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1. INTRODUCTION

The African continent is particularly vulnerable to the
impacts of climate change because of factors such as
widespread poverty, recurrent droughts, inequitable
land distribution, and overdependence on rainfed agri-
culture (IPCC 2001). About 45% of southern Africa
(south of 15° S) receives on average less than 500 mm
precipitation yr–1 and is therefore highly vulnerable to
rainfall variability and change. With socio-economic
development and population increase, the need for ad-
ditional water resources is becoming more urgent.
Therefore, projecting rainfall change is of major
importance to the southern African community.

Future annual warming across Africa ranges from
0.2°C decade–1 (B1 — low scenario) to more than 0.5°C

decade–1 (A2 — high scenario) (Hulme et al. 2001). This
warming is greatest over semi-arid margins like cen-
tral southern Africa. But the inter-model range is also
greatest over the interior of southern Africa. Future
changes in mean seasonal rainfall are even less well
defined. For the Orange Basin, for example, which is
fundamental for the South African economy, Arnell
(1999) estimates that the change in precipitation will
be between –5 and +5%, and the change in runoff
between –10 and +10%. A regional analysis of ensem-
ble simulations shows that for southern Africa (as in 20
to 30% of all worldwide cases) the simulated sensitiv-
ity does not have the same sign in all realizations of
the ensemble (Giorgi & Francisco 2000). Thus, large
uncertainties remain concerning the future evolution
of South African rainfall and water resources. How-
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ever, there is evidence of increased interannual
variability in recent decades over the region (Richard
et al. 2001), which fuels further concern about that
evolution.

General circulation models (GCMs) are the most
fundamental tool for studying climate change.
Whereas GCMs do a creditable job on the large scale,
they have much lower skill at the regional scale. How-
ever, it is at these higher resolution scales that climate
change information is most needed. A possible ap-
proach to bridging the scale gap is downscaling, which
uses dynamical or statistical models to relate large-
scale information from GCMs to regional parameters
(Karl et al. 1990, Giorgi & Mearns 1991, Joubert et al.
1999, Zorita & Von Storch 1999). Considering that the
application of regional climate models is still in its
infancy and computationally very demanding, statisti-
cal downscaling is a practical means to address the
immediate needs of the southern African region. 

Applying statistical downscaling methods to climate
change analysis is becoming quite popular (Von Storch
et al. 1993, Cui et al. 1995, Crane & Hewitson 1998,
Busuioc et al. 2001). However, downscaling has
received relatively little attention in Africa. Hewitson
& Crane (1998) and Hewitson & Joubert (1998, avail-
able at www.egs.uct.ac.za/fccc/) have applied the sta-
tistical downscaling method of artificial neural net-
works (ANNs) to generate climate scenarios for South
Africa. In their study, the climate scenario used is 2 ×
CO2 which is an idealized situation. With new scenario
experiments available, it is necessary to project the
future rainfall change under different conditions and
with different GCMs.

In this study, the scenario experiment follows the
IPCC Special Report on Emissions Scenarios marker
scenario B2 (SRES-B2) (Nakicenovic & Swart 2000).
The statistical downscaling method is based on canon-
ical correlation analysis (CCA) which tends to offer
clearer physical interpretation than ANNs (Barnett &
Preisendorfer 1987, Von Storch 1995).

The purposes of this paper are (1) to use CCA as a
diagnostic tool to verify the performance of a climate
model on the regional scale and (2) to apply a statisti-
cal downscaling model based on CCA to a scenario
experiment in order to project future summer rainfall
change over South Africa.

Sections 2 and 3 of the paper present the data, GCM
experiment and methodology used in this study. Vali-
dation of the GCM simulation of the present-day cli-
matology is described in section 4. In section 5, we
compare the estimates of rainfall change with respect
to rainfall over South Africa, as derived directly from
the SRES-B2 simulations and indirectly using the
downscaling model. Section 6 completes the paper
with a brief summary and concluding remarks.

2. DATA AND GCM EXPERIMENT 

2.1. Data

Most of South Africa experiences summer rainfall
(October to March). Observation shows that circulation
patterns associated with the rains differ between the
early and late summer (D’Abreton & Lindesay 1993).
Compared to early summer, late summer (January to
March [JFM]) variability is internally more consistent
(Richard et al. 2002). In addition, this season receives a
large proportion (40%) of the total annual rainfall over
most parts of southern Africa. Therefore in this study,
late summer is chosen as the target season. 

