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1. INTRODUCTION

For many applications, the historical climate record
is inadequate due to short or incomplete data records,
or lack of appropriate spatial coverage. As a result,
models of observed daily weather sequences, or sto-
chastic weather generators (SWGs), are often used to
supplement the historical record or to provide data for
locations where weather data are not routinely col-
lected (Johnson et al. 1996, Wilks & Wilby 1999). As
time-series models with several interconnected com-
ponents, SWGs simulate sequences for a number of
variables, which typically include daily maximum and
minimum air temperature (Tmax and Tmin) and total
daily solar radiation (R), using a multivariate autore-
gressive process. 

The generated sequences are designed to have the
desired cross-correlations between Tmax, Tmin, and R
using 2 matrices, A and B, which are estimated using

lag-0 and lag-1 cross-correlations (see Section 3.2). In
many SWG implementations, A and B are treated as
constant with respect to location, time of year, and
wet/dry status. Hayhoe (2000) examined bi-monthly
variations in SWG parameters for 3 stations in Canada
and found spatial and seasonal variability in observed
cross-correlations. Several authors (e.g. Wilks & Wilby
1999) have suggested using location- and time-specific
parameters in an effort to account for spatial and sea-
sonal variability. 

In this study, the magnitude of the spatial and sea-
sonal variability of these stochastic model parameteri-
zations is investigated over a larger number of stations
and wider range of climates than have been studied in
the past. Using daily data from the contiguous USA, we
examine the spatial and seasonal differences in the
values of the lag-0 and lag-1 cross-correlations, and
hence A and B. We also examine differences between
simulated weather series when A and B are held con-
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stant and when they are allowed to vary by location
and time of year. Rather than focusing on traditional
statistics used to evaluate SWGs (monthly means and
variances, monthly maximum and minimum values,
freeze-free periods, etc.), we primarily examine (1) the
correlation structure of the generated sequences and
(2) variables that are closely related to the correlation
structure, such as diurnal temperature range. 

2. DATA

To estimate the impacts of seasonally and spatially
varying autoregressive parameters, daily data were
extracted for 29 climatically diverse locations across
the contiguous USA. (Fig. 1), essentially the same sta-
tions used in the landmark study of Richardson &
Wright (1984). Hourly air temperature, solar radiation,
and precipitation values for 1961 to 1990 were avail-
able at these 29 locations through the Solar and Mete-
orological Surface Observation Network dataset
(SAMSON; NCDC/NREL 1993) and updates, available
from the National Climatic Data Center, Asheville, NC.
To allow comparison and combination with coopera-
tive climatic data, daily Tmax and Tmin (°C) were calcu-
lated using the now-common 07:00 h observation time
(Janis 2002). Daily total solar radiation values (MJ m−2

d−1) were produced by numerical integration of hourly
solar radiation observations. 

3. DESCRIPTION OF WEATHER GENERATOR

The SWG used in this research is based on the well-
known and commonly used WGEN model (Richardson
& Wright 1984). Using a number of parameters esti-
mated from observed data, the model traditionally
generates daily values of precipitation occurrence,
precipitation amount, Tmax, Tmin, and R. Our primary

objective was to evaluate the impact of varying the
parameterizations of A and B; therefore, precipitation
amount was not simulated. The individual components
of the model are described below.

3.1. Precipitation-occurrence component

Precipitation occurrence is simulated by a 2-state,
first-order Markov chain. The occurrence of precipita-
tion depends on 2 parameters: p01, the probability of a
wet day following a dry day, and p11, the probability of
a wet day following a wet day. Depending on the pre-
cipitation occurrence simulation for the previous day,
a uniform [0,1] random number is compared to the
appropriate transition probability. If the random num-
ber is less than the transition probability, a wet day is
simulated. Otherwise, a dry day is simulated. Previous
work has shown that changes in precipitation parame-
ters can effect the moments of conditioned variables
generated by the model. Therefore, if a SWG is to be
used in a climate-change context, additional adjust-
ments to model parameters may be needed (Katz
1996).

