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ABSTRACT: The purpose of this paper is the construction of a conditional stochastic model to gener-
ate daily precipitation time series. The model is a mixture of a 2-state first-order Markov chain and a
statistical downscaling model based on canonical correlation analysis (CCA). The CCA model links
the large-scale circulation, represented by the European sea-level pressure (SLP) field, with 4 pre-
cipitation distribution parameters: i.e. 2 transition probabilities and 2 gamma distribution parameters.
This model is tested for the Bucharest station, for which long observed daily time series were avail-
able (1901-1999). The comparison of the capabilities of the conditional stochastic model and an
unconditional stochastic model (based only on a Markov chain) is presented using ensembles of 1000
runs of the 2 models. The performance of the conditional stochastic model is analyzed in 2 steps. First,
the ability of the CCA model for estimating the 4 precipitation distribution parameters is assessed.
Second, the performance of both stochastic models in reproducing the statistical features of the
observed precipitation time series is analyzed. The CCA model is most accurate for winter and
autumn (transition probabilities), less accurate for the mean precipitation amount on wet days and
inaccurate for the shape parameter. There are no significant dissimilarities between the conditional
and unconditional models regarding their performance except for the linear trend and interannual
variability, which are better captured by the conditional model. Some statistical features are well
reproduced by both stochastic models for all seasons, such as mean and expected maximum duration
of wet/dry intervals, daily mean of precipitation for wet days. Other statistical features are only par-
tially reproduced by both models or are better reproduced by one of the models, such as mean dura-
tion of dry interval, standard deviation of daily precipitation amount, seasonal mean of rainy days and
expected maximum daily precipitation. For all seasons, generally, the frequency of shorter dry inter-
vals is underestimated and that of longer dry intervals (greater than 9 d) is overestimated. In conclu-
sion, the conditional stochastic model presented in this paper can be used to generate daily precipi-
tation time series for winter and autumn. For the other seasons, the unconditional model can be used
to reproduce some statistical features.
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1. INTRODUCTION

Hydrological and crop models usually require daily
precipitation time series as input. To evaluate the sen-
sitivity of these models to long-term changes in the
precipitation regime, an ensemble of input data sets is
needed. The observed sequences provide only one
realization of the weather process. In impact studies,
which use as input data precipitation time series
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derived from regional/global climate model (RCM/
GCM) simulations, the number of these sequences is
limited due to the high computational cost. To evaluate
the range of results obtained with other statistically
equivalent series, it is desirable to generate synthetic
sequences of precipitation data based on the stochastic
structure of the meteorological process. Richardson
(1981) presented such a technique to simulate daily
values of precipitation, maximum and minimum tem-
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perature, and solar radiation. For the precipitation
component, a 2-state first-order Markov chain has
been used to describe the precipitation occurrence,
and the exponential distribution has been used to
approximate the distribution of rainfall amount. This
model is termed Richardson's model or WGEN. Katz
(1996) presented the theoretical statistical properties of
a simplified version of Richardson's model and found
that when its parameters are varied certain unantici-
pated effects can be produced. This model has also
been used by Wilks (1992) with the gamma distribution
instead of the exponential distribution for rainfall
amount, adapting the model for climate change
studies.

Such models can be conditioned on large-scale
meteorological conditions, which incorporate cause-
and-effect information about the probability of wet or
dry conditions. There are various ways to define the
large-scale conditions. One way is to use large-scale
circulation indices. Such a conditional stochastic model
to generate daily precipitation sequences has been
developed by Katz & Parlange (1993) using a large-
scale circulation index defined by 2 states (above
normal and below normal) of the monthly sea-level
pressure (SLP) at a specified grid point. Other fre-
quently used approaches are circulation classification
(Zorita et al. 1995, Goodess & Palutikof 1998) and
analogs (Zorita et al. 1995). Lettenmaier (1995) showed
the advantages and disadvantages of various models
and presented a synthesis of the stochastic models of
precipitation (conditional and unconditional). Non-
linear approaches, such as neural networks, have
recently been developed (Cavazos 1999, Zorita & von
Storch 1999). In a recent synthesis of empirical down-
scaling methods used in synoptic climatology, Yarnal
et al. (2001) reviewed the advantages and disadvan-
tages of stochastic models. They found, in the case of
climate change, that the conditioning of the stochastic
parameters in a physically meaningful way is difficult
to achieve.

In this paper, a stochastic model conditioned upon
large-scale climate characteristics to generate daily
precipitation amount is presented. The model uses a
first-order Markov chain combined with a downscaling
model. To link the precipitation distribution para-
meters with the large-scale circulation, represented by
SLP on the European scale, a regression model based
on canonical correlation analysis (CCA) is used (von
Storch et al. 1993, Heyen et al. 1996, Busuioc et al.
1999, 2001). In this way, an adjustment of stochastic
parameters in a physically meaningful way is pro-
posed. The model is tested for the Bucharest station,
for which long daily observations are available
(1901-1999). The ability of the downscaling model for
estimating the parameters of precipitation distribution,

and the capability of the conditional stochastic model
for reproducing the most important statistical features
of the observed precipitation time series, are shown in
Sect. 3. The comparison between the abilities of the
conditional and the unconditional stochastic models is
also presented. Compared with similar models (e.g.
Katz & Parlange 1993) the procedure presented in this
paper gives confidence intervals of the precipitation
distribution parameters derived from 1000 Monte
Carlo runs of both models.

