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1. INTRODUCTION

The development of complex models capable of sim-
ulating the ocean–land–atmosphere system has
allowed climate scientists to obtain projections for
long-term climate evolution in different scenarios.
However, these models are not able to provide output
at the required spatial resolution for representing the
processes of interest in hydrological applications, such
as the impact produced by a rainfall pattern change in
the runoff regime or the erosion process in a river
basin, which require daily rainfall data on a local scale.
This has motivated the development of precipitation
downscaling methods, which can be roughly classified
into 2 groups: those using a numerical model (a
regional climate model nested in a GCM) and those
based on a statistical model which relates the local
rainfall to the GCM output. 

There are several approaches for the statistical mod-
eling of daily precipitation. Hughes et al. (1999), Good-

ess (2000), Stehlik & Bardossy (2002) and Sumner et al.
(2003) link precipitation with the atmospheric state
which governs the model parameters. Palutikof et al.
(2002) and Beersma & Buishand (2003) use the daily
atmospheric state for selecting a subset of the historical
dataset, from which the rainfall observation is obtained
through a sampling schema. Others, such as Wilby et
al. (1999) or Beckmann & Buishand (2001, 2002),
obtain, through regression analysis, the function link-
ing the rainfall model parameters with the variables
representing the atmospheric situation. Although the
atmospheric circulation explains the rainfall behaviour
to a large extent, several authors (e.g. Buishand &
Klein Tank 1996, Wilby et al. 1999, Cavazos 2000,
Beckmann & Buishand 2002) show that rainfall is also
tied to other variables not directly related with pres-
sure, such as humidity or temperature in different
atmosphere levels. 

The statistical method proposed in this paper is
based on a regression model and can characterise,
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quite satisfactorily, the daily rainfall behaviour (Abau-
rrea & Asín 2003, Asín 2003). It is applied to the series
measured at the Zaragoza Airport observatory and to
those obtained from CGCM1 data corresponding to
the grid-cell where this observatory is located. The
CGCM1 model is the first version of the coupled gen-
eral circulation model (GCM) developed by the Cana-
dian Centre for Climate Modelling and Analysis
(CCCma). 

Zaragoza is situated in the middle of the Ebro Valley,
at 240 m above sea level. The Ebro river flows from
northwest to southeast into the Mediterranean Sea,
and its basin (85 362 km2) borders on the Pyrenees and
the Cantabrian mountains to the north, the Iberian
chain to the southwest and the Coastal-Catalonian
chain to the east. This orographical situation favours a
NW wind predominance and a dry climate in the cen-
tral part of the valley, which is affected by climate
extremes and convective storms. The observatory is
free from an urban effect and is the only one in the
region with radiosonde data. 

The time periods considered are 1990–2000 and
2090–2100; the data length is limited by the upper air
measurements available in Zaragoza since August
1990. All models have been fitted using 1990–1997
data and we have set aside the 1998–2000 period for
validation. Thus, the fitting is based on 2153 days for
the occurrence model and on 530 days for the quantity
model. 

The procedure implementation consists of 4 steps:
(1) A comparative analysis of GCM output and the
observed climate variables is carried out to select the
potential predictors. (2) The statistical model built from
the selected predictors is estimated and checked.
(3) The resulting model is evaluated, as a forecasting
tool, by analysing its achievement in reproducing the
rainfall pattern using observed and GCM simulated
data as input. In this way, the possible bias introduced
by the model structure can be detected and the model
rebuilt. (4) Using the resulting model, the precipitation
pattern in the climate change scenario is forecasted
and the proposed changes are analysed. 

The statistical model we used is composed of a logis-
tic regression model for fitting the daily rainfall proba-
bility and a generalised linear model with Gamma
error distribution for fitting the rainfall amount mea-
sured on wet days. This approach is close to that of
Stern & Coe (1984), the main difference being that our
model fits a different rainfall probability and amount
distribution every day. 

In Section 2 we introduce the data used; in Section 3,
the statistical rainfall model is shown and the degree of
achievement in fitting the different aspects of daily
rainfall is discussed; how the model can actually repro-
duce the observed rainfall pattern when GCM gener-

ated data are used as input is also analysed. In Section
4 we discuss the properties of the forecasted rainfall
pattern. Section 5 summarises the results and states
some conclusions. 

2. DATA

2.1. Data employed

The observed data were provided by the Spanish
Meteorological Institute (INM); the CCCma provided
the data simulated by the CGCM1 model. The GCM
data correspond to a GHG+A experiment with an
IPCC IS92a forcing scenario, in which the evolution of
greenhouse gases (GHG) corresponds to that observed
for the period 1900 to 1990; thereafter, a 1% increase
rate per year is hypothesised up to 2100; the effect of
sulphate aerosols is also included. Details about the
model and simulation experiments are given in Boer et
al. (2000a,b). 

The daily data for the GHG+A1 experiment for the
period 1961–2100 are available from the CCCma web-
site; the data are provided by a 97 × 48 Gaussian grid
(approximately 3.75 latitude × 3.75 longitude). We
downloaded the information relative to the periods
1990–2000 and 2090–2100 for the cell centered at
42.68° N, 0.00° E, where the Zaragoza Airport observa-
tory (41.66° N, 1.01° W) is located. 

