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1. INTRODUCTION

Stochastic weather generators are statistical models
that mostly generate synthetic daily weather series, usu-
ally precipitation, maximum and minimum tempera-
tures, and solar radiation (Richardson 1981, Richardson
& Wright 1984, Semenov et al. 1998, Hayhoe 2000).
Other weather series, such as wind speed and dewpoint,
can also be modelled (Parlange & Katz 2000). Weather
generators, sometimes, are also applied on an hourly
time step. For example, Katz & Parlange (1995) de-
scribed the generation of hourly precipitation. Precipi-
tation is always the most important component in a
weather generator, because it deals with the occurrence
of a wet day and the amount of precipitation on a wet
day. Other weather variables are usually conditional on
the occurrence of a wet day or a dry day. Therefore,
some weather generators only generate synthetic daily
precipitation sequences (e.g. Bardossy & Plate 1992,
Corte-Real et al. 1999b). Most weather generators are

designed for simulating weather series at a single site,
but multisite weather generators are also under devel-
opment (Wilks 1998, 1999, Qian et al. 2002), because it is
important to maintain spatial correlations in synthetic
weather series in applications such as hydrology.

Generated synthetic weather series can be input to
hydrological and agricultural models such as Erosion-
Productivity Impact Calculator (EPIC; Williams 1995)
and The Decision Support System for AgroTechnology
(DSSAT; Jones et al. 2003) to make long-term risk as-
sessment, because the observed historical weather se-
ries are often too short to allow for a good estimation of
the probability of extreme weather events. The proba-
bility distributions of synthetic weather series are very
important in such applications, because the extreme
values often determine the interpretation of the model’s
output. It is therefore essential to evaluate whether or
not the synthetic weather series follow the same proba-
bility distribution as the observed series. Weather gen-
erators can also be used to extend the simulation of
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weather series to locations where no observed weather
data are available, by interpolating weather generator
parameters obtained from nearby stations to the re-
quired locations (Carter et al. 1995, Hutchinson 1995,
Semenov & Brooks 1999). In recent years stochastic
weather generators have received attention for their
application in climate-change studies, where they are
used as a statistical downscaling technique for develop-
ing daily climate scenarios (Wilks 1992, Semenov &
Barrow 1997). The use of weather generators in down-
scaling and climate scenario development is also cov-
ered in short reviews in the Intergovernmental Panel
on Climate Change (IPCC) Third Assessment Report
(Giorgi et al. 2001, Mearns et al. 2001).

Stochastic weather generators can be conditional
based on large-scale atmospheric circulation. For
example, input parameters are conditional on daily cir-
culation patterns or weather types (Wilson et al. 1991,
Bogardi et al. 1993, Schubert 1994, Goodess & Palu-
tikof 1998, Corte-Real et al. 1999b, Qian et al. 2002)
and the modes of atmospheric variability such as the
North Atlantic Oscillation and El Niño/Southern Oscil-
lation (Mearns et al. 2001, Katz et al. 2003). Condi-
tional weather generators can be used in developing
climate scenarios from GCM (general circulation
model or global climate model)-simulated large-scale
atmospheric circulation, which is more reliable than
GCM predictions of surface climate variables on a
regional scale (Corte-Real et al. 1999a, Giorgi et al.
2001). However, this relies on the assumption that the
observed relationships between large-scale atmos-
pheric circulation and a weather variable remain valid
in a changing/changed climate. Moreover, this
assumption is not guaranteed, although a case study
from a GCM simulation gave positive prospects
(Corte-Real et al. 1999a). Stochastic weather genera-
tors, which are unconditional on large-scale atmos-
pheric circulation, can also be applied to generate
future climate scenarios by adjusting weather-genera-
tor parameters for a changing/changed climate (Wilks
1992, Semenov & Barrow 1997). For instance, statistics
of weather variables for the current climate and the
future climate from GCM outputs can be used to con-
struct climate-change scenarios, which can then be
applied to perturb weather-generator parameters.