The original monthly precipitation data were ob-
tained from the South African Weather Service
(SAWS). Covering the whole of South Africa, 93 rain-
fall districts are defined by SAWS. For each one, a spa-
tial mean using a variable number of rain-gauges was
computed. Series start in 1920, and have undergone
quality control by SAWS. We retain 55 of these dis-
tricts, where JFM seasonal rainfall accounts for over
40% of the annual total. They are used as the depen-
dant variables in the statistical downscaling model. For
the southern African region and adjacent oceans, we
additionally use Climate Prediction Center Merged
Analysis of Precipitation data (CMAP, Xie & Arkin
1996) and the Hulme monthly precipitation data from
the Climatic Research Unit (CRU, Hulme 1994, up-
dated), available as a 2.5 × 3.75 degree grid. Monthly
mean sea-level pressure (SLP), which is used as the
independent variable in the statistical downscaling
model, is from NCAR/NCEP reanalysis data for 1948 to
1999 (Kalnay et al. 1996). NCEP SLP has been shown
to be close to the GMSLP (Global Mean Sea Level
Pressure) observed data from the Hadley Centre
(Fauchereau et al. 2003). In addition, we also use grid-
point precipitation and SLP data from the GCM.

2.2. GCM experiment

The GCM used here is the coupled atmosphere-
ocean-sea-ice model ARPEGE/OPA/GELATO assem-
bled at Météo-France. The atmospheric general circu-
lation model (AGCM) is ARPEGE version 3.0 (Déqué et
al. 1994, Déqué et al. 1999). It has a T63 spectrum trun-
cation corresponding to a 128 × 64 Gaussian grid
(roughly 270 × 270 km over South Africa) and 45 verti-
cal levels distributed between the earth’s surface and
the upper stratosphere. At the earth’s surface, the ISBA
(interactions between soil biosphere and atmosphere)
land surface scheme is incorporated (Mahfouf et al.
1995, Noilhan & Mahfouf 1996, Douville et al. 2000).
The ocean model is the OPA GCM version 8.0 devel-
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oped at Laboratoire d’Océanographie Dynamique et
de Climatologie (LODYC), and the sea-ice sub-model
is the GELATO model from CNRM (Salas-Mélia,
2002). These 2 models are coupled to the AGCM by
means of the OASIS coupler developed at CERFACS
(Terray et al. 1995). The ARPEGE/OPA/GELATO cou-
pled model was found to skillfully simulate El Niño
Southern Oscillation (ENSO) features in the Pacific, as
well as large-scale teleconnections (Latif et al. 2001,
Ashrit et al. 2003, Camberlin et al. 2004).

In the scenario experiment used here, the green-
house gases (GHG) and aerosol concentrations are
prescribed but updated each year according to obser-
vations from 1950 to 2000, and to the SRES marker sce-
nario B2 afterwards. B2 is one of the most widely used
scenarios in climate change simulations (IPCC 2001,
Hulme et al. 2001), thus enabling straightforward com-
parisons. Under this scenario, the CO2 concentration
reaches 620 ppm in 2100, which is less than double the
current concentration. The global distribution of sul-
phate aerosols is updated every 10 yr . Both the direct
and indirect effects of aerosols are taken into account
in the radiative code, according to a parameterisation
derived from the work of Boucher & Lohmann (1995).
More details about the GCM experimental design can
be found in Royer et al. (2002). 

We chose 2 main 30-yr time slices for the study: 1970
to 1999 representing present-day climate, and 2070 to
2099 for future climate. The difference between these
2 periods is hereafter referred to as climate change.
Global scale patterns and teleconnections are pre-
sented in Douville et al. (2002) and Camberlin et al.
(2004). Here we focus on the southern African region.
Note that there are some limitations to the results,
since they are based on 1 experiment only using a
single GCM. Intermediate 30-yr timeslices have also
been considered; these suggest that the climate trends
detected based on the years 2070 to 2099 are some-
what robust, but confidence in the results will require
consideration of additional experiments and other
GCMs. 

3. METHOD 

In this study, a statistical downscaling procedure
based on CCA is used to validate the performance of
the GCM and infer rainfall information over South
Africa from SLP fields. CCA has the ability to show
relationships between 2 sets of space-time-dependent
variables by identifying the optimum linear combina-
tion between the 2 sets with maximum correlation
being produced. One of the main advantages of the
method is that it delivers spatial patterns that normally
lend themselves to a clear physical interpretation. In

this sense, it is also a straightforward way to investi-
gate whether the GCM is able to reproduce the
observed linear relationship between the 2 fields. 