At the Zaragoza observatory, the surface meteoro-
logical situation is measured every day at 0, 7, 12 and
18 h and the upper air information is collected by 2
radiosondes launched at 0 and 12 h. We point out
that the number of missing values increases with
height because the radiosonde is launched only once
if it does not reach the 500 hPa level at the first
attempt. 

The variables in the model are those offered by the
CCCma for the GCM experiment; as response vari-
ables: the rainfall amount recorded each day (0 to 24 h)
(Rt) and a derived variable (Yt), which equals zero if Rt

is less than 0.1 mm m–2 and 1 otherwise; as surface pre-
dictors: the daily maximum and minimum tempera-
tures (TMAX and TMIN), the daily temperature average
(T), the average of the atmospheric pressure at 0 and
12 h (P), the specific humidity daily average (Q) and the
daily average of U and V wind components. The infor-
mation on the upper atmosphere exists for the 850 and
500 hPa levels at 0 h and includes, for each level, the
height (A), temperature, specific humidity and U and V
wind components. The notation for these variables
consists of letters which identify the variable, followed
by the level where it has been measured: e.g. QSUP

denotes the surface humidity and A850 the 850 hPa
height. 
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Other useful predictors are derived from previous
variables: the daily temperature range (TDIF), the tem-
perature difference between 850 and 500 hPa levels
(T85/50) and the 500/850 hPa layer depth (A85/50). The
wind information is expressed by means of direction
and velocity (dW and vW, respectively). 

For each predictor, we calculated its anomaly series
by substracting from each daily observation the corres-
ponding mean value, obtained through regression
using the first 4 Fourier harmonic functions as covari-
ates. These anomaly variables are denoted by the
name of the corresponding variable preceded by the
letter z, e.g. z.A850. 

2.2. Observed versus GCM generated variables

The first step in building the model is the definition
of the potential predictor set. Since the GCM generates
data corresponding to a wide area, reflecting an aver-
age situation, the values produced will not be equal to
those measured in a particular observatory. For some
variables the differences can occur in a certain period
of the year, in other cases they can be related to the
mean level, so an anomaly series could have a similar
statistical behaviour, at least in certain periods. 

The comparative analysis between the observed and
the CGCM1 generated data begins with an exploratory

analysis where we analyse, using a particu-
lar smoother (lowess) and monthly boxplot
diagrams, the similarity in location and vari-
ability. From this we conclude that GCM
variables do not properly reproduce the be-
haviour of those observed. In some cases the
difference is important, see for example the
results for precipitation in Fig. 1a; in other
variables, such as QSUP (Fig. 1b), the box-
plots show an important difference in mean
position but a great similarity in dispersion. 

The properties of simulated wind data are
different from those of the observed data;
the differences are greater at the surface
level and become smaller as height in-
creases. In Zaragoza, the prevailing surface
winds are those from the northwest and, to a
small extent, those from the southeast. In
the simulated data the SW and NW wind
frequencies are equivalent and the SE wind
does not have any special relevance (Fig. 2).
At upper levels, the influence of the under-
lying surface decreases, so at 500 hPa the
difference between both distributions is less
important. 

This comparative exploratory analysis has
been complemented with some statistical
tests. For each variable and the correspond-
ing anomaly we apply a t-test for testing
mean equality, a Wilcoxon test on median
equality, an F-test for checking variance
equality, a Wilcoxon test applied to differ-
ences from the respective means and,
finally, a Kolmogorov-Smirnov (KS) test to
check the distribution equality. Both the
observed and GCM simulated data show
serial dependence; only the t-test takes into
account the existing autocorrelation, other
p-values have to be considered as a mea-
sure of the distance between sampling dis-
tributions. The sample size is 300, approxi-
mately, for each month. 

185

Precipitation

Day

10
   

 m
m

0 100 200 300

0

5

10

15

20

-1
  

Observed
CGCM1

 
Surface humidity

Day

kg
 k

g

0 100 200 300

0.005

0.010

0.015

0.020

-1
  

Observed
CGCM1

0.005

0.010

0.015

0.020

J FMA MJ J A SONDJ FMA MJ J A SOND

Observed

 

0.005

0.010

0.015

0.020

CGCM1

 

 
Fig. 1. Comparison of daily observed and CGCM1 generated data
(1990–2000). (a) Lowess smoother of daily rainfall amounts; (b) lowess and 

monthly boxplots of specific humidity data at surface level
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In Table 1 we show, for the different tests, the num-
ber of months with p-values less than 0.01 and 0.05.
For the best reproduced variables we have analysed
the similarity throughout the year; Table 2 shows, by
seasons, the KS test results. They confirm that discrep-
ancies are mainly due to location differences and to
difficulties in describing the seasonal cycle; only the
simulated Q500 and T850 data reproduce the observed
characteristics (Fig. 3). 

When we compare the KS test results for the anom-
aly and the variable series, we find that distributions
are closer for the anomalies. The KS and F-test p-
values are greater than 0.05 at least in 6 months for
z.QSUP, z.Q500, z.PSUP, z.A850, z.U850 and z.V850. The KS
test produces p-values less than 0.01 in more than
6 months for z.TMAX, z.T850, z.A85/50 and for the anom-
alies of surface wind components. 