2. METHODOLOGY

The model presented in this paper is a combination
between a first-order Markov chain and a statistical
downscaling model. In the following it is referred to as
a conditional stochastic model. Additionally, an uncon-
ditional stochastic model, based only on a first-order
Markov chain, is used to assess the performance of the
conditional model for climate change purposes. Both
models are tested for daily precipitation amount at the
Bucharest station in the southern part of Romania.
Observational data refer to the period 1901-1999, and
they are seasonally stratified: winter (December—
February), spring (March-May), summer (June-—
August) and autumn (September—November).

2.1. Unconditional stochastic model

Precipitation occurrence is described by a 2-state,
first-order Markov chain. Precipitation either occurs or
it does not (the 2 states), and the conditional probabil-
ity of precipitation occurrence depends only on the
occurrence on the previous day. There are 2 parame-
ters describing the precipitation occurrence process:
the transition probabilities py;, the probability of a wet
day following a dry day, and p;;, the probability of a
wet day following a wet day. As a wet-day threshold, a
daily precipitation amount of >0.1 mm is used in this
paper. The choice of the optimum precipitation thresh-
old is an important decision. Dobi-Wantuch et al.
(2000) analysed the threshold influence on the results
for 2 Hungarian stations (one of them being near the
Romanian border) and found the 0.1 mm threshold to
be appropriate.

The variation of precipitation amount on wet days is
described by the gamma distribution, which has 2
parameters: the shape parameter (k) and the scale
parameter () (Coe & Stern 1982, Wilks 1992). In terms
of the 2 distribution parameters, the mean precipita-
tion amount (considering only wet days) is 4 = k3. In
this paper { and k are defined as the gamma distribu-
tion parameters. Y is estimated as the sample mean
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from the observed data set, and k is derived as the
solution of:

Ink-yk) = Inx-Inx

— 0
x = &Xj(t) n
& B/

and (k) is the first derivative of the log gamma func-
tion and is obtained using a computational subroutine
by Amos (1983); in our case, x(t) represents the daily
precipitation amount for wet days.

The po1, pi1 transition probabilities were estimated
from the observed data set. Therefore, the stochastic
model to generate daily precipitation depends on 4
parameters (po1, P11, M and k) and is referred to as the
unconditional model. The 4 parameters were com-
puted over the complete 1901-1999 period for every
month, and their seasonal variation evaluated. Based
on this, the data set was divided into the 4 seasons, and
the model built for every season.

In conclusion, daily precipitation for wet days is gen-
erated (in the case of the unconditional model) using
the 4 parameters computed from observations over a
fixed period following the procedure presented by
Wilks (1992). Knowing whether precipitation occurred
on the previous simulated day, the appropriate transi-
tion probability, po; or pi;, is compared to a newly gen-
erated uniform [0, 1] random number. A wet day is sim-
ulated if the random number is less than the transition
probability. If this is the case, a random precipitation
amount is generated for the current day using the
appropriate gamma distribution. Since the 4 para-
meters are kept constant, stationary precipitation time
series are generated. This is a disadvantage of the
unconditional model when used in the climate change
context. However, this drawback can be overcome by
using the conditional stochastic model, which links
unconditional stochastic model parameters to large-
scale circulation parameters as described below.

where

2.2. Conditional stochastic model

To link the 4 parameters of the unconditional sto-
chastic precipitation model to the large-scale circula-
tion, a regression model is constructed with the help of
CCA (von Storch et al. 1993, Heyen et al. 1996, Werner
& von Storch 1993, Busuioc et al. 1999, 2001). Euro-
pean-scale SLP anomalies are chosen as representing
the large-scale circulation. Monthly SLP data with a
resolution of 5° x 5° were provided by the National
Center of Atmospheric Research (NCAR, USA) (Tren-
berth & Paolino 1980). The SLP area of 5-50°E,
30-55°N was selected, so that the accuracy of the
downscaling model linking seasonal precipitation over

Romania and SLP is maximized, since seasonal total
precipitation in Romania is strongly connected to the
European SLP distribution, especially for winter and
autumn (Busuioc & von Storch 1996, Busuioc et al.
1999). Therefore, a strong connection between the
4 parameters characterizing the daily precipitation
distribution and the SLP field is assumed to exist. In
Sect. 3, it will be shown that this assumption is correct,
especially for winter and autumn.

The stochastic parameters (po;, p11, M and k) are
computed for every season using 90 to 92 daily precip-
itation amounts in every year. In this way, a time series
of the parameters is obtained. Prior to the CCA, the
original data are standardized by subtracting the mean
from the original value and dividing by the SD. The
CCA determines pairs of patterns of 2 time-dependent
variables (the large-scale SLP and the 4 stochastic
parameters) so that their time components are opti-
mally correlated. The SLP data are projected onto their
EOFs (empirical orthogonal functions) to eliminate
noise (small-scale features) and to reduce the dimen-
sions of the data. Since the time coefficients are nor-
malized to unity, the canonical correlation patterns
represent the typical strength of the signals. A subset
of CCA pairs is then used in a regression model to esti-
mate the 4 stochastic parameters from large-scale SLP.
The precipitation distribution parameters (po1, p11, 4, k)
estimated through the CCA model are then used in the
stochastic model in order to generate daily precipita-
tion amounts. These time series are generated for
every season in every year. Since the 4 parameters
should satisfy the conditions 0 < pgy, p11 <1 and W, k >
0, the CCA model outputs are processed by applying
the reversed standardization procedure before being
used in the stochastic model.