The CCA downscaling technique has recently been
used for monthly/seasonal rainfall forecast studies in
South Africa (Landman & Tennant 2000, Landman &
Goddard 2002). The predictors are usually SLP or
geopotential heights (1000 hPa, 850 hPa and 500 hPa)
or a combination thereof. For example, Landman &
Tennant (2000) use SLP and 500 hPa height to down-
scale monthly rainfall for December to February; in
another study (Landman & Goddard 2002), 850 hPa
height was chosen as the predictor. These studies indi-
cate that a statistical downscaling method based on
CCA can produce satisfactory rainfall forecasts.

For climate change issues, SLP is considered to be a
more suitable atmospheric circulation variable com-
pared to geopotential heights (Zorita & von Storch
1999). Geopotential heights tend to be much more af-
fected by global warming, but these changes may be
related to changes in the mean atmospheric density
and not necessarily to changes in atmospheric circula-
tion. Therefore, we choose SLP rather than geopoten-
tial heights as the independent variable to develop the
statistical downscaling model. Although downscaling
without the incorporation of key variables such as at-
mospheric water vapour in the relationship may lead to
difficulties, significant regional climate change infor-
mation may still be derived (Joubert & Hewitson 1997). 

The performance of a statistical downscaling model
may be sensitive to the predictor domain chosen. For
example, when a smaller domain excluding the
Atlantic section (10° W to 70° E) was used, we found
that the first 3 SLP EOF patterns for NCEP reanalysis
data did not agree very well with those for the GCM.
Therefore, a wider domain was used. Based on careful
assessments, we chose the domain 40° W to 100° E and
55° S to the equator, which covers much of the tropi-
cal–subtropical Atlantic and Indian Ocean, to con-
struct the CCA downscaling model.

In this study, projection of the future rainfall change
is made in 2 steps. Firstly, we construct a CCA statisti-
cal downscaling model based on the present-day
observed link between SLP and rainfall: 

(1)

where R̂(x,t) are the time series of estimated rainfall
anomalies for a given district x, regression coefficients
α(i) are related to canonical correlation coefficients,
s(i,t) are the time-dependent amplitudes of the canoni-
cal correlation patterns for Slp (i,x), ℜ(i,x) are the
canonical correlation patterns for rainfall, and n is the
number of canonical patterns retained in the statistical
downscaling model.

ˆ ( , ) ( )· ( , )· ( , )R x t i s i t i x
i

n

= ℜ
=
∑α

1
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Secondly, keeping α and ℜ unchanged, which is the
downscaling assumption that these canonical correla-
tion relationships will also remain valid in the future
climate, the rainfall change estimated by the statistical
downscaling model is just a linear combination of the
canonical patterns. This linear combination changes
only for the different time steps, as given by the time
series s(i,t):

(2)

where Slpa(x,t) are the SLP changes between future
and present-day, Slp(i,x) are the canonical SLP pat-
terns determined in the first step and ε are the residu-
als. By minimizing the variance of the residuals, s(i,t) is
found. Applying s(i,t) to Eq. (1), future rainfall change
is projected. 

More detailed information on the procedure can be
found in Barnett & Preisendorfer (1987), von Storch et
al. (1993) and Zorita & von Storch (1999); relevant stan-
dard calculation routines are available from public
software packages. 

The above procedure indicates that the projected
rainfall changes depend closely on the quality of the

statistical downscaling model. Thus, in the first step,
extensive sensitivity experiments were conducted to
determine α(i) and ℜ(i,x), which are sensitive to many
factors, such as the domain chosen to identify the sta-
ble large-scale patterns, the number of EOFs retained
to extract enough large-scale information and filter un-
necessary ‘noise’, and the number of CCA components
used for the construction of the downscaling model. 

4. GCM SIMULATION OF PRESENT-DAY CLIMATE 

4.1. Mean states

Fig. 1 shows the seasonal mean rainfall over south-
ern Africa and adjacent areas. Compared with CMAP
data (1979 to 2000 mean, Fig. 1a), the GCM repro-
duces the general features well, that is rainfall is
centred over tropical areas, Madagascar and part of
the sub-tropical region. The ‘V’ pattern of the
Intertropical Convergence Zone (ITCZ)—located at
higher latitude around the Mozambique Channel and
closer to the equator over the tropical Indian Ocean
and the African continent—is simulated in a realistic
way. However, rainfall is overestimated over southern
Africa, as it is by the Hadley Centre HadAM3H (Hud-
son & Jones 2002) and many other GCMs (Joubert &
Hewitson 1997). Note that the NCEP reanalysis data
does not exhibit this feature, except along the south-
eastern coast (Poccard et al. 2000). GCM rainfall over-
estimation may be due to unrealistic representation of
orography and sub-grid parameterization. 