Weather generators can be grouped according to
their structure into 2 categories: the Richardson-type
(Richardson 1981)—such as WGEN (Richardson &
Wright 1984), WXGEN (Williams 1995) and CLIGEN
(Zhang & Garbrecht 2003)—and the series weather
generator—such as LARS-WG (Racsko et al. 1991,
Semenov & Barrow 1997). The Richardson-type
weather generators use a Markov chain (first-order,
second-order or hybrid) to simulate the occurrence of
wet days and a skewed probability distribution (such

as a skewed normal distribution, gamma distribution
or mixed exponential distribution) to generate precipi-
tation amount on a wet day. Then, they apply a first-
order multivariate autoregressive model to simulate
other weather variables, such as temperature and radi-
ation, conditioned on the precipitation status (wet or
dry). Weather generators that use the serial approach
differ from the Richardson-type mainly in how they
simulate the occurrence of wet days. Empirical distrib-
utions of wet and dry spells are used instead of a
Markov chain. The empirical distribution Emp = {a0, ai;
hi, i = 1,…,10} used in LARS-WG is a histogram with 10
intervals, [ai – 1, ai), where ai – 1 < ai and hi denotes the
number of events from the observed data in the i th
interval. Random variables from empirical distribu-
tions are chosen by first selecting one of the intervals
(using the proportion of events in each interval as the
selection probability), and then selecting a value
within that interval from the uniform distribution. The
simulation of other variables is also somewhat differ-
ent. The different probability distributions used in
weather generators become important in a highly
diverse climate where the same weather variable may
follow a different probability distribution. 

LARS-WG, a series weather generator developed at
the Long Ashton Research Station (UK), uses empirical
distributions of wet and dry spells, precipitation amounts
and solar radiation. The use of empirical distributions
makes it more flexible for application in diverse climates
around the world. Semenov et al. (1998) compared
LARS-WG and WGEN, a version of the Richardson-type
weather generator, and found that LARS-WG tended to
match the observed data more closely than WGEN,
although there were certain characteristics (such as
interannual variability) of the data that neither generator
reproduced accurately. A weather generator developed
at Agriculture and Agri-Food Canada (AAFC) was
designed to keep the Richardson-type structure because
of its advantage of maintaining the relationships be-
tween weather variables, while introducing the flexibil-
ity of empirical distributions for the diverse Canadian
climates (Hayhoe 2000). This weather generator will be
named AAFC-WG hereafter. 

The objectives of this paper are to compare the most
critical features of LARS-WG and AAFC-WG that
relate to their ability to reproduce observed statistical
properties including probability distributions and
agroclimatic characteristics of observed weather series
across Canada. 

2. AAFC-WG COMPARISON WITH LARS-WG

The Richardson-type weather generators are widely
used in research, and some software packages, such as
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WGEN, WXGEN and CLIGEN, are available to the
public. Hayhoe & Stewart (1996) and Hayhoe (1998)
found that synthetic weather data from WGEN and
WXGEN poorly represent some important statistics of
observed weather series, such as regional and seasonal
differences in the relationship between weather vari-
ables, for Canadian climates. This was not surprising
because the software packages were designed and
calibrated for climates in the US, and important para-
meters, such as correlation matrices and temperature
differences on wet and dry days, in these software
packages were simplified and preset for US climatic
conditions. Consequently, mismatches in simulations
with these weather generators are, at least partly, due
to these simplified and preset parameters. The
Richardson-type weather generators may perform bet-
ter if all the parameters are calibrated in accordance
with local observations. 

Different probability distributions, for example the 2-
parameter gamma distribution, the exponential distri-
bution and the mixed exponential distribution have
been used to simulate daily precipitation amounts on
wet days. This reflects the fact that observed daily pre-
cipitation amounts may follow different types of prob-
ability distributions in different climates. Therefore, it
will be preferable to use an empirical distribution to
simulate daily precipitation amounts, as LARS-WG
does, rather than a simple standard distribution that
introduces the problem of selecting the correct proba-
bility distribution. Palutikof et al. (2002) sampled an
observed daily precipitation time series to avoid the
distribution problem. This sampling procedure was
applied to a multisite simulation, but a potential limita-
tion is that the generated scenarios do not have values
beyond the data pool. 

Other weather variables involved in weather gener-
ators are usually assumed to follow a normal distribu-
tion or can be transformed to a normal distribution.
Daily temperatures are assumed to follow a normal dis-
tribution in LARS-WG. However, daily maximum and
minimum temperatures do not always follow a normal
distribution for most months at stations across Canada
(Hayhoe 2000). ‘Standardized’ daily temperatures, or
residuals from their long-term means, which are usu-
ally simulated first in weather generators rather than
the original daily series, also do not follow normal
distributions. 

An attempt has been made to improve the Richard-
son-type weather generator with the flexibility of
empirical distributions, in order to adapt the weather
generator to highly diverse climates. Hayhoe (2000)
used the structure of the Richardson-type weather
generators but replaced the simple standard probabil-
ity distributions in the random-number generation
with empirical distributions. The developed weather

generator, AAFC-WG, has the advantages of the
Richardson-type weather generators in maintaining
autocorrelations and inter-variable relationships, while
the flexibility to model a variety of probability distribu-
tions is introduced by using empirical distributions.
Detailed descriptions of AAFC-WG can be found in
Hayhoe (2000). Table 1 summarizes some technical
details of how AAFC-WG generates weather series in
comparison with LARS-WG.