2.3. Accuracy of the stochastic models

The full data set, 1901-1999, was split into 2 intervals,
1901-1949 and 1950-1999. Then, both unconditional
and conditional models were fitted with one interval and
validated with the other interval, so that the 2 models
were fitted and validated independently. The accuracy
of the CCA downscaling model is expressed through the
variance explained by the reconstructed values as a frac-
tion from the total variance of the observed values or, al-
ternatively, by the correlation between observed and
reconstructed values. Additionally, the performance of
the stochastic models was determined in terms of how
well the model reproduces the following statistical
features of the observed precipitation time series:

e Appearance/nonappearance of precipitation quanti-
fied by mean and expected maximum duration of
wet and dry intervals.
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e Daily mean and standard deviation of precipitation
for wet days, expected maximum daily precipitation
amount and frequency distributions of daily precipi-
tation.

e Changes (linear trend) in the seasonal precipitation
amount induced. The significance of the linear trend
is estimated by the Mann-Kendall statistic (Sneyers
1975).

e Interannual variability of seasonal precipitation
amount quantified by the SD.

These statistical features were computed for the 2
subintervals.

An ensemble of 1000 simulations was generated for
each model, and the statistical parameters listed above
were expressed as ensemble means with their 90 %
confidence intervals computed with a bootstrapping
procedure.

3. RESULTS
3.1. Precipitation distribution parameters

CCA identified pairs of patterns in the SLP fields
and in combined vectors of the transition probabili-
ties (po1, p11) and gamma distribution parameters (U,
k) whose time series share a maximum of correlation.
The correlation coefficients R; and R, associated with
the first 2 CCA pairs for the 4 seasons are presented
in Table 1. The explained variance of the seasonal
SLP anomalies and 4 parameter anomalies is also
presented. The strongest link was found for winter
and autumn. Similar results were achieved when the
direct relationship between the SLP field and sea-
sonal total precipitation in Romania was analyzed
(Busuioc & von Storch 1996, Busuioc et al. 1999).
Figs. 1 to 5 show the patterns of the first 2 CCA pairs
for all seasons.

The CCA was performed for 2 subintervals:
1901-1949 and 1950-1999. The first CCA pair is
almost identical for the 2 subintervals for all seasons

except for a slight shift and spatial extension of the
pattern nucleus. Thus only the first subinterval is
shown for spring to autumn (Figs. 3 to 5).

Southerly/northwesterly circulation over Romania in
winter is associated with above/below-normal daily
mean precipitation on wet days and higher/lower tran-
sition probabilities to wet days at Bucharest (Figs. 1 &
2). Southwesterly circulation brings moist air masses
from the Mediterranean basin to Romania (especially
in the southern part, where Bucharest is located), and
more precipitation is recorded. As a result, the daily
mean precipitation on wet days (1) and the wet day
probability (p¢; + pi11) are higher. However, the link
with p is mostly weak in all seasons, except autumn.
This seems to contradict the presence of a strong link
between SLP and total seasonal precipitation amount
(Busuioc & von Storch 1996, Busuioc et al. 1999). How-
ever, these 2 observations may be reconciled by noting
that the seasonal total is dominated by the number of
wet days and less dependent on the mean amount on
wet days. In fact, the correlation between p and the
first SLP EOF (very similar to the first CCA pattern)
time series is low, while the correlation with the num-
ber of wet days is high. The link between SLP varia-
tions and k variability is unclear, with the sign of the
link changing when different fitting periods are used
(compare Figs. 1a and 2a).

A negative/positive SLP pattern centered over the
northwest of the study area (spring) or southeastern
Europe (autumn) is associated with positive anomalies
for po1, p11 and p and negative anomalies for k (Figs. 3a
& 5a). In summer, a similar structure (centered in the
southeastern part of the Black Sea) is associated with
positive anomalies of transition probabilities and
slightly negative anomalies of daily mean precipitation
amount. These results are not in agreement with those
obtained previously through analysis of the relation-
ship between SLP and summer Romanian precipitation
totals (Busuioc & von Storch 1995). The reason could
be that either the high variability of summer daily pre-
cipitation in Romania is not that strongly linked with

Table 1. Canonical correlation coefficients of the first 2 CCA pairs (Ry, R,) and proportion of variance explained for patterns of
seasonal mean sea-level pressure (SLP) and the 4 precipitation distribution parameters described by the first 2 CCA pairs

1901-1949 1950-1999
Ry R, Explained variance (%) Ry R, Explained variance (%)
SLP Parameters SLP Parameters
CCA,; CCA, CCA,; CCA, CCA, CcCA, CCA,; CCA,
Winter 0.77 0.49 45 7 29 27 0.78 0.42 38 21 33 9
Spring 0.66 0.53 31 6 24 25 0.51 0.40 22 8 29 22
Summer 0.67 0.55 11 10 30 22 0.65 0.44 13 7 30 21
Autumn 0.82 0.48 16 34 34 18 0.80 0.52 10 37 29 32
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Fig. 1. Patterns of the first 2 CCA pairs of winter mean SLP and winter parameters of precipitation distribution derived from
the first half of the observations (1901-1949)
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Fig. 2. Patterns of the first 2 CCA pairs of winter mean SLP and winter parameters of precipitation distribution derived from the
second half of the observations (1950-1999)
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Fig. 3. Patterns of the first 2 CCA pairs of spring mean SLP and spring parameters of precipitation distribution derived from
observations (1901-1949)
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Fig. 4. Patterns of the first 2 CCA pairs of summer mean SLP and summer parameters of precipitation distribution derived from
observations (1901-1949)