When we analyse these results seasonally, we see
that there are variables, such as z.PSUP, z.A850, z.Q850,
z.Q500, z.V850 or z.V500, where the KS test gives p-
values less than 0.05 for 1 month, at most, in each sea-
son; for other variables, z.QSUP for example, this level
of agreement is lost in some seasons (in spring in the
case of z.QSUP). 

To sum up, although in general the CGCM1 data dis-
tributions are not similar to the observed ones in
Zaragoza, we have found some GCM anomaly series
which acceptably reproduce the observed characteris-
tics and, therefore, could be considered as potential
predictors for a downscaling model. 
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Fig. 2. Wind roses of observed and CGCM1 generated wind 

direction frequencies (1990–2000)

t-test Wilcoxon F-test Dispersion KS

TMAX 9/11 12/12 10/11 10/10 12/12
TMIN 6/7 7/10 7/9 6/6 11/12
TDIF 10/10 10/10 8/9 5/7 10/10
T850 2/5 6/7 8/8 9/11 11/11
T500 6/12 9/11 11/11 9/9 11/12
T85/50 6/8 9/9 6/8 7/8 10/11
QSUP 12/12 12/12 1/2 1/1 12/12
Q850 9/10 10/10 6/8 5/8 9/11
Q500 1/2 3/4 4/5 1/3 2/4 
PSUP 9/9 11/11 5/6 4/5 9/11
A850 7/8 9/9 2/3 2/2 9/9 
A500 7/8 8/9 12/12 8/12 11/12
A85/50 4/8 10/10 9/11 7/8 11/11
USUP 6/7 7/9 11/11 10/11 11/12
VSUP 11/11 11/11 5/5 6/6 12/12
U850 4/5 6/6 4/6 5/6 6/7 
V850 8/9 9/10 4/6 0/2 10/10
U500 4/7 8/9 10/10 8/8 10/11
V500 4/6 6/8 7/9 5/8 8/9 

z.TMAX 0/0 0/1 10/10 10/11 9/10
z.TMIN 0/0 0/1 8/9 7/8 6/6 
z.TDIF 0/0 0/1 8/9 5/7 0/5 
z.T850 0/0 1/1 9/10 11/11 8/9 
z.T500 0/0 0/2 11/11 9/10 3/6 
z.T85/50 0/0 0/1 6/8 7/8 2/6 
z.QSUP 0/1 3/3 2/2 1/2 1/3 
z.Q850 0/0 0/0 7/8 6/8 0/2 
z.Q500 0/0 0/0 4/5 1/3 0/1 
z.PSUP 0/0 0/0 4/6 4/5 1/3 
z.A850 0/0 0/0 2/3 1/2 0/0 
z.A500 0/0 0/0 11/11 10/10 3/8 
z.A85/50 0/0 2/3 9/11 7/8 7/8 
z.USUP 0/0 0/2 11/11 11/11 8/9 
z.VSUP 0/0 0/2 5/5 6/6 7/8 
z.U850 0/0 0/2 5/6 5/6 2/3 
z.V850 0/0 1/3 4/6 0/2 2/3 
z.U500 0/0 0/0 10/10 8/8 3/7 
z.V500 0/0 0/0 7/9 5/8 0/1

Table 1. Monthly comparison of observed and CGCM1 daily
data distributions (1990–2000). n/m: number of months where
the p-value is less than 0.01 (n) or 0.05 (m). KS: Kolmogorov-

Smirnov test
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3. STATISTICAL MODEL

A logistic regression model gives the rainfall occur-
rence probability for each day, P(Yt = 1|Xt), in the con-
ditions stated by the predictor set, denoted by Xt,
which contains the relevant information corresponding
to Days t, t +1 and those prior to Day t. 

The amount model, which explains the precipitation
collected on a wet day, is also a generalized linear
model (GLM) with a Gamma error and a logarithmic
link. The Gamma distribution is characterised by a lo-
cation parameter, the expected value, and a dispersion
one ν, the square of the variation coefficient. When ν =
1 this distribution corresponds to the Exponential
model and if ν > 1, there is not a modal value and the
density function shows a strong concentration near
zero. According to a recommendation by McCullagh &
Nelder (1989), we estimate the ν parameter, consid-
ered as constant in the model, by the moment method. 

The occurrence and quantity sub-models describe
the rainfall phenomenon completely. 

3.1. Criteria applied for building the model

In order to increase the explained variability, the lin-
ear predictor includes not only information about Day t
and the previous days, but also about Day t +1, since
the future use of the model allows this possibility. 

Our objective is to obtain simple linear predictors
which allow a physical interpretation; thus, we use
the original variables, or simple transformations, not
applying statistical techniques to reduce the predictor
matrix dimension. 

The modelling process is an iterative procedure con-
sisting of formulating and estimating different struc-
tures and analysing their proposals in contrast to data.
In order to select the best model, we apply a statistical
test which compares, on each occasion, the deviance of
2 nested models; the significance level used is 0.05
except for removing harmonic terms when another of a
lower order is not significant, in this case a level 0.01 is
used. 