AAFC-WG generates 4 weather variables: daily pre-
cipitation (P), daily maximum temperature (Tx), daily
minimum temperature (Tn) and radiation (R). Other
variables such as humidity or dewpoint may be easily
integrated into the model using the same procedure for
Tx, Tn and R because of the flexibility to accommodate
different types of probability distributions. There are
major differences between AAFC-WG and LARS-WG.
Firstly, AAFC-WG uses a second-order 2-state Markov
chain to simulate wet and dry day sequences, while
LARS-WG applies empirical distributions for wet and
dry sequences. It is necessary to check whether the
second-order Markov chain can simulate wet and dry
spells as well as LARS-WG. Secondly, empirical distri-
butions are used for daily Tx and Tn in AAFC-WG,
whereas normal distributions are assumed for daily Tx

and Tn in LARS-WG. This may result in AAFC-WG
simulating temperature-related statistics better than
LARS-WG, especially the probability distributions.
Thirdly, AAFC-WG has kept the structure of the
Richardson-type weather generators; it uses the first-
order multivariate autoregressive model to simulate all
other weather variables except precipitation. Lag-0
and Lag-1 correlation matrices are estimated bi-
monthly. Actual autocorrelations maintain the serial
structure of the observed weather series, which may
also be helpful in reducing overdispersion problems
(Katz & Parlange 1998). Serial correlations may also be
important in reproducing dates, such as the last frost
day in spring and the first frost day in fall. Cross-corre-
lations may also lead to a reasonable reproduction of
the relationships among the involved weather vari-
ables.

It should be noted that the use of the first-order multi-
variate autoregressive model in AAFC-WG implies that
the residuals of Tx, Tn and R are normally distributed.
However, as has been mentioned before, this assump-
tion may not be valid for all locations or for every month.
The normal score transformation (Johnson 1987) is used
in AAFC-WG to overcome this problem. The version of
LARS-WG used for this comparison is a software pack-
age running in a Windows environment (LARS-WG Sto-
chastic Weather Generator 3.0; available for download
from http://www.rothamsted.bbsrc.ac.uk/mas-models/
larswg.html). Technical details of LARS-WG can be re-
ferred to in the accompanying user’s manual.

177



Clim Res 26: 175–191, 2004

3. DATA AND METHODS

3.1. Canadian stations used

Canada is a country with diverse climates with prob-
ability distributions of weather variables that can be
very different at different locations. For example, nor-
mal distributions can be good candidates for daily Tx

and/or Tn at some locations, but poor representatives
at other sites across the country. Therefore, in order to
ensure a valid comparison, it is important to examine
various stations across the country. Agriculture is
mostly found in the southern parts of Canada, and sta-
tions in this study were selected from the AAFC’s
archived weather database using representative loca-
tions across the country. Nine stations, mainly from
south of 60° N (see Fig. 1), were used in this study. The
selection of the stations was also affected by the avail-
able years of the historical weather records. These
weather series were almost complete, with only 2 days
missing at Regina. Climate statistics for 1971–2000,
including 30 yr mean maximum temperatures, mini-
mum temperatures, monthly precipitation totals and

numbers of wet days for the coldest and warmest
months are listed in Table 2. The coldest month is Jan-
uary at all 9 stations, while the warmest month is July,
an exception being Vancouver, where the latter is
August. Climate characteristics shown in Table 2 rep-
resent a variety of climates including a mild maritime
climate on the west coast (Vancouver) and a semi-arid
continental climate on the Canadian Prairies (Regina).

3.2. Comparison of simulations

3.2.1. Statistical properties of concern

Weather generators are supposed to generate syn-
thetic weather series which have statistical properties
similar to the observed series. Some common statistical
properties need to be satisfied for most applications, al-
though additional statistical properties may be important
for specific applications. Means and variances of daily
synthetic weather data are usually required to be not sig-
nificantly different from those calculated from observed
series. It is also important that synthetic weather series
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Weather variable LARS-WG AAFC-WG

Weather status (wet or dry)
Definition of wet day Daily precipitation ≥ 0.1 mm Daily precipitation ≥ 0.2 mm