Busuioc & von Storch: Stochastic model for generating daily precipitation 187

a ccal slp cor =0.82 var = 10%
55N :
50N
45N
40N ’ .............
B -0
35N - i
S —0asT L -0.2-...
BN e
SE 10E 15 20E 25€ 30E 35E 40E 45€ SOE
CCA1
80-
601 34%
40
20-
0_
-20 P01 Pu n
k

cca2 slp cor = 0.48 var = 34% b

55N
50N 1 \
1.6

45N 4 s

1.2

—1
40N—0.8

0.2\

35N 1

/0\

30E 35 40E 45E 50E

N p—— T T
5055 10E 15€ 20E 25€

CCA2

18%

-l

01

Fig. 5. Patterns of the first 2 CCA pairs of autumn mean SLP and autumn parameters of precipitation distribution derived from
observations (1901-1949)

SLP variability, or it is controlled by other physical
mechanisms, such as convective processes. In conclu-
sion, the k variability does not seem to be linked with
SLP variability in any season.

The SLP pattern of the second CCA pair is different
over the 2 subintervals for winter (compare Figs. 1b
and 2b), but for the other seasons they are stable, apart
from slight shifts in the center of the SLP pattern (not
shown). The mechanisms given by the second CCA
pair cannot be physically interpreted in the same
manner as those presented for the first CCA pair, since
there is no coherence between the variability of the
precipitation distribution parameters and SLP variabil-
ity. For example, the positive winter SLP anomalies
(Fig. 2b) are associated with the positive anomalies of
p11 and negative anomalies of the others, which is not

consistent with the physically reasonable mechanism
presented above.

The skill of the statistical downscaling model con-
structed using the time coefficients associated with the
4 CCA pairs is summarized in Table 2. The skill is cal-
culated for the independent subintervals not used to fit
the statistical model. The model is most skillful for
winter and autumn (transition probabilities), slightly
skillful for p (winter, especially for the 1950-1999
period) and unskillful for k. Figs. 6 & 7 show, as an
example, the temporal evolution of the observed and
estimated standardized anomalies for winter and
autumn. The 2 curves vary coherently for the transition
probabilities. The amplitude is sometimes different,
but the year-to-year evolution is quite good for Y, but
for k the dissimilarities are substantial.

Table 2. Accuracy of the CCA model (expressed as percentage of explained variance/correlation coefficient) for estimation of the
4 parameters (po1, p11, U, k) from the SLP field over the 2 subintervals used as independent data sets

1901-1949 - 1950-1999 — — —
Po1 P11 H k Po1 P11 H k
Winter 45/0.67 16/0.43 4/0.23 - 39/0.63 24/0.49 11/0.33 -
Spring - 7/0.26 -7/0.26 -7/0.21 9/0.30 - -3/0.18 -
Summer 19/0.14 8/0.30 - - 2/0.39 6/0.34 - -
Autumn 50/0.71 21/0.47 -14/0.14 - 51/0.72 15/0.38 -12/0.8 -
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3.2. Accuracy of the stochastic models

The 4 parameters (po;, pi1, MU and k), estimated
directly from precipitation data (in the case of the
unconditional model) and indirectly from European
SLP through the statistical downscaling model (in the
case of the conditional model) are used in the Markov
chain model to generate daily time series of precipita-
tion occurrence. The daily precipitation amount is ran-
domly generated on wet days using a gamma distribu-
tion. The performance of these stochastic models is
assessed in terms of how well they reproduce the sta-
tistical features of the observed precipitation time
series listed in Section 2.3. These features are repre-
sented by: maximum duration of dry and wet intervals
(dasS dWwet), mean duration of dry and wet intervals
(da5™, dwei™), daily mean/standard deviation of precip-
itation on wet days (PPmean: PPsp), Mmean number of wet
days (nr), Mann-Kendall statistic (f), expected maxi-
mum of daily precipitation amount (ppna.y), standard
deviation of seasonal precipitation amount and fre-
quency distributions of daily precipitation within vari-
ous intervals. After running the unconditional and con-
ditional models 1000 times, a distribution of these
parameters was achieved. Then, the ensemble mean
and 90 % confidence intervals of the respective para-
meters were computed.

These statistics derived from both stochastic models
and directly from the observations are presented in
Tables 3 to 5. They were computed separately for the 2
subintervals. dyei" and dyet are very well simulated for
all seasons, both subintervals and both models (uncon-
ditional and conditional). There are no statistically sig-
nificant differences between the unconditional and
conditional models. However, d7 is better estimated
by the unconditional model and overestimated by the
conditional model, although for both models the
observed values are generally covered by the simu-
lated 90 % confidence intervals. d§5™" is well simulated
by both models for winter and summer (1901-1949)
and autumn (1950-1999). Both models except for
spring (both intervals) overestimate the observed val-
ues. nris generally well reproduced by both stochastic
models, except for spring (1901-1949, both models,
and 1950-1999, conditional model) and autumn
(1950-1999, both models), when it is underestimated
by the conditional model and overestimated by the
unconditional model. pppean is generally well repro-
duced by both stochastic models (with small differ-
ences for 1950-1999), while ppsp is better estimated
for 1901-1949 (both models), except for summer, when
it is underestimated. For 1950-1999 both models
underestimate ppsp for all seasons (but less underesti-
mated in summer). Expected maximum daily precipi-
tation is generally underestimated for all seasons

(both models) but the observed values are covered by
the 90% confidence intervals, except for summer
(1901-1949) and winter and autumn (1950-1999).