Due to the large number of predictors available, a
2-step procedure is applied. First, a full model is built
by the addition of terms which significantly improve
the fitting. More precisely: 
• We introduce the Fourier harmonic functions which

allow us to model complex periodic patterns using a
few parameters. We denote Sit and Cit as the values
of sine and cosine variables corresponding to i th
order harmonic function evaluated at Day t.

• We then introduce the possible climate covariates; if
one is retained, the corresponding quadratic effect is
considered, and so on. If a variable enters the model,
the variables concerning the previous and following
days are also analysed for entering.
After reaching a full model, a simplifying procedure

which uses the t-statistic absolute value as the criterion
is applied to eliminate the non-significant terms. A
term is not removed if a higher order one in the same
variable is significant. 

3.2. Fitted statistical models

A model useful for projecting the rainfall pattern
must reproduce the observed pattern when the covari-
ate values generated by the GCM for the current cli-
mate are used as input. So, the usual tools used for
model checking must be complemented with an analy-
sis of fitted values obtained using the observed and the
CGCM1 generated covariates. In this way we can dis-
criminate between problems attributable to the model
from those resulting from an inadequate reproduction
of the observed local climate by the GCM. 

In a first attempt, we used as predictors the anom-
alies whose KS p-values were greater than 0.01 in at
least 6 of the months. The selection was based on the
KS test because it compares the global distribution and
not only partial aspects of it. This criterion is not very
strict, so it allowed us to use a wide number of covari-
ates and to achieve a good fitting. No wind component
anomalies of any level were used in the model. 
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Global Winter  Spring Summer Autumn  
(DJF) (MAM) (JJA) (SON)

z.TMAX 9/10 3/3 3/3 2/2 1/2 
z.TMIN 6/6 0/0 1/1 2/2 3/3 
z.TDIF 0/5 0/0 0/3 0/0 0/2 
z.PSUP 1/3 0/0 1/1 0/1 0/1 
z.QSUP 1/3 0/0 1/2 0/0 0/1 
z.T850 8/9 2/3 3/3 2/2 1/1 
z.A850 0/0 0/0 0/0 0/0 0/0 
z.Q850 0/2 0/0 0/1 0/0 0/1 
z.T500 3/6 1/2 0/1 0/1 2/2 
z.A500 3/8 1/3 0/1 0/1 2/3 
z.Q500 0/1 0/0 0/1 0/0 0/0 
z.T85/50 2/6 0/0 0/1 1/3 1/2 
z.A85/50 7/8 2/3 2/2 0/0 3/3 
z.USUP 8/9 2/2 1/2 2/2 3/3 
z.VSUP 7/8 2/3 1/1 3/3 1/1 
z.U850 2/3 0/0 0/0 1/2 1/1
z.V850 2/3 0/0 1/1 1/1 0/1 
z.U500 3/7 0/1 1/2 1/3 1/1 
z.V500 0/1 0/1 0/0 0/0 0/0

Table 2. Seasonal analysis of KS test p-values corresponding
to the comparison of the observed and CGCM1 daily data
(1990–2000). n/m: number of months where the p-value is 

less than 0.01 (n) or 0.05 (m)
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This model, not shown, provided an adequate fitting
of rainfall characteristics when it was used with the
observed data but strong discrepancies appeared
using the GCM generated data: the rainfall frequency
in the spring months and the annual total amount were
underestimated by 30% and a larger bias appeared in
the spring rainfall amount that was estimated to be
lower than the summer amount. 

A sensitivity analysis showed us that GCM values of
z.TMIN, z.TDIF, z.A500 and z.QSUP, necessary for achiev-
ing a good fit, were causing the bias. This led us to use
them only in those seasons where they showed satis-
factory behaviour regarding observed data. The final

rule was to employ these covariates in
seasons where the KS p-values were
greater than 0.05 in at least 2 months
(Table 2). Exceptionally, z.TDIF, whose
autumn KS p-values were greater than
0.05 only in 1 month and greater than
0.01 in all of them, was used. The model
resulting from applying this rule, de-
noted the Down model, is described in
the next subsection. 

3.2.1. Description of the Down Model

The linear predictors of occurrence and
quantity sub-models, denoted Down−Oc
and Down−Q respectively, are shown in
Table 3. Both contain harmonic terms up
to the 4th order and interaction terms of
climate covariates with seasons; these
terms are denoted by combining the sea-
son and covariate names. 

The linear predictor of Down−Oc con-
tains 29 terms, 9 of which are main (non
interaction) terms. Fig. 4 shows the sign-
opposite effect of z.PSUP in Days t and t − 1
and also the different effect of z.TDIF in
winter from the rest of the year. We point
out that the z.QSUP effect doubles in win-
ter with respect to summer or autumn. 

The Down−Q model is simpler; its main
effects are related to the upper air vari-
ables z.A850, z.Q500 and z.T85/50. No infor-
mation about surface pressure or any
particular term concerning the autumn
season appears in this model. 

3.2.2. Goodness of fit

The harmonic terms adequately fit
the seasonal cycle of rainfall frequency

(Fig. 5) and amounts (Fig. 6); the correlation coefficient
between observed and fitted monthly mean values is
0.98 for Down−Oc and 0.93 for Down−Q (Tables 4 & 5). 