Determination of weather Lengths of alternate wet and dry sequences Transition probabilities of a
status chosen from an empirical distribution second-order 2-state Markov chain

fitted to the observed series. Separate applied to the previous 2 days’ status.
parameters are calculated for each month Separate transition probabilities 

estimated monthly from observations

Precipitation amount on a Empirical distribution with 10 intervals Similar to LARS-WG, but empirical
wet day (P) from observed daily precipitation distribution estimated from

amounts on wet days for each month. logarithm-transformed precipitation
Amount on a wet day independent from amounts on wet days bimonthly.
previous weather status or amounts Random numbers generated from 

empirical distribution then converted
to precipitation amounts

Maximum temperature (Tx) Normal distribution. Mean and standard Empirical distribution estimated from
deviation of the normal vary daily, by fitting the residual series. Mean and standard
Fourier series to means and standard deviation of the normal vary daily, by
deviations of observed data throughout year. interpolating monthly values of means
Separate Fourier series fitted for wet and and standard deviations of observed
dry days. Constant Lag-1 autocorrelation and daily data with a spline interpolation
preset cross-correlation between maximum procedure. Separate means and 
and minimum temperature standard deviations calculated for   

wet and dry days. Lag-0 and Lag-1  
correlation matrices estimated from 
residuals of Tx, Tn and R bimonthly  

Minimum temperature (Tn) Same procedure as for maximum Same procedure as for maximum 
temperature temperature

Radiation (R) Empirical distribution. Separate parameters Same procedure as for Tx and Tn

estimated for wet and dry days for each
month. Constant Lag-1 autocorrelation

Table 1. AAFC-WG in comparison with LARS-WG
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follow a probability distribution which is not statistically
different from the observations. Furthermore, monthly
values of the weather variables can be obtained from
their corresponding daily values; thus, means and vari-
ances of monthly values are also statistics of concern.

As has been mentioned before, AAFC-WG uses
a second-order Markov chain in simulating the se-
quences of wet and dry days, while empirical distribu-
tions of wet and dry spells are used in LARS-WG. It is
essential to verify whether AAFC-WG can simulate
wet and dry spells reasonably well in comparison to
LARS-WG, in terms of probability distributions of the
lengths of wet and dry spells and corresponding mean
lengths, since wet and dry spells are important for
agricultural applications.

3.2.2. Agroclimatic indices

Agroclimatic indices are also used to test the capa-
bility of the weather generators for agricultural appli-
cations. Nine agroclimatic indices are computed from
observed weather series and synthetic weather series
generated by LARS-WG and AAFC-WG. Most are rel-

evant to heat units and the lengths of
growing season for crops, but a water-
related index is also included. The
agroclimatic indices are as follows:
last date of frost (Tn ≥ 0°C) in spring
(FS), first date of frost in fall (FF), last
date of killing frost (Tn ≥ –2°C) in
spring (KFS), first date of killing frost
in fall (KFF), frost-free days (FFD),
growing degree-days (GDD), effec-
tive growing degree-days (EGDD),
corn heat units (CHU) and precipita-
tion deficit/surplus (PDS). The dates
related to frost are calculated as day
of the year. GDD, EGDD and CHU are
computed based on the findings of the
Agronomics Interpretations Working
Group (1995) and Bootsma et al.
(1999). PDS is calculated on a daily
basis by subtracting precipitation (P)
from the potential evapotranspiration
(PE) and accumulating values over the
same period as EGDD. PE is deter-
mined using the Baier & Robertson
(1965) method to compute latent evap-
oration (LE) from Tx, Tn and solar radi-
ation at the top of the atmosphere and
subsequently LE is converted to PE
(Baier 1971).

3.2.3. Statistical tests

Observed daily Tx, Tn and P series for 1971–2000 at 9
stations are used as inputs to the 2 weather generators
and then synthetic weather series of 300 yr length are
generated for each site. A long synthetic series will
provide stable statistical properties to ensure that any
significant difference between the observed series and
the synthetic series is not a result of sampling, as the
observed series is only a short part of the ‘real’ sto-
chastic process. 

The 2-sample Kolmogorov-Smirnov (K-S) test is per-
formed to check whether the differences are small
enough not to reject the null hypothesis that the syn-
thetic series comes from the same probability distribu-
tion as the observed series. The 2-sample K-S test is
used because it detects the maximum difference
between the probability distribution functions of the
2 samples, without the weakness of the χ2 test of
depending on grouping the samples. 