In order to assess whether the stochastic models
reproduce the observed linear trends, the Mann-
Kendall statistic (t) was computed for the seasonal pre-
cipitation amount as derived directly from observa-
tions and indirectly from generated daily time series. A
t-value greater than 1.96 allows the rejection of the
null hypothesis with a risk of 5% or less, provided that
the data are not serially correlated. This t-statistic was
computed for every experiment of the 1000 run en-
semble. Table 3 gives the ensemble means of this
statistic with their 90 % confidence intervals.

As expected, the unconditional model does not show
any significant trend. The observed data set reveals a
statistically significant linear trend at the 5 % level only
for the winter season over 1901-1949, namely an in-
creasing one. For 1950-1999 a slightly decreasing
trend is identified. The conditional stochastic model
correctly simulates the direction of these trends, but
the magnitude is underestimated for the first period
and overestimated for the second one. The simulated
90% confidence intervals of the ¢-statistic generally
cover the observed values. For the other seasons the
observed trends are not statistically significant and the
conditional stochastic model reproduces this charac-
teristic well.

The main reason for these results could be the urban
effect of Bucharest, which leads to more precipitation
there than at stations located in similar geographical
conditions (Neacsa et al. 1974). This is supported by
the analysis of the large-scale circulation’'s variability
connected to the seasonal precipitation regime in
Romania. Previous papers (Busuioc & von Storch 1995,
1996, Busuioc et al. 1999) have shown that there is a
strong link between the large-scale SLP and seasonal
total precipitation at 14 Romanian stations distributed
over the entire country. For the winter season the first
SLP EOF gives this link, and the shifts found in the
Romanian precipitation are similar to those found in
the large-scale circulation. For example, the south-
western stations reveal a precipitation increase around
1933 (due to more frequent southwesterly circulation
over Romania) and a decrease after 1969-1970 (due to
less frequent southwesterly circulation). Only the
Bucharest station does not fit into this pattern, as pre-
cipitation has increased since 1922. This result is
related to the urban effect. For the present study, the
time series associated with the first SLP EOF were ana-
lyzed for the 2 subintervals. For 1901-1949 a slightly
decreasing trend (not significant using the Mann-
Kendall test) led to a simulated precipitation close to
normal. For 1950-1999 the situation is reversed: the
time series associated with the first SLP EOF has a very
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strong decreasing trend (associated with less frequent
southwesterly circulation over Romania) that induces
less precipitation. In the observations, the urban effect,
associated with an increase in precipitation, is super-
imposed on the natural mechanism given by large-
scale circulation, leading to more precipitation than
simulated using the large-scale SLP.

Using the standard deviations of the generated sea-
sonal precipitation amount, which were computed for
every experiment of the 1000-run ensemble, the accu-
racy of the stochastic models related to the interannual
variability was assessed. Table 4 gives the ensemble
means and simulated 90 % confidence intervals along
with those derived from observations. The standard

Table 3. Statistics of precipitation regime at the Bucharest station derived directly from observations and indirectly from the sto-

chastic conditional and unconditional models: maximum duration (d) of dry and wet intervals dg7, dyet, mean duration of dry and

wet intervals dg", dei”, daily mean/standard deviation of precipitation (mm) on rainy days ppmean, PPspi mean number of rainy

days nr; Mann-Kendall statistic ¢, expected maximum of daily precipitation amount pp.x (mmd®!). These statistics are computed
as ensemble means for 1000 runs and are derived over the 2 subintervals. 90 % confidence intervals in parentheses