Down−Oc explains, for the estimation period, 39% of
response variability, a value similar to those obtained
by Beckmann & Buishand (2001, 2002) for different
European observatories. Our model correctly classifies
78.6% of the days, using the smoothed relative rainfall
frequency as a threshold (Table 4). For the validation
data set, a similar proportion of explained variability
(32.6%) is globally obtained, but this value decreases
appreciably in some seasons (13 and 10% in spring
and autumn, respectively). 
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The variability explained by Down−
Q is, globally, 17.4% and it decreases
to 13.6% in spring, when z.QSUP and
z.TDIF are excluded from the model.
The result improves on that obtained
by Beckmann & Buishand (2001) for
the Spanish observatories they study,
where a maximum of 13.3% is at-
tained. Our value is close to that ob-
tained by these authors in Austrian
and Swiss observatories (20%). As an
additional check, we classified each
observed amount into the 5 intervals
defined by 10th, 25th, 75th and 90th
percentiles of the distribution fitted to
the corresponding day. According to
this criterion the fitting is adequate: the
frequency distribution is close to the
expected probabilities with the excep-
tion of quantities below the first decile. 

The degree of achievement of
Down−Q in validation ensemble is less
satisfactory. The explained variability
is low in some seasons because of the
great influence of certain data; when
these data are eliminated, better val-
ues are obtained: in summer, 9.9% is
attained if we disregard 4 days (5 June
1998, 1 July 1998, 1 and 9 June 2000)
and in winter we attain 18.4% if the
period 30 January 1998 to 3 February
1998 is eliminated. 

3.2.3. Model simulation

In order to analyse the degree of
achievement attained in describing
some important daily rainfall proper-
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Down−Oc Down−Q (ν = 1.443)
Coef. SE Coef./SE Coef. SE Coef./SE

β0 –1.808 0.110 –16.470 3.030 0.087 34.750 
S1 –0.165 0.112 –1.475 0.046 0.089 0.512 
C1 0.328 0.133 2.467 –0.097 0.112 –0.872
S2 –0.491 0.099 –4.945 –0.237 0.080 –2.944
C2 –0.207 0.116 –1.778 –0.409 0.101 –4.040
S3 0.237 0.098 2.428 4.26e-3 0.081 0.052 
C3 0.306 0.100 3.052 0.260 0.083 3.139 
S4 0.276 0.097 2.842 0.162 0.078 2.079 
C4 –0.179 0.095 –1.892 –0.011 0.078 –0.144 
z.PSUPt –0.018 2.39e-3 –7.507 
z.PSUPt

2 –3.37e-5 1.13e-5 –2.978 
z.PSUPt−1 9.47e-3 3.75e-3 2.524
z.A850t−1 –7.26e-3 3.37e-3 –2.154
z.A850t+1 –9.36e-3 1.48e-3 –6.314
z.A850t+1

2 –2.22e-5 1.08e-5 –2.047
z.Q850t+1 135.10 75.99 1.778
z.Q850t+1

2 –9.59e+4 2.65e+4 –3.618
z.Q500t 538.4 141.7 3.798 336.8 100.8 3.343 
z.Q500t+1 615.5 149.2 4.125 
z.T500t+1 –0.018 2.75e-3 –6.430 
z.T85/50t+1 –4.4e-3 2.15e-3 –2.045 
z.T85/50t+1

2 –1.43e-4 4.12e-5 –3.475 

Winter
z.TMINt –0.024 7.16e-3 –3.414 
z.TDIFt –0.027 5.22e-3 –5.205 –0.016 3.44e-3 –4.532 
z.TDIFt

2 2.48e-4 1.13e-4 2.198 
z.QSUPt 1063.0 210.4 5.050 

Spring
z.TMINt 0.027 5.81e-3 4.591 
z.A500t 2.76e-3 1.20e-3 2.309 
z.A500t+1 –4.91e-3 1.76e-3 –2.795 

Summer
z.TDIFt –0.024 6.04e-3 –3.969 
z.QSUPt 447.2 87.0 5.141 172.9 71.6 2.416 
z.A500t+1 –0.012 2.99e-3 –4.074 –4.39e-3 1.94e-3 –2.267 

Autumn
z.TDIFt –0.026 4.63e-3 –5.694 
z.QSUPt 489.5 89.9 5.443

Table 3. Linear predictor terms of the occurrence (Down–Oc) and quantity
(Down–Q) sub-models of the Down model

z.T
-100 -50 0 50 100

2

-2

4

6

0

Winter
Summer
Autumn

z.P
-300 -200 -100 0 100 200

-4

-2

0

2

Day t
Day t-1

E
ff

ec
t

E
ff

ec
t

 DIF SUP
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ties, we simulated, using the Down model, 20 rainfall
series with the same length as the observed one and
we applied to them the diagnostic checks proposed by
Wilby et al. (1998) (Table 6). In our opinion, these
checks are incomplete and can be misleading because
of their aggregation level, which does not take into

account the phenomenon seasonality and does not
reflect the model behaviour with regard to daily char-
acteristics. For this reason we compare the run-length
and the amount distributions monthly. 