Quantile–quantile (Q–Q) plots are also used to
demonstrate visually how well the synthetic series
followed the probability distribution of the observed
series for daily Tx, Tn and P in January and July at
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Fig. 1. Location of the Canadian stations for weather-generator comparisons

Stn Tx (°C) Tn (°C) P (mm) NWD
C W C W C W C W

Beaverlodge –8.2 21.5 –17.4 9.0 31.0 70.6 10.6 13.5
Fredericton –4.4 25.4 –14.6 13.2 104.4 89.7 13.1 13.8
Goose –12.9 20.9 –23.3 9.7 64.8 113.8 16.3 18.8
Ottawa –6.1 26.4 –14.8 15.5 64.2 88.9 16.6 12.4
Regina –10.7 25.6 –21.6 11.8 14.6 64.4 10.8 10.9
Toronto –1.1 26.4 –7.3 17.9 61.2 67.5 15.3 10.3
Truro –1.4 23.9 –12.2 12.6 117.3 90.5 16.3 13.0
Vancouver 6.1 21.9 0.5 13.4 153.6 39.1 18.5 6.8
Winnipeg –12.8 25.7 –22.8 13.2 19.6 70.9 11.9 11.5

Table 2. Mean maximum temperature (Tx), minimum temperature (Tn), monthly
precipitation total (P) and number of wet days (NWD) for the coldest (C) and 

warmest (W) months at Canadian stations for 1971–2000
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Beaverlodge and Truro. Relative frequencies of wet or
dry spells for different lengths in synthetic sequences
of wet and dry days are plotted against those from the
observed sequences to show the goodness-of-fit in
simulating wet and dry spells, besides the 2-sample
K-S test. 

The unequal variance t-test is used to test the statis-
tical significance of differences in means between syn-
thetic series and observations. The F-test is performed
to test the statistical significance of differences in vari-
ances. Using t- and F-tests usually assumes that the
series in question are normally distributed, although
daily precipitation series on wet days may not follow
such a distribution. Hayhoe (2000) has explained this
problem and its solution: precipitation amounts on wet
days from observations and simulations produced by
both LARS-WG and AAFC-WG are transformed using
the logarithmic function before applying the t- and
F-tests. All statistical tests are conducted at the 0.05
significance level on a monthly basis.

4. RESULTS AND DISCUSSION

4.1. Wet and dry spells

Because LARS-WG uses empirical distributions to
simulate wet and dry spells, it is reasonable to ques-
tion whether the AAFC-WG, which models wet and
dry spells indirectly using a second-order 2-state
Markov chain, can calculate these spells with similar
accuracy. It was found that AAFC-WG was able to
simulate the relative frequencies of the lengths of
wet and dry spells as well as LARS-WG in all
instances. Results from the K-S test (not shown) indi-
cate that the probability distributions of wet and dry
spells from synthetic daily precipitation are not sig-
nificantly different from the corresponding observed
ones in all months at all stations, for both LARS-WG
and AAFC-WG. 

Fig. 2 displays relative frequencies of wet and dry
spells in the synthetic weather series from LARS-WG
and AAFC-WG against those observed for January
and July at 2 sites, Toronto and Vancouver. These 2
stations were chosen because Vancouver experiences
a wet period in winter and a dry period in summer,
while seasonal variation of precipitation in Toronto is
not so distinct. The relative frequency of the duration
of dry or wet spells is the ratio of the number of dry or
wet spells with a given duration to the total number of
dry or wet spells of all different durations started in the
month. As a dry or wet spell can span calendar months,
the length (duration) of a dry or wet spell in a calendar
month is counted for a spell starting in the month
regardless of when it ends. 

Both LARS-WG and AAFC-WG are capable of simu-
lating dry and wet spells, and the second-order 2-state
Markov chain in AAFC-WG performed as well as
LARS-WG with its empirical distributions. Both
weather generators give a much smoother curve for
the relative frequencies of dry spells in July at Vancou-
ver when the observed data show that it is very vari-
able, although LARS-WG usually reproduces the fluc-
tuations slightly better than AAFC-WG. This may be
associated with intervals of the durations of wet or dry
spells used for the empirical distribution, as LARS-WG
tends to use larger intervals when some long dry spells
exist in a very dry month. Some fluctuations in the rel-
ative frequencies may be the result of the short obser-
vation period and therefore in reality the curves may
be smoother. If this is true, then using the second-order
2-state Markov chains may have the advantage in gen-
erating future climate scenarios, because the transition
probabilities can be easily modified to accommodate
climate change. It may not be feasible to modify the
empirical distributions of dry and wet spells, since only
mean lengths of dry or wet spells are modified in
LARS-WG.