ary. wet dry Wet"  PPmean PDPsp nr t PDmax
1901-1949
Winter Observations 24 10 4.3 2.1 3.8 5.4 28 2.0 58.6
Conditional 35 12 4.3 2.1 4.1 5.1 30 1.0 441
(25,51) (9,16) (4.1,4.5) (2.0,2.2) (3.9,44) (4.7,5.5) (28,31) (-0.2,2.2) (33.6,60.4)
Unconditional 27 12 4.3 2.1 4.2 5.2 29 0.02 45.1
(21,36) (9,16) (4.1,4.6) (2.0,2.2) (4.0,4.4) (49,57 (29,31) (-1.6,1.7) (34.5,60.1)
Spring Observations 25 13 3.7 2.0 4.6 6.4 31 -0.6 61.6
Conditional 33 12 5.0 2.1 4.9 6.3 27 1.4 57.8
(25,45) (9,16) (4.7,5.3) (2.0,2.2) (4.6,5.2) (5.8,6.9) (26,29) (0.2,2.7) (42.8,81.9)
Unconditional 24 12 3.9 2.2 4.9 6.3 34 0.01 54.8
(19,33) (10,16) (3.7,4.1) (2.1,2.3) (4.7,5.2) (5.9,6.7) (32,3.5) (-1.6,1.7) (41.6,72.8)
Summer Observations 29 9 4.0 1.9 7.0 10.8 28 0.1 136.6
Conditional 27 10 3.9 1.8 6.7 8.6 29 0.9 75.6
(20,395) (8,13) (3.8,4.1) (1.8,1.9) (6.3,72.1) (7.9,9.3) (28,30) (-0.6,2.3)(56.7,101.6)
Unconditional 25 10 4.0 1.8 6.7 8.7 29 0.5 74.4
(20,34) (8,13) (3.8,4.2) (1.8,1.9) (6.3,7.1) (8.0,9.3) (28,31) (-0.9,2.0) (55.8,99.7)
Autumn Observations 30 12 4.7 2.0 5.2 7.7 25 -1.1 59.6
Conditional 40 10 6.0 1.9 6.0 7.6 23 0.1 66.8
(29,54) (8,14) (5.3,5.6) (1.8,2.0) (5.6,6.3) (6.9,8.4) (22,25) (-1.0,1.2) (49.0,91.9)
Unconditional 36 10 5.6 1.9 5.9 7.6 23 0.1 63.6
(27,47) (8,13) (5.3,6.0) (1.8,2.0) (5.5,6.3) (7.0,8.2) (22,25) (-1.3,1.5) (48,85.7)
1950-1999
Winter Observations 31 11 4.0 2.1 4.2 6.0 29 -1.0 60.9
Conditional 36 12 4.5 2.1 3.8 4.4 29 -1.8 39.1
(26,51) (9,16) (4.3,4.7) (2.0,2.2) (3.6,4.0) (4.1,4.8) (28,30) (-3.0,-0.6)(29.0,54.2)
Unconditional 29 12 4.6 2.2 3.8 4.6 29 0.02 38.5
(23,39) (9,16) (4.3,4.8) (2.1,2.3) (3.6,4.0) (4.3,49) (28,31) (-1.%4,1.7) (30.0,51.2)
Spring Observations 28 12 3.7 2.1 4.9 7.2 33 -0.4 58.8
Conditional 32 12 5.1 2.0 4.6 5.5 26 -0.5 47.6
(25,43) (9,16) (4.8,5.3) (1.9,2.1) (4.3,4.8) (5.1,5.9) (25,28) (-2.0,1.0) (35.3,64.8)
Unconditional 25 11 3.9 2.0 4.6 5.7 32 0.02 49.0
(19,33) (9,15) (3.7,4.1) (2.0,2.1) (4.4,4.8) (5.3,6.1) (30,33) (-1.7,1.6) (37.1,65.0)
Summer Observations 28 10 3.7 1.8 6.7 9.7 29 1.1 88.2
Conditional 29 11 4.2 1.9 7.0 8.7 29 -0.2 75.3
(22,40) (8,15) (4.0,4.5) (1.8,2.0) (6.6,7.4) (8.1,9.4) (27,30) (-1.6,1.4)(57.1,101.9)
Unconditional 27 11 4.3 1.9 7.0 8.8 29 -0.02 75.5
(21,36) (8,14) (4.1,4.5) (1.9,2.9) (6.6,74) (8.2,9.5) (27,30) (-1.6,1.5)(58.2,100.2)
Autumn Observations 31 11 5.1 1.9 5.9 8.8 23 1.1 93.0
Conditional 39 11 5.0 2.0 5.0 6.2 26 -0.3 53.1
(28,56) (8,14) (4.8,5.3) (1.9,2.1) (4.7,5.3) (5.7,6.7) (24,27) (-1.6,0.9) (39.5,71.2)
Unconditional 33 12 5.2 2.1 5.2 6.8 27 0.02 58.0
(25,44) (9,15) (4.9,5.5) (2.0,2.2) (4.9,5.6) (6.2,7.4) (25,28) (-1.5,1.6) (43.7,78.4)
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Table 4. Standard deviations of seasonal precipitation (mm season) derived from the observed data set and from the generated
time series through conditional and unconditional stochastic models. The values are computed as ensemble means of 1000 runs
over the 2 subintervals. 90 % confidence intervals for the conditional and unconditional stochastic models in parentheses

1901-1949 ———— — 1950-1999
Winter Spring Summer Autumn Winter Spring Summer Autumn
Observations 42.6 48.7 65.0 67.3 56.7 66.9 66.4 65.6
Conditional 47.3 58.8 67.8 71.3 42.5 43.0 68.0 54.4
(38.7,56.1) (47.6,71.1)° (56.0,80.9) (58.6,84.7) (35.0,50.0) (34.6,52.1) (54.3,81.4) (45.1,64.2)
Unconditional 34.2 40.4 54.4 53.4 31.5 36.8 57.3 39.6
(26.4,43.5) (31.9,50.1) (41.8,67.5) (43.7,63.3) (24.9,39.7) (28.8,45.4) (44.7,72.1) (31.4,49.7)

Table 5. Seasonal mean frequencies of precipitation (d season) derived from the observed data set and from the generated time
series through conditional and unconditional stochastic models. The values are computed as ensemble means of 1000 runs
over the 2 subintervals. 90 % confidence intervals for the conditional and unconditional stochastic models in parentheses

<5mm (6 mm,10 mm) (10 mm, 15 mm) >10 mm >15 mm >20 mm
1901-1949

Winter Observations 21.4 4.1 1.4 2.8 1.4 0.5
Conditional 21.5 5.2 1.9 3.2 1.3 0.6

(20.4,22.7) (4.6,5.8) (1.6,2.2) (2.8,3.7) (1.1,1.6) (0.4,0.8)
Unconditional 21.5 5.1 2.0 3.4 1.5 0.6

(20.4,22.8) (4.5,5.7) (1.6,2.3) (3.0,3.9) (1.2,1.7) (0.5,0.8)
Spring Observations 22.1 5.1 1.9 4.0 2.1 1.0
Conditional 18.6 4.8 2.0 3.9 1.9 0.9