The occurrence model is found to be adequate; the
KS test (results not shown) is statistically significant at
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the 5% level for February wet runs only. For rainfall
quantities, the test is statistically significant at the 1%
level for January, December and spring months, and at
the 5% level from September to
November. The simulated distribu-
tions show greater dispersion in April
and May while the opposite is true in
January and March for observed data. 

We conclude that the Down model
adequately represents many of the
characteristics of observed rainfall.
The occurrence model reproduces the
monthly frequencies and the dry and
wet run distributions. With regard to
amounts, the model reproduces the
monthly mean values well and the dis-
tributions are not distinguishable at
the 5% level in summer months and at
the 1% level in autumn months; some
discrepancies are found in the other
seasons. 

3.3. Evaluation of the Down model
using CGCM1 data

An overview of the model perfor-
mance is displayed in Table 7, which
shows, for the period 1990–2000, the

annual and seasonal mean number of rainfall
days and the mean accumulated amount, ob-
served and fitted, using as input (1) the observed
covariates and (2) the CGCM1 generated ones
for this period. The expected number of rainfall
days is obtained by adding the fitted probabili-
ties; for the expected amount we add the prod-
ucts of daily fitted probabilities by fitted
amounts. The errors are calculated as a percent-
age of the observed value. 

The maximum error observed in rainfall
frequencies using CGCM1 data is about 8%
and occurs in spring (Fig. 7); the discrepancy
between the lowess smoother applied to the
observed and the estimated frequencies is
small. 

Satisfactory results are also obtained when the
aforementioned diagnostic checks are applied to
the 20 simulated series obtained using the
1990–2000 CGCM1 generated data (Table 6).
With regard to dry and wet run persistence
(results not shown), the KS test suggests that
only June dry runs are significantly different at
the 5% level, the simulated runs being a little
longer; no difference is detected in wet run dis-
tributions. 

The monthly mean values of simulated amounts are
close to the ones observed (Fig. 8), with a maximum
discrepancy in September. Nevertheless, the KS test
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Deviance       df    

Null model 2349.76 2152
Fitted model 1475.52 2123

AIC:  1518.83 BIC:  1683

Hosmer-Lemeshow stat.:  9.15 (19.74),   p-value:  0.33 (0.01)

Explained variance (%):  39.61 (32.62)
Spring Summer Autumn Winter 

36.08 (23.01) 38.48 (40.72) 40.66 (30.42) 40.57 (39.47)

Lag 1 residual autocorrelation:  0.08 (0.10)

Correctly classified days (%)    Global: 78.63 (80.46)
Spring Summer Autumn Winter 

79.96 (75.23) 79.04 (87.58) 76.89 (77.14) 78.6 (81.92)

Day t −1: Dry Wet

Day t
Dry 82.01 (86.48) 58.02 (67.09)
Wet 75.56 (66.67) 85.65 (77.97)

Monthly wet day frequencies: observed vs. fitted
Correlation coef.:  0.98 (0.72) Efficiency coef.: 0.96 (0.23)
Index of agreement:  0.99 (0.79) Error mean: 0.45% (14.71%)

Table 4. Goodness-of-fit measures for the Down−Oc model in the
estimation period (1990–1997); values obtained in the validation
period (1998–2000) are given within parentheses. AIC, BIC: Akaike 

and Bayesian information criteria

Deviance       df    

Null model 938.16 529
Fitted model 733.7 511

AIC : 5408.46 BIC: 5485.34

Explained variance (%):  17.44 (4.93)
Spring Summer Autumn Winter 

13.58 (10.44) 23.3 (0) 10.75 (22.67) 22.7 (0)

Lag 1 residual autocorrelation:  0.01 (–0.01)

Monthly amount means: observed vs. fitted
Correlation coef. 0.93 (0.59)    Efficiency coef. 0.83 (–0.20)
Index of agreement 0.94 (0.72)    Error mean 1.20% (21.7%)

Observed amount classification (%), defined by fitted distribution quantiles (q)
<q0.10 [q0.10, q0.25) [q0.25, q0.75] (q0.75, q0.90] >q0.90

5.67 (9.09) 14.93 (19.48) 55.20 (50.65) 14.56 (9.09) 9.64 (11.69)

Classification results when Yt−1 = 0
6.87 (8.51) 17.18 (19.15) 51.55 (54.26) 15.81 (8.51) 8.59 (9.57)

Classification results when Yt−1 = 1
4.20 (10.00) 12.18 (20.00) 59.66 (45.00) 13.03 (10.00) 10.92 (15.00)

% days into Spring Summer Autumn Winter
(q0.10, q0.90) 80.99 (77.14) 89.58 (75.86) 84.47 (82.35) 84.77 (84.21)

Table 5. Goodness-of-fit measures for the Down−Q model
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rejects the equality hypothesis at the
5% level in 10 months and at the 1%
level in 6 (results not shown), suggest-
ing that the model Down−Q must be
improved. 

To sum up, the Down model is able
to generate, using CGCM1 data as
input, rainfall series which are indis-
tinguishable from the observed data
with regard to the frequency proper-
ties; for the amounts, the model pro-
duces similar monthly mean values
but it is not able to reproduce the dis-
tributions. Keeping these limitations in
mind, we will use the Down model for
analysing changes in rainfall proper-
ties in a climate change scenario. 