Since wet and dry spells are not directly simulated in
AAFC-WG, it needs to be verified whether AAFC-WG
is able to simulate mean lengths of wet and dry spells
as well as LARS-WG (Fig. 3). Because there are 9 sta-
tions and 12 months involved, a total of 108 data points
are shown in Fig. 3, as is the case for the remaining fig-
ures related to means and standard deviations. AAFC-
WG reproduced the mean lengths of wet and dry spells
equally as accurate as LARS-WG, and the RMSE (root-
mean squared error; Qian et al. 2002) values also indi-
cated similar simulation results to LARS-WG. Results
from the t-test (not shown) did not indicate a signifi-
cant difference between synthetic data and observa-
tions for all months and stations.

4.2. Daily values

The results for LARS-WG and AAFC-WG simula-
tions from the K-S test are listed in Table 3, together
with results from t- and F-tests. The AAFC-WG simu-
lations had fewer months and stations which failed to
pass the test than LARS-WG, for both temperatures
and precipitation amounts on wet days. As large val-
ues in Table 3 imply a poor simulation with the
weather generator, AAFC-WG showed a much better
performance than LARS-WG in simulating tempera-
ture probability distributions, although some lack-of-fit
was still detected, notably in the probability distribu-
tions of Tx and Tn. The better simulation of daily P on
wet days by AAFC-WG may be related to the tech-
nique used in this weather generator whereby empiri-
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Fig. 2. (Above and following page.) January and July relative frequencies of dry and wet spells in synthetic daily precipitation 
series respectively from LARS-WG (left panels) and AAFC-WG (right panels) in comparison with observations at Toronto and 

Vancouver. Observed (OBS) and simulated (sim) means are shown
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Fig. 2 (continued)
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cal distributions for generating synthetic precipitation
data are constructed from logarithm-transformed daily
precipitation amounts on wet days, since intervals for
empirical distributions can be determined more
smoothly after transformation.

The mean from a synthetic series
can be very close to the observed one,
but still comes from a different popu-
lation, and a statistical test may iden-
tify such cases. Results from the t- and
F-tests for means and variances com-
puted from daily values are listed in
Table 3. For means and variances of
daily Tx and Tn, there is no significant
difference detected for AAFC-WG,
while quite a few cases are found dif-
ferent from observations for LARS-
WG. For precipitation amounts on wet
days, significant differences are found
in some cases for LARS-WG, which
further implies a better performance
of AAFC-WG. 

Fig. 4 shows Q–Q plots of daily P on
wet days, Tx and Tn for January at
Beaverlodge and July at Truro. In
these Q–Q plots, quantiles for 1 to
99% are plotted. It is clear that syn-
thetic temperatures from AAFC-WG
match the observations better than
LARS-WG, although in some cases
LARS-WG is also able to reproduce
the observed distributions well. 

Fig. 5 shows visual comparisons of
means and standard deviations com-
puted from synthetic series of daily P,
Tx and Tn against observations, using
all stations combined. AAFC-WG per-
forms better in simulating means and

standard deviations of daily Tx and Tn, resulting in sig-
nificant lower RMSE values than those of LARS-WG.
While the means of daily P are calculated with similar
RMSE values, the RMSE of standard deviations of daily
P is twice as high for AAFC-WG compared to LARS-
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Fig. 3. Mean lengths of wet and dry spells simulated by LARS-WG (left panels) 
and AAFC-WG (right panels) in comparison with observations (n = 108). RMSE: 

root-mean squared error

Variable: P Tx Tn

Test: Distribution Mean Variance Distribution Mean Variance Distribution Mean Variance
K-S t F K-S t F K-S t F

Stn L A L A L A L A L A L A L A L A L A

Beaverlodge 1 0 3 0 10 0 8 1 7 0 3 0 9 5 4 0 3 0
Fredericton 2 0 0 0 2 0 9 3 4 0 1 0 8 3 5 0 4 0
Goose 6 0 0 0 2 0 7 2 4 0 4 0 12 1 6 0 8 0
Ottawa 2 0 0 0 3 0 5 3 5 0 2 0 9 3 5 0 4 0
Regina 5 3 0 0 2 0 9 1 7 0 1 0 10 1 6 0 6 0
Toronto 1 0 0 0 1 0 2 1 4 0 3 0 5 0 2 0 2 0
Truro 4 0 0 0 3 0 5 2 2 0 0 0 12 5 4 0 5 0
Vancouver 1 0 0 0 1 0 6 1 2 0 2 0 5 0 4 0 0 0
Winnipeg 8 1 0 0 0 0 9 3 6 0 2 0 8 3 3 0 7 0

Table 3. Number of months showing significant differences between observed and simulated daily maximum temperature (Tx),
minimum temperature (Tn) and precipitation (P) on wet days by LARS-WG (L) and AAFC-WG (A), using various statistical tests
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WG, indicating a slightly better performance of LARS-
WG, although the RMSE values are small for both
weather generators. Nevertheless, no significant dif-
ference is found between observed variances and sim-
ulated values from AAFC-WG, using the F-test.