The global SLP pattern (not shown) is captured by
the GCM in a realistic way. For example, the position
of the main semi-permanent high pressure cells of the
subtropics is generally well reproduced. There are
larger errors at high latitudes (roughly north of 65° N
and south of 50° S) which may partly be related to the
treatment of sea-ice in the coupled model. Ashrit et al.
(2003) found an underestimation of the sea-ice feed-
back in similar experiments with the same GCM. The
simulation of SLP over low and middle latitudes is in
good agreement with the NCEP climatology, as
demonstrated in Fig. 2 for southern Atlantic and Indian
Ocean region. Compared to NCEP, the simulated SLP
is slightly higher over the interior of South Africa, but
the difference is generally less than 1 hPa. Around
southern Africa, the 2 major sub-tropical highs, the
Mascarene and St-Helena anticyclones, are repro-
duced well in terms of both location and shape, but the
intensities of these 2 highs are 1 to 2 hPa lower in the
GCM. Therefore, the SLP gradient between the sub-
tropical oceans and the African continent, as well as
with the mid-high latitudes, is somewhat weaker than
in NCEP.

Slpa x t Slp i x s i t
i

n

( , ) ( , )· ( , )= [ ] +∑ ε
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Fig. 1. Seasonal mean precipitation (PPT) January to March
(JFM, mm d–1). (a) CMAP (1979 to 2000; Xie-Arkin, Xie &
Arkin 1996), (b) ARPEGE/OPA/GELATO simulation (1970 to
1999). Contour interval is 2 mm d–1; values exceeding 6 mm

d–1 are shaded
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4.2. Teleconnection patterns

The Southern African Rainfall Index (SARI, Richard
et al. 2000) is used to investigate relationships between
observed rainfall over southern Africa and global SLP.
To define the SARI, 28 grid points selected by an EOF
were extracted from the CRU dataset (Hulme 1994).
These grid points cover an area, including the part of
South Africa under study here, with strong covariance.

After standardising each of the 28 series, a spatial
mean was computed (Richard et al. 2000). A ‘quasi-
SARI’ index was computed as the spatial mean of 20
GCM grid points covering approximately the same
area. The correlation map between SARI and NCEP
reanalysis (1970 to 1999) shows that rainfall over
southern Africa is significantly associated with ex-
tended SLP anomalies (Fig. 3a). A dipolar pattern of
high SLP over the southwest Indian Ocean and low
SLP over South Africa is associated with above normal
rainfall over South Africa. This dipole was previously
observed using outgoing longwave radiation data
(Jury 1992). Over the tropical Pacific area, negative
correlations are found in the west, and positive in the
east, a pattern characteristic of ENSO variability.
Southern African rainfall variability is known to be
associated with ENSO (Lindesay 1988). 

The southwest Indian Ocean dipolar pattern and the
larger-scale teleconnections are correctly reproduced
by the GCM at present-day (Fig. 3b), and remain
robust in the future (Fig. 3c), although these relation-
ships seem to be stronger than those found from the
NCEP reanalysis. This is consistent with simulated
teleconnection signals between ENSO and global rain-
fall being slightly stronger than observed (Camberlin
et al. 2004), though the GCM adequately reproduces
the patterns and seasonality. In particular, the GCM
simulates a distinct drying over southern Africa in
warm ENSO years, in agreement with the observations
(Camberlin et al. 2004).

Over southern Atlantic high latitudes (40 to 60° S),
there is also a significant positive correlation area with
SLP, which the GCM fails to display or misplaces
towards the southwest Indian Ocean. Considering the
relatively sparse observed SLP data over high latitude
oceans in the Southern Hemisphere, this discrepancy
may be partly data-dependent. However, when we
choose the downscaling domain, the southern bound-
ary is limited to 45° S so as to reduce the possible
effects of this discrepancy. 

The correlation map of SARI with 850 hPa geopoten-
tial height is similar to the pattern of SARI with SLP,
and this pattern is also well reproduced by the GCM
(not shown here).

4.3. EOF patterns

4.3.1. Precipitation

For observed precipitation, the original 55 district
rainfall data were first regridded on a similar grid to
that of the GCM, in order to enable meaningful com-
parisons. The first EOF pattern, as computed from the
covariance matrix, explains 65.8% of the variance. It
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Fig. 2. Seasonal mean SLP (sea-level pressure, hPa) January
to March, 1970 to 1999. (a) NCEP reanalysis, (b) ARPEGE/
OPA/GELATO simulation and (c) difference between GCM
(general circulation model) and NCEP. In (a) and (b) contour
interval is 4 hPa, values below 1008 are lightly shaded and
values exceeding 1020 are heavily shaded. In (c) contour
interval is 1 hPa. NCEP: National Centers for Environmental
Prediction reanalysis data. For other abbreviations see Fig. 1
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bears the same sign over the whole of South Africa
with slightly heavier positive loadings in the central
interior (Fig. 4a). There exists over southern Africa
an extensive mode of rainfall variability, extending
beyond South African boundaries (e.g. Richard et al.
2000).