3.2. Temperature and radiation component

Daily values of Tmax, Tmin, and R are simulated by a
first-order multivariate stochastic process, as described
by Matalas (1967). To produce stationary time series,
harmonic analysis first is used to construct annual
cycles of daily means and standard deviations of the
input variables. Using a Fourier transform, annual
cycles are fit to daily means and standard deviations
using the first 3 harmonics. These annual-cycle har-
monics are fit separately for wet and dry days. In some
cases, a given day of the year may have few wet or dry
occurrences; therefore, a 15 d moving window was
used to construct the daily means and standard devia-
tions. In particularly dry areas, SWG users may con-
sider using longer moving windows. The time series
are then reduced to standardized residual elements by
subtracting the daily means and dividing by the stan-
dard deviations, as defined by the harmonics. 

The SWG simulates daily residuals of Tmax, Tmin, and
R for Day i with

(1)

where Xi is a (3 × 1) matrix containing the current day’s
standardized values of Tmax, Tmin, and R; Xi−1 is a (3 × 1)
matrix containing the previous day’s standardized val-
ues of Tmax, Tmin, and R; εεi is a (3 × 1) vector of inde-
pendent values from a standard normal distribution;
and A and B are (3 × 3) matrices given by

X AX Bi i i= +−1 εε
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Fig. 1. The contiguous United States and the 29 stations used 
in this study
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(2)

(3)

where M0 is the (3 × 3) matrix of lag-0 cross correla-
tions and M1 is the (3 × 3) matrix of lag-1 cross correla-
tions. For example, M0(1,2) is the correlation between
Tmax and Tmin and M1(1,2) is the correlation between
Tmax and Tmin lagged by 1 d. While A can be estimated
directly, B is estimated by defining a new matrix, Z =
BBT (see Greene 2000). Then by spectral decomposi-
tion, Z = CLCT, where C is the matrix of eigenvectors of
BBT and L has the eigenvalues of BBT on the diagonal
and zeros elsewhere. Since BBT = Z1/2Z1/2T = Z, B = Z1/2.
Then by Greene’s Theorem 2.10, estimates of B can
then be computed as B = CL1/2CT. After generation of
the residual series with Eq. (1), the daily harmonics
described above are used to produce dimensional val-
ues of Tmax, Tmin, and R, based on wet/dry status. 

The use of a standard normal distribution for all 3
elements of εεi may not be appropriate in many situa-
tions, particularly for solar radiation. For this reason,
some SWGs (e.g. LARS-WG; Semenov & Barrow 1997)
have used more complex distributions for R. Other
SWGs (e.g., CLIGEN; Nicks & Gander 1993, 1994)
have addressed this issue by constraining the gener-
ated R data between a maximum value based on sta-
tion location and sun angle and a minimum value of
5% of the maximum value. In an examination of 15 US
climate stations, Harmel et al. (2002) found that even
Tmax and Tmin were not generally normally distributed
in each month, results that have wide implications for
further SWG research. Nonetheless, the focus of this
research is not on εεi, and the vast majority of SWGs are
still based on assumptions of normality. SWG users
must decide how these assumptions impact their par-
ticular application.

4. OBSERVED RELATIONSHIPS

In many implementations, WGEN-type models use
fixed values of M0 and M1—and therefore A and B—
irrespective of location and time of year. Richardson
(1982) provides the following values:

While the literature-based correlation matrices may
be appropriate during some seasons at some locations,
the observed and literature-based (constant) correla-
tion matrices can be very different when location and
the entire calendar year are considered. The differ-
ences in the correlation matrices ultimately dictate the
variability in the estimated elements of the A and B
matrices. In the following sections, observed values of
M0 and M1, and hence the estimates of A and B, are
examined. 

4.1. Seasonal/spatial variability of lag-0 correlation
coefficients (M0)

The literature-based values of M0 agree with
observations at some locations during some months;
however, examination of station-specific monthly cor-
relations suggests that the literature values may not
be appropriate for all locations year round (Figs. 2
& 3). 

During the late summer months, the literature-
based value of M0(1,2)—0.633—is similar to values
observed at many stations. However, during the win-
ter months, the literature-based correlation is lower
than the observed correlation at most stations
(Figs. 2a & 3a). The correlations between temperature
and radiation [M0(1,3) and M0(2,3)] are more season-
ally and spatially variable than M0(1,2) (Figs. 2b,c &
3b,c). For these elements, the literature-based corre-
lations are appropriate at some locations during the
transition seasons, but they are generally too strong
during the winter months and too weak during the
summer months. 