192

Model simulated data 
Diagnostic statistic Observed Observed GCM data GCM data 

covar. 1990–2000 2090–2100

Mean wet day amount 36.67 37.02 33.660 38.47 
SD wet day amount 54.99 58.33 52.960 69.22 
Median wet day amount 16.00 16.38 15.000 15.70
Maximum daily precipitation 413.0 946.4 1159.0 1842.0
p00 = P(Yt = 0|Yt−1 = 0) 0.826 0.826 0.833 0.827
p11 = P(Yt = 1|Yt−1 = 1) 0.434 0.417 0.418 0.430
pw = P(Yt = 1) 0.235 0.230 0.223 0.232
Mean wet-spell length 1.790 1.720 1.72 1.75 
Mean dry-spell length 5.880 5.730 5.60 5.80 
Frequency of dry-spells >10 d 0.142 0.153 0.171 0.142

Table 6. Diagnostic measures (Wilby et al. 1998) for comparing observed and
Down model simulated series for the period 1990–2000. Right column: results

obtained for 2090–2100 projection

Annual Winter Spring Summer Autumn

Observed and fitted values using observed data 

Wet day frequency
Observed 82.1 22.0 22.5 15.0 22.8
Fitted 82.4 22.3 20.8 14.7 24.5
% change 0.36 1.1 –7.4 –1.8 7.8

Rainfall amount (10–1 mm)
Observed 2920.0 648.0 906.0 518.0 850.0
Fitted 2950.0 760.0 900.0 507.0 786.0
% change 1.2 17.2 –0.66 –2.1 –7.6

Fitted values using 1990–2000 GCM data

Wet day frequency
Fitted 80.8 21.2 20.7 14.6 24.2
% change –1.6 –3.6 –8.0 –2.3 6.2

Rainfall amount (10–1 mm)
Fitted 2740.0 608.0 856.0 485.0 791.0
% change –6.2 –6.2 –5.6 –6.3 –7.0

Projected values for 2090–2100

Wet day frequency
Projected 84.8 25.1 13.2 13.6 32.9
% change/observed 3.2 14.1 –41.3 –9.3 44.5
% change/GCM 1990–2000 4.9 18.4 –36.2 –6.8 36.0

Rainfall amount (10–1 mm)
Projected 3260.0 745.0 764.0 686.0 1070.0
% change/observed 11.7 14.9 –15.7 32.4 25.9 
% change/GCM 1990–2000 19.0 22.5 –10.7 41.4 35.3 

CGCM1 output rainfall data

Wet day frequency 
GCM 1990–2000 240.9 80.7 75.8 36.5 47.8 
GCM 2090–2100 227.3 81.2 67.5 32.0 46.6 
% change –5.62 0.6 –10.9 –12.4 –2.5 

Rainfall amount (10–1 mm)
GCM 1990–2000 4999.9 2022.6 1512.2 636.1 827.8
GCM 2090–2100 4745.3 2162.9 1102.1 629.0 851.5
% change –5.07 6.94 –27.1 –1.13 2.86

Table 7. Comparison between observed values and different estimations, using the Down model, of the annual and seasonal
precipitation frequency and amount for the periods 1990–2000 and 2090–2100. Also shown are results directly obtained from the

CGCM1 model
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4. PROJECTED RAINFALL PATTERN FOR THE
PERIOD 2090–2100 UNDER AN IS92a SCENARIO

In this section we analyse the rainfall pattern predicted
by the Down model for the period 2090–2100 in the area
represented by the Zaragoza observatory; the input is
the CGCM1 projected data under the IS92a scenario. 

The climate projection proposed by CGCM1 indi-
cates an increase of about 4°C in TMAX and TMIN mean
values at the surface level and greater increases at
higher levels: 4.5°C at 850 hPa and 6°C at 500 hPa; the
standard deviation would increase 10% at the surface
level for both TMAX and TMIN and also for the tempera-
ture at the 850 hPa level. 
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According to this projection, the pressure distribu-
tion would not experience significant changes in loca-
tion and variability (Fig. 9). The specific humidity
would keep its seasonal profile and increase the mean
level at the 3 heights, the rise being greater at higher
levels: 53.1% at 500 hPa (Fig. 10), 26.3% at 850 hPa
and 22.5% at the surface level; its variability would
also increase in all the cases. This scenario has already
been described: the rise of temperature would increase
the evapotranspiration and, conse-
quently, the water vapor in the atmos-
phere. 

The annual number of rainy days for
2090–2100 forecasted by the Down
model is similar to the currently
observed values. However, a strong
reduction is projected for spring
months, a significant increase in Sep-
tember and other minor ones in
August and October (Fig. 11). 

The analysis of 20 simulated trajec-
tories allows us to evaluate the change
in wet and dry run length distribu-
tions. The results (not shown) support
the seasonal profile already discussed;
the KS test asserts the significant dif-
ference, at the 5% level, of the dry run
length distribution in April, May, June
and September. For wet runs, the
Wilcoxon test states that significant
differences exist, at the 5% level,
between February and May and also

for September; in March, the third
quartile is about 1, which means that
75% of the forecasted rainy spells will
be formed by isolated days. 