(17.5,19.8) (4.3,5.4) (1.7,2.4) (3.4,4.4) (1.5,2.2) (0.7,1.2)
Unconditional 22.7 5.9 2.6 5.0 2.4 1.2

(21.5,23.9) (5.3,6.5) (2.2,2.9) (4.4,5.5) (2.1,2.8) (0.9,1.4)
Summer Observations 17.0 5.1 2.4 6.2 3.8 2.3
Conditional 17.1 5.5 2.8 6.5 3.7 2.2

(16.2,18.0) (5.0,6.1) (2.4,3.2) (5.8,7.1) (3.2,4.1) (1.8,2.5)
Unconditional 17.4 54 2.8 6.5 3.8 2.2

(16.4,18.4) (4.8,6.0) (2.4,3.2) (5.9,7.1) (3.3,4.2) (1.9,2.6)
Autumn Observations 17.3 3.9 1.7 4.0 2.3 1.3
Conditional 14.3 4.3 2.0 4.4 2.3 1.3

(13.3,15.2) (3.9,4.9) (1.7,2.4) (3.8,4.9) (1.9,2.7) (1.0,1.6)
Unconditional 14.7 4.3 2.1 4.5 2.4 1.4

(13.7,15.7) (3.8,4.8) (1.7,2.4) (4.0,5.0) (2.1,2.8) (1.1,1.7)

1950-1999

Winter Observations 21.7 3.9 1.7 3.5 1.8 1.1
Conditional 21.5 5.0 1.6 2.5 0.9 0.3

(20.4,22.6) (4.5,5.6) (1.3,1.9) (2.1,2.9) (0.7,1.1) (0.2,0.5)
Unconditional 21.7 4.9 1.7 2.7 1.0 0.4

(21.5,23.9) (4.6,5.6) (1.4,2.1) (2.4,3.2) (0.8,1.3) (0.3,0.5)

Spring Observations 22.9 5.1 2.1 4.9 2.8

Conditional 18.2 4.9 1.9 3.3 1.5 0.6

(17.2,19.4) (4.3,5.4) (1.6,2.2) (2.9,3.8) (1.2,1.7) (0.5,0.8)
Unconditional 21.9 5.7 2.3 4.2 1.9 0.9

(20.9,23.1) (5.2,6.3) (2.0,2.7) (3.7,4.7) (1.6,2.2) (0.6,1.1)
Summer Observations 18.4 4.3 2.0 6.1 4.1 2.3
Conditional 16.3 5.6 2.9 6.8 3.9 2.3

(15.3,17.2) (5.1,6.2) (2.5,3.3) (6.2,7.4) (3.4,4.3) (1.9,2.6)
Unconditional 16.5 5.5 2.8 6.8 3.9 2.3

(15.6,17.5) (4.9,6.0) (2.4,3.2) (6.2,7.4) (3.5,4.4) (2.0,2.79
Autumn Observations 14.8 34 1.8 4.3 2.5 1.3
Conditional 17.2 4.7 2.0 3.8 1.8 0.9

(16.1,18.3) (4.2,5.2) (1.7,2.3) (3.3,4.3) (1.5,2.1) (0.7,1.1)
Unconditional 17.6 4.7 2.1 4.3 2.2 1.1

(16.4,18.7) (4.1,5.2) (1.8,2.5) (3.8,4.9) (1.8,2.6) (0.9,1.4)
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Fig. 8. Frequencies of winter dry (top) and wet (bottom) inter-
vals with various lengths as derived from observations and
from generated time series (conditional and unconditional
models) at the Bucharest station. The results are obtained for
the independent data set over 1950-1999 with the model
fitted to 1901-1949 as ensemble means of 1000 runs. The
rightmost column for the dry intervals refers to lengths >15 d

deviations are considerably underestimated by the
unconditional model for all seasons and both subinter-
vals, while the conditional model is obviously better,
especially for summer. However, the conditional model
slightly overestimates the interannual variability of the
other seasons for the first subinterval and underesti-
mates it for the second one (especially for spring).
Figs. 8 to 11 show the frequencies of dry and wet
intervals with various lengths derived from observa-
tions and from the unconditional and conditional sto-
chastic models as ensemble means over 1000 runs. The
frequencies of the extreme events such as dry intervals
longer than 15 d are presented separately. Generally,
there are no significant differences between the results
achieved with unconditional and conditional models,
except for spring (short intervals), when the uncondi-
tional model is better. For the other seasons, the uncon-
ditional model is slightly better than the conditional
one for shorter dry intervals. The best agreement with
observations is obtained for winter and autumn (espe-

Frequency

cially for wet intervals). For all seasons, the dry inter-
vals of 1-2 d length are less frequent in the simulations
than in reality. Generally, the shorter dry intervals are
underestimated and the longer dry intervals (greater
than 9 d) are overestimated. The frequency of the ex-
treme events is very well reproduced for winter and
summer.

