985 g(1.2-10) ~ 0.0708 vy —0.0243 6, , ~0.001897 +6.779 To1.2-96) = 0.776 Tg(1 210) — 0.0708 v, — 0.0976 6, , +0.002885y +28.701

To1.2-06) = 0.944 T 5_1) —0.1080v,, — 0.0308 6 , —0.00350y +9.019

The scale parameters point to the fact that the solar
angle as an independent variable does not contribute
considerably to the calculation; however, it does serve

O Similarity theory based model
O Differentiated regression model excluding solar angle

@ Differentiated regression model including solar angle

2.5

2.0

;G 1.5 T

T o e 1
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Fig. 12. Comparison of the errors of the different approaches
to calculate air temperatures at different elevations (mean
and standard deviations)

It can be seen from Table 9 and Fig. 12 that the imple-
mentation of the solar angle in the calculation algorithms

Table 8. Mean deviation of measured and calculated potential
air-temperature differences during unstable conditions with
solar angle >20°

Mean Quantile (°C) Median
(°C) SD 90%  75% (°C)
ATg(1.2-20) 0.32 0.25 0.68  0.46 0.27
AT (1 2-10) 0.34 0.28 0.72  0.48 0.28
ATg(1.2-65) 0.28 0.26 0.57 0.39 0.22
ATg(1.2-96) 0.37 0.36 0.75  0.50 0.28

Table 9. Mean deviation of measured and calculated potential
air-temperature differences during unstable conditions with
solar angle <20°

Mean Quantile (°C)  Median
(°C)  SD 920% 75% (°C)
To(1.2-20) 0.39 0.32 0.80 0.54 0.32
Co1.2-40) 0.40 0.42 0.87 0.51 0.28
Co1.2-65) 0.47 0.54 1.07 0.58 0.31
Co1.2-96) 0.63 0.64 1.47 0.80 0.44
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Fig. 13. Measured and calculated potential air temperatures during unstable conditions

resulted in considerably lower deviations of measured
and calculated potential air-temperature differences.
Fig. 12 shows that the differentiated regression model
provides the most-accurate results for the calculation of
air temperatures at levels up to 96 m AGL.

Fig. 13 illustrates the accuracy of the calculations on
several days exhibiting unstable conditions.

4. SUMMARY

Thermal atmospheric boundary layering over the
Mpumalanga Highveld shows distinctive characteris-
tics with relatively deep stable conditions during the
night and unstable conditions near the ground during
daytime with inconsistent layering above. The calcula-
tion of the vertical thermal layering by similarity the-
ory based models proved to be inadequate. Calcula-
tion of the vertical profile of potential air temperatures
is achieved with improved accuracy up to 100 m AGL
by a multiple linear regression methodology based on
the 4 independent variables (1) potential air tempera-
ture difference between 1 and 10 m AGL, (2) wind
speed, (3) potential air temperature at 1 m AGL and
(4) solar angle.
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