There are 2 periods, spring (espe-
cially April) and August, where an
increase in precipitation intensity is
forecasted (Fig. 12). In other months,
the simulated mean values are similar
to those currently observed. The diag-
nostic checks shown in Table 6 do not
detect any discrepancies between
observed and forecasted regimes,
because the most important difference
is associated with the seasonal cycle. 

The forecasted rainfall pattern is
summarised in Table 7. The changes
in annual rainfall frequency and in
total amount would be minor but the
seasonal cycle would change signifi-
cantly. Rainfall frequency would fall
by 37% in spring, with respect to val-
ues proposed by the model for the cur-

rent period; the number of wet days proposed would
be similar to the number currently observed in sum-
mer. Spring is the only season where the model fore-
casts an amount decrease; the drop is less important
than the one corresponding to the frequency because
an increase in the rainfall intensity is forecasted. The
model proposes an annual cycle with a wet phase in
autumn and winter; in this period the rainfall fre-
quency would be greater than the current values and
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the total amount would increase by 20%. In contrast,
the dry period, between March and August, would
show a minor frequency of wet days and a total amount
similar to the current values. 

The comparison of the precipitation change projected
by the downscaling model with that obtained directly
from the GCM output (see the bottom of Table 7) shows

some agreement on the summer frequency and also on
the direction of the change proposed for the spring fre-
quency and for winter and spring amounts; neverthe-
less, the relevant change of the seasonal cycle pro-
jected by the Down model is not forecasted by CGCM1. 

We do not know of any downscaling study which has
obtained precipitation projections for the middle
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region of the Ebro valley, so in order to establish some
comparison with the results obtained we discuss the
projections proposed by other authors for 2 nearby
areas. Beckmann & Buishand (2001), using ECHAM-
OPYC3 model data, estimated the change in winter
and summer seasonal mean values of the rainfall fre-
quency and amount, between the periods 1968–1997
and 2070–2099, for the Salto de Bolarque area (Iberian
South Meseta), located 220 km south-southwest of
Zaragoza. They projected a decrease in the number of
wet days, especially in summer, and a relatively
smaller decrease in both seasonal amounts because of
the effect of the change in the geopotential height at
850 hPa, which would raise the wet day amount. Our
results for the Zaragoza area agree with the frequency
decrease forecasted for summer and with the increase,
in both seasons, of rainfall intensity. 

Sumner et al. (2003) analysed the rainfall episodes
which generate amounts greater than 5 mm in at least
5% of the considered stations, for the Spanish Mediter-
ranean coastal region. Using the data generated for the
period 2080–2099 by the ECHAM-OPYC3 model, they
project for the Ebro delta area, 180 km southeast of
Zaragoza, an increase in convective situations at the
end of the summer and autumn and no changes in the
annual amount, 2 characteristics which we find in the
projection for the Zaragoza area. 

5. CONCLUSIONS

The method proposed is useful for obtaining long-
term projections for the daily rainfall pattern in a cli-
mate change scenario at a local scale. The current
Down model is able to simulate rainfall series from
which we can obtain conclusions about the seasonal
characteristics and, also, about certain aspects of the
daily behaviour, such as dry and wet run persistence.
The inaccuracy of the quantity model does not allow
us, for the moment, to be confident about conclusions
on other properties such as characterisation of extreme
events. Thus, we have restricted our analysis to rainfall
frequency and to seasonally aggregated results for the
amounts. These results could probably be improved by
using another GCM with a better spatial resolution or
providing a more informative output. 

Our method has some advantages compared to other
approaches: (1) it is able to use the GCM daily output
directly; (2) it analyses the way the GCM reproduces
the observed climatology at the scale where the pro-
jection is made, the daily scale; (3) the regression
model provides a more flexible approach than the
models based on the atmospheric state. It allows us to
use any variable well described by the GCM instead of
being limited to pressure-related information. The

presence in the model of other variables let us take into
account different aspects of climate change, which
increases the method sensitivity. Moreover, our model
generates probabilities and expected amounts varying
in a continuous range whereas models based on the
climate state provide values only for the defined situa-
tions. 

The modelling process has proved the relevance of
variables such as the specific humidity at the surface
and 500 hPa levels, as stated by Beckmann & Buishand
(2001, 2002), and also of the temperature daily range, a
variable not used in previous works. The suitability of
the model for climate long-term projection has been
proved by analysing the results obtained using the
GCM generated variables corresponding to the pre-
sent climate as input; this checking is important since
the posterior application requires the minimal bias
from the model. 

As in all prediction methods, this procedure needs
the established relationship for the current climate
between rainfall and atmospheric variables to stay in
the climate change scenario. In favor of the Down
model we can say that the apparent inflexibility of its
seasonal profile, described by harmonic terms that do
not change in the period 2090–2100, has not prevented
the projection of an important change in rainfall sea-
sonality. 

Statistical modelling supposes that non-explained
variability follows a random behaviour. As we have
seen, the models built could not include relevant infor-
mation and were forced to employ anomalies as covari-
ates because the corresponding variables were not
properly described by the GCM. The solution to this
problem is out of the scope of our research; the bias
associated will tend to disappear when future GCM
versions that properly describe a greater number of
atmospheric variables are available. The projecting
procedure proposed will still be useful and the reliabil-
ity of the results will improve. 
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