The second pattern (Fig. 4b), explaining only 17.2%
of the total variance, displays opposite loadings be-
tween the southwest (positive) and the northeast (neg-

ative). It should be interpreted as a weighing factor
associated with the first EOF: a systematic analysis of
JFM rainfall anomalies in South Africa since 1920 did
not indicate such a recurrent dipole (Rouault & Richard
2003). The first and second EOFs together account for
83% of the total seasonal precipitation variance.

The GCM seemingly fails to reproduce the ob-
served features, since the uniform variations dis-
played in EOF1 are not found (Fig. 4c,d). However,
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Fig. 3. Correlation between (quasi-) SARI (Southern African Rainfall Index) and SLP. (a) NCEP reanalysis (1970 to 1999),
(b) ARPEGE/OPA/GELATO (1970 to 1999) and (c) ARPEGE/OPA/GELATO (2070 to 2099). Light (dark) shading indicates areas
of negative (positive) correlation. Contour values are 0, ±0.36, and ±0.55; 0.36 and 0.55 are locally significant correlation 

thresholds at 95 and 99.9% level, respectively. For abbreviations see Figs. 1 & 2 
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the first 2 EOFs depict regional patterns which coin-
cide well with the 2 poles displayed in the observed
EOF2 (Fig. 4b). Moreover, when a rotation is per-
formed on the first 2 observed EOFs (Fig. 4e,f), we
obtain spatial patterns which are very close to those
obtained from the GCM output, either unrotated
(Fig. 4c,d) or rotated (Fig. 4g,h). The total variance

explained by the first 2 EOFs does not differ much
between the observations (83%) and the GCM
(79.7%). With the exception that the large-scale vari-
ability common to the whole region is weak in the
GCM, one can consider that the GCM fairly well
approximates the large-scale patterns in the observa-
tions. 
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Fig. 4. EOF spatial pattern of precipitation (1970 to 1999). (a) 1st and (b) 2nd PC from upscaled observations (Obs.); (c) 1st and
(d) 2nd PC from ARPEGE/OPA/GELATO; (e) 1st and (f) 2nd PC from upscaled observations with Varimax rotation; and
(g) 1st and (h) 2nd PC from ARPEGE/OPA/GELATO with Varimax rotation. Shaded: positive loadings; white: negative loadings.
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4.3.2. SLP

The first unrotated EOF pattern from NCEP reanaly-
sis data is represented by a positive sign over almost all
the domain, with loadings heaviest in the south
Atlantic and south Indian Oceans (Fig. 5a). The GCM
leading EOF pattern is also dominated by a positive
sign everywhere (Fig. 5b). However, the patterns do
not perfectly agree, since loadings over land are
weaker (though still positive) in the GCM than in
NCEP reanalysis. The explained variances from NCEP
reanalyses and the GCM are 37.8 and 40.1%, respec-
tively. This mode, depicted in a similar way by both the
reanalyses and the GCM, is not an artefact: in the
observation (Nicholson & Kim 1997) and in the GCM
(not shown), in-phase variations are shown over both
basins at times of ENSO events during JFM, and the
present mode is partly a reflection of the ENSO impact
on the regional SLP field.

The second EOF patterns from NCEP reanalyses and
ARPEGE are also similar; both of them display an out-
of-phase relationship between the tropics and sub-
tropics (Fig. 5c,d). The explained variances are 21.2
and 19.8%, respectively. These patterns broadly coin-
cide with those depicted in Fauchereau et al. (2003).
They exhibit a pressure distribution over the Atlantic
Ocean which is similar to that of the Indian Ocean,

including anomalies of opposite signs between the
tropical and the subtropical-temperate latitudes.

4.4. CCA patterns

Fig. 6 shows the first CCA features from observed
rainfall and NCEP reanalysis SLP. Wetter than normal
conditions over most of South Africa (Fig. 6a) are asso-
ciated with a pattern of low SLP covering South Africa
and 2 high SLP nuclei in the southern Indian and
southern Atlantic Oceans, bringing moist air masses
onto the continent (Fig. 6b). This pattern is similar to
that obtained by Miron & Tyson (1984) for the wettest
seasons. This association is emphasized by the high
correlation (0.77) between the SLP and rainfall CCA
time scores (Fig. 6c).