4.3. Monthly values

Monthly means of Tx and Tn, as well as monthly P
totals, can be calculated from daily values. Results
from statistical tests indicate no significant difference

184

Fig. 4. (Above and facing page.) Quantile–quantile plots of synthetic daily precipitation (P) on wet days, maximum (Tx) and min-
imum temperatures (Tn) in January at Beaverlodge and July at Truro, from LARS-WG (left panels) and AAFC-WG (right 

panels) in comparison with observations
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in means of the simulated monthly P totals compared
to the observations, for both LARS-WG and AAFC-WG
(Table 4). However, significant differences are
detected for some cases in means of monthly mean Tx

and Tn simulated by LARS-WG against the observed
values, but simulations from AAFC-WG can pass the
t-test for all months at all stations.

One of the challenges for weather generators is how
well they can simulate interannual variability. Standard
deviations of the monthly values computed from syn-
thetic data are displayed in Fig. 6 in comparison with the
observed values. Both LARS-WG and AAFC-WG simu-
late interannual variability of monthly P totals quite well,
although some overdispersion is observed for some
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Fig. 4 (continued)
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places. Results of the F-test showed only a few cases
which were different from observed variances (Table 4).
The overdispersion problem, i.e. underestimation of in-
terannual variability, seemed more serious for Tx and Tn

as more cases were significantly different from observed

variances (Table 4). AAFC-WG performed slightly better
in simulating interannual variability of monthly mean Tx

and Tn than LARS-WG. The RMSE value for the stan-
dard deviations of monthly mean Tn was 0.41°C for
AAFC-WG and 0.58°C for LARS-WG.

186

Fig. 5. (Above and facing page.) Simulated means and standard deviations of daily precipitation (P) on wet days, daily maximum
temperature (Tx) and daily minimum temperature (Tn) by LARS-WG (left panels) and AAFC-WG (right panels) in 

comparison with observations (n = 108)
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4.4. Mean values of agroclimatic indices

A statistical t-test was conducted to verify whether
there are significant differences between observed
values of selected agroclimatic indices and simulated

values computed from synthetic weather data. Results
are listed in Table 5. Both weather generators simulate
these agroclimatic indices reasonably well, although
some differences can be identified. AAFC-WG appears
to do a better job than LARS-WG, since AAFC-WG
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Fig. 5 (continued) 
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only fails in 5 cases, while LARS-WG fails in 14 cases.
Most cases that are not well reproduced by the
weather generators are those associated with daily Tn.

The F-test was also applied to check whether the vari-
ances of agroclimatic indices from synthetic weather
data are significantly different from observations.

Results (not shown) indicate a reason-
able reproduction as no significant dif-
ferences are found for most indices at
most stations.

5. CONCLUSIONS

The second-order 2-state Markov
chain used by AAFC-WG can simu-
late durations of wet and dry spells
as well as the empirical distributions
of wet and dry spells used in LARS-
WG. As mentioned in Section 4,
using the second-order 2-state
Markov chain may be preferable to
the approach used in LARS-WG in
applications for developing future cli-
mate scenarios, because modifying
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Variable: P Tx Tn

Mean Variance Mean Variance Mean Variance
Test: t F t F t F

Stn L A L A L A L A L A L A

Beaverlodge 0 0 4 5 0 0 2 6 3 0 5 2
Fredericton 0 0 0 0 1 0 1 1 0 0 1 3
Goose 0 0 0 0 0 0 3 1 0 0 4 3
Ottawa 0 0 1 0 0 0 1 3 0 0 1 1
Regina 0 0 0 3 1 0 7 5 1 0 4 1
Toronto 0 0 0 0 0 0 2 1 0 0 1 1
Truro 0 0 0 1 0 0 5 3 0 0 3 3
Vancouver 0 0 0 1 0 0 5 5 0 0 4 5
Winnipeg 0 0 2 0 1 0 3 2 0 0 5 0

Table 4. Number of months showing significant differences between observed
and simulated means and variances of monthly precipitation totals (P) and
monthly mean maximum (Tx) and minimum (Tn) temperatures by LARS-WG (L) 

and AAFC-WG (A), using various statistical tests

Indices Beaverlodge Fredericton Goose Ottawa Regina Toronto Truro Vancouver Winnipeg