The performance of the stochastic models in gener-
ating daily precipitation time series was also quantified
for frequencies of days with precipitation amount
within or exceeding selected thresholds. These results
are presented in Table 5. For 1901-1949, in spite of
some failures of the CCA model for spring and sum-
mer, the mean observed frequencies of days with pre-
cipitation exceeding 20 mm are covered by the 90%
confidence intervals of both models for all seasons. For
other thresholds, the conditional model is generally
better, except for winter (6—-15 mm), when the values
are overestimated by both models, and autumn
(£5 mm), when the values are underestimated. For
1950-1999, the results are not so good, and the
observed frequencies are generally underestimated.
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Fig. 9. Frequencies of spring dry (top) and wet (bottom) inter-
vals with various lengths as derived from observations and
from generated time series (conditional and unconditional
models) at the Bucharest station. The results are obtained for
the independent data set over 1950-1999 with the model
fitted to 1901-1949 as ensemble means of 1000 runs. The
rightmost column for the dry intervals refers to lengths >15 d
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4. CONCLUSIONS

The CCA model is most accurate for winter and au-
tumn (transition probabilities), slightly accurate for p
(winter, especially for 1950-1999) and inaccurate for k.
This result is in agreement with previous studies
(Busuioc & von Storch 1996, Busuioc et al. 1999) on the
connection between seasonal precipitation totals at 14
Romanian stations (including Bucharest) and the large-
scale circulation. The unexpected low accuracy for p
suggests that the strong link of seasonal precipitation
(winter and autumn) with the SLP field is given by the
strong link between the number wet days and SLP, a
fact supported by the direct correlation between them.
The results also suggest that k does not depend on the
large-scale circulation. One reason for the model fail-
ure regarding P and k could be that the 2 subintervals
have different statistics of precipitation at Bucharest,
i.e. 2 different precipitation regimes. Urban influence
could be one reason for this behavior, but it is difficult to
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Fig. 10. Frequencies of summer dry (top) and wet (bottom)
intervals with various lengths as derived from observations
and from generated time series (conditional and uncondi-
tional models) at the Bucharest station. The results are
obtained for the independent data set over 1950-1999 with
the model fitted to 1901-1949 as ensemble means of 1000
runs. The rightmost column for the dry intervals refers to
lengths >15 d
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Fig. 11. Frequencies of autumn dry (top) and wet (bottom)
intervals with various lengths as derived from observations
and from generated time series (conditional and uncondi-
tional models) at the Bucharest station. The results are
obtained for the independent data set over 1950-1999 with
the model fitted to 1901-1949 as ensemble means of 1000
runs. The rightmost column for the dry intervals refers to
lengths >15 d

separate it from natural variability, since daily precipi-
tation time series as long as that for Bucharest are not
available for other stations in Romania.

The conditional and unconditional stochastic models
were similarly accurate in reproducing the statistical
properties of precipitation, except for the trend and
interannual variability, which inherently only the con-
ditional model can deal with (through SLP forcing).
Therefore, for climate change applications, especially
in the case of the transient scenarios, the conditional
model is recommended. The unconditional models
could be used (especially in equilibrium scenarios) but
the problem comes in determining how to perturb the
parameters in some sensible and consistent way. The
advantage of the conditional model is that this can be
done more automatically using GCM/RCM large-scale
circulation data.

In this study, some statistical features were well
reproduced by both stochastic models for all seasons,
such as:
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e mean and expected maximum duration of wet
intervals;

¢ daily mean of precipitation for rainy days;

e expected maximum duration of dry intervals is well
covered by the 90% confidence intervals of both
models, but better estimated by the unconditional
model;

e frequency of days with precipitation amount greater
than 20 mm for the 1901-1999 period.

Other statistical features of the generated precipita-
tion time series are only partially reproduced by both
models, or are better reproduced by one of the models,
such as:

e The mean duration of dry intervals for winter and
summer (1901-1949) and autumn (1950-1999) are
reproduced well by both models; in the other cases,
both models overestimate the observed values,
except for spring, when the unconditional model is
better.

e The daily standard deviation is better estimated for
1901-1949, except for summer, when it is underesti-
mated; for 1950-1999 the standard deviation is slightly
underestimated for all seasons (less for summer).

e The expected maximum daily precipitation is gener-
ally underestimated for all seasons (both models),
but the observed values are covered by the 90 % con-
fidence intervals, except for summer (1901-1949)
and winter and autumn (1950-1999).

e The frequency of wet intervals (winter and autumn)
and of extreme dry events (winter and autumn) well
reproduced; in the rest of cases, generally, the fre-
quency of shorter dry intervals is underestimated
and the longer dry intervals (>9 d) are too frequent.

e The seasonal mean of rainy days is generally well
reproduced by both stochastic models, except for
spring and autumn, when it is underestimated by the
conditional model and overestimated by the uncon-
ditional model.

¢ The linear trend of winter precipitation is well iden-
tified by the conditional stochastic model, but the
increase in 1901-1949 is underestimated and the
decrease in 1950-1999 is overestimated.

e The interannual variability is better captured by the
conditional stochastic model in all seasons (espe-
cially for summer) and both subintervals, except for
spring (1950-1999), when it is underestimated.

In conclusion, the conditional stochastic model pre-
sented in this paper can be used to generate daily
precipitation time series, especially for winter and
autumn. Compared to the unconditional model this
model has the advantage of capturing the observed
changes in the local seasonal precipitation induced by
changes in the large-scale circulation, represented by
the SLP field. This makes it useful for the construction
of climate change scenarios based on GCM output

(especially transient versions). Another important
advantage of the conditional stochastic model is that it
captures better the interannual variability. This sto-
chastic model could be improved (especially for spring
and summer seasons) by adding other large-scale
parameters. Moisture variables could be important
large-scale predictors (Heimann & Sept 2000), but
unfortunately they are not available for long time
series. The NCEP reanalysis are only available for 1948
onwards. For climate change scenarios, this problem
could be solved by developing conditional stochastic
models over shorter time periods using a cross-
validation procedure (Barnett & Preisendorfer 1987).
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