CCA2 (Fig. 7a) should be viewed as a weighting fac-
tor associated with the NE/SW modulation of South
African rainfall as displayed in the CCA1 pattern. The
dominant SLP feature of CCA2 (Fig. 7b) is located over
the ocean southeast of the subcontinent, with en-
hanced (reduced) SLP at times of above (below) nor-
mal rainfall over the central interior (northeast). The
positive SLP anomalies correspond with an anticy-
clonic/anticlockwise circulation anomaly. In agree-
ment with CCA2, Reason (1998) shows that in the

116

. .

. .. .

Fig. 5. EOF spatial pattern of SLP (1970 to 1999). (a) 1st and (c) 2nd PC from NCEP; (b) 1st and (d) 2nd PC from ARPEGE/
OPA/GELATO. For abbreviations see Figs. 1, 2 & 4
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CSIRO GCM such a circulation feature, forced by
warm sea surface temperature (SST) south of South
Africa, leads to regionally contrasted rainfall anom-
alies over South Africa, with dry conditions over the
northeast. 

Given the fact that the GCM fails to replicate the in-
phase variability over the region (section 4.3.1), it is no
surprise that the CCA features at first sight look quite
different for the GCM simulation. In the GCM, CCA1
depicts rainfall over the central interior (Fig. 8a), and

CCA2 over the northeast plateau (Fig. 9a). The rainfall
and SLP time scores are similar, with correlations of
0.88 (Fig. 8c) and 0.72 (Fig. 9c), for CCA 1 and 2
respectively. A common feature associated with above
normal rainfall in both regions (Figs. 8b & 9b), well
shown in the observations as well (our Figs. 6b & 7b,
Jury 1992), is a SLP high east of Madagascar. However,
south of the continent, the 2 simulated CCA modes dis-
play different features, i.e. a high (low) associated with
a wet central interior (northeast). These features are
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actually very similar to those seen as a combination of
CCA 1 and 2 in the observation. Thus, on the whole,
the GCM is considered to have some skill in simulating
the mechanisms that control regional precipitation
through SLP. In addition, since it is a combination of
the 2 CCA modes which are used to define the down-
scaling model, the fact that there are some differences
between the GCM and observed individual modes
does not matter much and can be bypassed by the
mixed empirical/dynamic approach described in the
next section.

5. DOWNSCALING MODEL AND PROJECTION OF
SUMMER RAINFALL CHANGE 

5.1. Downscaling model

Based on the observed link between rainfall and
SLP, the statistical downscaling model is developed
with 1970 to 1999 as the training period and 1948 to
1969 as the verification.

Prior to the CCA, the original data are projected onto
their EOFs in order to filter out atmospheric noise (Bar-
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nett & Preisendorfer 1987). The performance of the
downscaling model is sensitive to the number of EOFs
retained for the CCA and the number of CCA compo-
nents used in the regression model. In the present
study, these numbers are determined simultaneously
through training and testing skill sensitivity tests, i.e.
checking that the skill of the model is high and does not
substantially change after the addition of new compo-
nents. Here, the skill of the downscaling model is mea-
sured by 2 indexes: the correlation between observed
and reconstructed rainfall, and the variance explained
by reconstructed rainfall. The combination of 2 EOF
modes of precipitation (79.4%) from SAWS, 8 EOF
modes of SLP (91.7%) from NCEP data, and 2 CCA
modes produces the optimal skill. In the training pe-
riod, the average correlation between observed and
reconstructed time-series is 0.69, and the variance of
reconstructed precipitation explains 37.5% of total lo-
cal variance. It is interesting to note that if we replace
NCEP SLP with SLP from the GCM and keep the ‘2-8-2’
combination in the training period, the correlation be-
tween estimated and observed rainfall is 0.59 and the
explained variance is 34.4%, not decreasing much
compared to the skill based on NCEP data. This compa-
rable skill is attributed to the realistic simulation of SLP
in the GCM. However, the correlation is overestimated
during the training period from a finite sample (e.g. von
Storch 1995). Hence, we also use the independent
period 1948 to 1969 (22 yr), based on SAWS rainfall and
NCEP SLP data, to test the statistical model.