FS O 143 135 158 118 139 106 147 81 143
L 141 139 161 124* 141 111* 147 85 143
A 140 135 160 122 140 109 145 84 142

FF O 253 273 264 277 256 304 269 311 266
L 254 270 256* 281* 261* 303 266 307 267
A 252 273 262 279 259 306 269 309 263*

KFS O 129 121 145 109 130 98 130 51 131
L 128 126 148 116* 131 102* 135* 66* 135
A 129 123 147 113* 130 100 134 63* 134

KFF O 267 282 275 289 267 318 282 314 272
L 269 281 274 292 270 315 278 317 275
A 264 282 272 290 266 319 281 320 273

FFD O 109 137 105 158 116 196 121 229 122
L 112 130* 94* 156 119 191 118 221 123
A 110 137 101 157 118 197 122 224 120

GDD O 1240 1792 948 2097 1681 2401 1609 2007 1761
L 1213 1772 958 2054 1650 2399 1602 1989 1731
A 1233 1783 971 2091 1679 2412 1625 2008 1765

EGDD O 1127 1659 921 1955 1517 2336 1460 1964 1658
L 1104 1619* 883* 1953 1519 2335 1410* 1932 1616
A 1117 1656 943 1978 1532 2357 1456 1954 1636

CHU O 1427 2404 1012 2887 2215 3435 2176 2527 2442
L 1454 2382 1054 2942 2182 3491 2112 2561 2402
A 1445 2466 1117* 2980* 2181 3506 2195 2609 2435

PDS O 193 107 –33 122 328 81 79 –130 241
L 177 99 –24 104 334 65 78 –113 238
A 194 95 –40 107 332 72 74 –103 239

Table 5. Mean values of agroclimatic indices computed from synthetic weather data generated by LARS-WG (L) and AAFC-WG
(A) in comparison with observed values (O). *Values significantly different from observed ones at the 0.05 significance level as
determined by a t-test. Remark: Goose is not in an agricultural region. Agroclimatic indices: FS, last date of frost in spring; FF,
first date of frost in fall; KFS, last date of killing frost in spring; KFF, first date of killing frost in fall; FFD, frost free days; GDD, 

growing degree-days; EGDD, effective growing degree-days; CHU, corn heat units; PDS, precipitation deficit/surplus
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the mean lengths of wet and dry spells may not be
sufficient to incorporate changes in frequency distrib-
utions of wet and dry spells associated with climate
change.

LARS-WG assumes that daily Tx and Tn follow nor-
mal distributions, while AAFC-WG applies empirical
distributions. The advantages and disadvantages of
using simple standard distributions or empirical dis-
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Fig. 6. Standard deviations of monthly precipitation (P) totals and monthly mean maximum (Tx) and minimum temperatures (Tn) 
of synthetic data from LARS-WG (left panels) and AAFC-WG (right panels) in comparison with observations (n = 108)
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tributions have been discussed by Semenov et al.
(1998). It appears that empirical distributions can
improve capabilities of weather generators in simulat-
ing more realistic weather series when a simple stan-
dard distribution does not fit the observations. The
improvement is not only in the probability distribu-
tions of the synthetic weather series, but also in the
corresponding means, variances and relevant agrocli-
matic indices computed from the synthetic weather
data.

The 2 weather generators simulate daily P better
than Tx and Tn in relation to the overdispersion prob-
lem. Although AAFC-WG performs better in terms of
both the probability distributions and the means and
variances related to daily Tx and Tn, it will still be use-
ful to investigate if the underestimation of interannual
variability can be remedied. Using higher-order multi-
variate regressive models may possibly improve the
overdispersion problem, but will create more numeri-
cal difficulties in the complex models. However, the
causes of the overdispersion problem are still not very
clear, and AAFC-WG reproduces interannual variabil-
ity reasonably well. The overdispersion problem
should not seriously affect results from climate-change
impact studies unless the application is very sensitive
to interannual variability.

It is also of concern to climate-change impact
researchers whether weather generators have the
capability of reproducing extremes. This aspect is not
directly assessed in this paper; however, a reasonable
simulation can be expected if a weather generator can
simulate the probability distributions well. From the
Q–Q plots in Fig. 4 for AAFC-WG, it can be seen that
extreme values are usually very close to the observed
values, such as 95% quantiles, if the synthetic series
follows the same probability distribution as the
observed series. This implies that AAFC-WG can be
expected to better reproduce temperature extremes
than LARS-WG.

The agroclimatic indices computed from the syn-
thetic weather data are not significantly different from
observed ones. This implies that it is appropriate to use
synthetic data from weather generators in agricultural
applications. Climate-change impacts on Canadian
agriculture can be evaluated partly through studying
the potential changes in agroclimatic indices, which
can provide insight into possible changes in crop dis-
tribution or adaptation strategies. 
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