For the testing period, a Monte Carlo process (Livezey
& Chen 1983) is used to estimate the skill level of the
CCA downscaling model. This is done by randomly re-
sampling the rainfall estimated from the CCA downscal-
ing model for each observed district and correlating each
resampled series with the observed rainfall series. After
1000 repetitions, the absolute correlations for each dis-
trict obtained from the resampling process are ranked,
and the 950th correlation value is the lower limit for the
rainfall correlation for the particular district which is sig-
nificant at the 95% level. For the period 1948 to 1969, the
threshold value for a 95% confidence level is about 0.35.
The skill (even based on NCEP SLP) is generally low:
only 38.2% (21 out of 55) of the districts have statistically
significant skill. Most of the skill is concentrated over the
central interior where 14 out of 20 districts have signifi-
cant skills, and the average correlation coefficient be-
tween observed and fitted time-series is 0.41. The skill is
quite low in the northeast area where only 2 out of 13 dis-
tricts reach statistical significance. The CCA downscal-
ing model displays a general weak dry bias (as com-
pared to SAWS observed rainfall) through the verifying
period. The rainfall is mostly underestimated by the CCA
model (about 5%) over the central interior, and slightly
overestimated (less than 5%) over the northeast area.

The low skill of the CCA model is attributed to
(1) lower reliability of NCEP reanalysis SLP data in the
African region before 1968 (Poccard et al. 2000) and
(2) decadal variability in the relationship between
atmospheric circulation and southern African rainfall
(Richard et al. 2000, 2001). The rainfall/SLP relation-
ship as demonstrated by the SARI-NCEP SLP correla-
tions during 1948 to 1967 is rather weak. For instance,
the out-of-phase relationship between southern Africa
rainfall and SLP over the southwest Indian Ocean can-
not be identified in this period. These results partly
reflect the lower quality of NCEP data for the region
prior to 1968. As to the second possible reason, it is
partly an inherent caveat of statistical downscaling
methods based on linear regression, such as CCA pro-
cedures (Zorita & von Storch 1999). 

5.2. Projection of future rainfall change

Assuming that the relationships between precipitation
and SLP remain valid in the future, we can apply the
CCA downscaling model (calibrated on 1970 to 1999) to
project rainfall change over South Africa under the SRES
B2 scenario. By solving Eq. (2), the time series related to
the simulated SLP change are found and then applied to
Eq. (1), which enables the future rainfall change to be
projected. Fig. 10a shows the percentage difference be-
tween future (2070 to 2099) and present-day (1970 to
1999) rainfall from the direct GCM grid-point output;
Fig. 10b shows that derived from the CCA downscaling
model. Both of them demonstrate a drought tendency.
The CCA downscaling model indicates a drier (–16.1%
on average) situation than the GCM direct estimation
(–8.2% on average). However, both of them are within
the range of estimates presented in Hulme et al. (2001)
and in IPCC (2001). The latter, partly based on Giorgi &
Francisco (2000), used 5 AOGGCMs, including that of
the Hadley Centre, for which 4 realizations were avail-
able. Under a 1% yr–1 CO2 increase with sulphate
forcing, the simulated change ranges between –25 and
+10% for December to February rainfall over a southern
African window larger than ours. Our analysis indicates
that over the central interior rainfall is likely to decrease
more than over other areas, as is indicated by both the
GCM direct output and, more clearly, the downscaling
model. Over the northeastern region, the downscaling
model indicates a rainfall decrease of about 15%,
whereas the change from the GCM direct output is
very modest at less than 5%.

We have repeated this procedure for other 30-yr peri-
ods, taking 2020 to 2049 for example, and find a similar
rainfall change pattern (not shown here): an overall dry
tendency occurs over the domain of interest, especially
the central interior. For 2020 to 2049, the average rain-
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fall decrease is 2.6% from the GCM direct estimation
and 7.4% from the CCA downscaling model. Over the
northeastern region, the GCM direct output indicates a
very small increase, which is in contrast to an almost
5% decrease as derived from the CCA downscaling
model. This is consistent with the result from the period
2070 to 2099 that more uncertainty of rainfall change
exists over the northeastern part of South Africa.

The discrepancy between GCM and downscaled rain-
fall changes may be attributed to the fact that only
atmospheric dynamics (indirectly, through SLP) are con-
sidered in the downscaling model. Rainfall amounts also
depend on atmospheric water vapour content, this effect
being fully addressed by the GCM. Since temperature
and evaporation (at least over the ocean) show a clear
rising trend during the 21st century in the simulation, the
resulting enhancement of specific humidity may account
for the fact that the rainfall deficit is less pronounced in
the GCM than in the downscaling model. Given that
only SLP-induced precipitation changes are considered

in the latter model, how confident are we about the pro-
jections? SLP patterns are well simulated by the GCM,
which makes this variable a robust candidate for assess-
ing changes in the regional climate. By contrast, evapo-
ration over the region is largely overestimated (this prob-
lem being shared by many other GCMs, e.g. Hudson &
Jones 2002). This is a result of much too high rainfall
amounts, but reciprocally this impacts on the availability
of water in the atmosphere. Though the downscaling
model only considers purely dynamical effects and still
misses some part of the rainfall variance, possibly related
to other components of the water cycle, the results are
more robust than if humidity was used as a predictor,
given the biases in the simulation of this quantity. In ad-
dition, the fact that both the GCM gridpoints and the
downscaling model indicate a moderate decrease in
rainfall gives more confidence in the sign of change
(which is uncertain according to previous studies; Giorgi
& Francisco 2000, IPCC 2001).

Which modifications of the SLP field may explain the
overall rainfall decrease? The GCM simulation dis-
plays for the 21st century a marked SLP increase over
the subcontinent and a slight decrease south of 40° S
and east of Madagascar (not shown). The pattern is
strongly reminiscent of CCA1 (with a reversed sign) in
the GCM, and is conducive to a strong divergence
anomaly over the Kalahari. This leads to weakened
moisture advection from the southwest Indian Ocean
towards central South Africa.

6. CONCLUDING REMARKS 

In this study, we first use a CCA downscaling pro-
cedure to validate the ability of a coupled GCM
(ARPEGE/OPA/GELATO) to simulate the present-day
climatology over the southern African region. Then we
apply a CCA statistical downscaling model to project
rainfall change over South Africa under the SRES-B2
emissions scenario. The major conclusions are as follows:
• The GCM simulates the general late-summer rainfall

pattern over southern Africa, but overestimation is
found over the continent, especially in South Africa,
with almost a doubling compared to observations.

• The structure and variability of SLP are reproduced
by the GCM in a fairly realistic way. Both the spatial
patterns and time series of the first 2 EOFs match
those from NCEP reanalysis data reasonably well.
However, some discrepancies exist, such as sub-
tropical high pressures over the south Atlantic Ocean
and south Indian Ocean being weaker than observed. 

• The GCM is able to capture the observed link be-
tween rainfall over South Africa and adjacent SLP,
especially the pattern of anomalously low SLP over
the central subcontinent and anomalously high SLP
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over the southwest Indian Ocean, which implies a
major controlling mechanism of rainfall.

• Both the GCM grid-point output and the CCA down-
scaling model indicate a drying trend in the 21st cen-
tury over most parts of South Africa, in particular the
central interior. Compared to present-day climatol-
ogy, in the GCM used in this study, the overall rain-
fall at the end of 21st century is projected to decrease
by 8.2% as deducted from GCM grid-point data, and
by 16.1% from the downscaling model. For South
Africa, these moderate decreases are consistent with
Joubert & Hewitson (1997), who suggested that
mean summer rainfall will decrease by between 10
and 20%. While such a change may appear small, it
has to be considered in combination with the
enhanced evaporation associated with warming, as
well as the increased water requirements in the
context of population rise and economic growth.
Large-scale circulation can only explain part of rain-

fall variance (37.5% in the CCA downscaling model).
Some regional processes such as local soil-moisture
feedback also contribute part of rainfall variability
which, however, cannot be included in the down-
scaling model. In addition, this CCA model mainly
depends on only one possible climate state (the pre-
sent-day state in this case) without accounting for
much of the decadal variability. All of these issues cre-
ate uncertainty in the projected rainfall change from
the downscaling model. The CCA downscaling proce-
dure should be applied to several runs (to account for
varying initial conditions), emissions scenarios and to
other GCMs (to evaluate consensus between GCMs),
and hence strengthen the levels of confidence for the
regional projection. 

Decadal variability of observed rainfall is a relatively
well known feature for the 20th century; in particular a
18-yr oscillation is common throughout southern Africa
(Tyson 1986). It is not verified for most other climate
variables, whose time-series only cover 30 to 50 years.
The GCM used here exhibits a 60-yr rainfall cycle,
which is not evident in the observation, but no 18-yr
periodicity. Decadal variability may also be sensitive to
the SRES scenario, though the GHG evolution is
fairly steady in scenario B2, which is the one used
here. It is found that the regional projection for the mid
21st century agrees, in a more or less linear way, with
that for the late 21st century, which brings some confi-
dence to our conclusions because the consistency in the
trend of precipitation change is likely to be the effect of
the rather linear increase in GHG in the B2 scenario.

Nevertheless, the CCA downscaling model may still
need refining. The model skill could be improved by
adding other parameters, such as water vapour or
winds, but this also probably indicates increasing
uncertainty in the projection of future climate change

because these parameters are also subject to large
errors in GCM simulations. Additionally, data avail-
ability (e.g. water vapour) is likely to limit this option.
The empirical downscaling approach should also be
developed alongside the dynamical modelling ap-
proach. As regional climate modelling skills and tech-
niques develop, the 2 approaches should be evaluated
against each other for requirements of both re-
searchers and policy planners.
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