4.2. Seasonal/spatial variability of lag-1 correlation
coefficients (M1)

The data used in this study suggest that the elements
of M1, the lag-1 correlation matrix, are also seasonally
and spatially variable within the contiguous USA. As
with the elements of M0, the literature-based values
are appropriate at some locations and some times of
year [e.g. M1(2,2) in November; Fig. 4e], but fail to
accommodate the range of values observed over the
study area in most months (Fig. 4). For some elements
of M1 the literature-based value is entirely outside the
range of observations during particular months [e.g.
M1(2,3) in November, December, January, and Febru-
ary; Fig. 4h]. (Note that in all of the boxplots shown,
spatial variability can be inferred from the amount of
variation in any given box-and-whiskers, although
some of the variation also is due to sampling vari-
ability.)
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4.3. Seasonal/spatial variability of A and B

Although seasonal variations in the elements of A
are generally small, several elements of A exhibit sub-
stantial spatial variability in individual months (Fig. 5).
The observed values of each element are generally in
poor agreement with literature-based values, with
most stations consistently having values that differ
from the literature-based values. In general, the indi-
vidual elements of B exhibit more seasonal variability
and less spatial variability than the elements of A
(Fig. 6). Observed values of B(1,2) and B(3,2) are dif-
ferent from the literature-based values at all stations
during all months. For other elements of B, especially
those exhibiting seasonal variability, the literature-
based values are appropriate only at particular times
and locations. In general, the literature-based values of
B do not agree with those computed with spatially and
seasonally variable values of M0 and M1 (Fig. 6).
Although the estimated A and B elements vary over

relatively large spatial scales, they do
not have obvious relationships with
physiographic characteristics, such as
latitude, longitude, and elevation. This
result has implications for interpola-
tion of SWG parameters (e.g. Semenov
& Brooks 1999).

5. WEATHER-GENERATOR
IMPLEMENTATION

Variability in the elements of the A
and B matrices suggests that using
station-specific parameters may have
important impacts on data generated
with an SWG. To investigate the
effects of these spatially and season-
ally varying parameterizations, the
SWG described in Section 3 was used
to produce 100 yr sequences of daily
Tmax, Tmin, and R for each station in our
analysis (Fig. 1; as described in Section
2). The SWG was run in 2 modes. First,
the elements of A and B were held
constant according to the literature-
based values (i.e. values given by
Richardson 1982), producing gener-
ated data that is hereafter referred to
as LGEN. In the second mode, the
monthly values of A and B estimated
from historical data for each individual
station were used, producing data that
is hereafter referred to as ABGEN.

6. EVALUATION OF GENERATED DATA

6.1. Means and standard deviations

Means and standard deviations of the generated
variables (not shown) are in general agreement with
observations for both versions of the generator (LGEN
and ABGEN). These means and standard deviations
are largely dependent on the harmonics used to depict
the means and standard deviations—and not on the
correlation structure of the variables. Since these har-
monics do not differ between the ABGEN and LGEN
simulations, the small differences in these values are
not unexpected. For the eastern half of the contiguous
USA, differences between observed and generated
Tmax are less than 1°C in all months. For stations in the
western USA, differences are less than 1°C during the
summer months and 1 to 2°C during the winter
months. Differences between observed and generated
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Fig. 2. Contour plots of lag-0 correlations (M0). (a) January correlation between
daily Tmax and Tmin: M0(1,2); (b) July correlation between daily Tmax and Tmin:
M0(1,2); (c) January correlation between Tmax and R: M0(1,3); (d) July correla-
tion between Tmax and R: M0(1,3); (e) January correlation between daily Tmin

and R: M0(2,3); and (f) July correlation between daily Tmin and R: M0(2,3). 
Literature-based values of M0 are given in Eq. (4)
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Tmin are less than 1°C at all locations during the spring
and summer months, with differences of 1 to 2°C in the
east during the winter. During the late autumn and
winter months (October−February), differences
between observed and generated R are less than 1 MJ
m−2 d−1 in the western half of the US. During the
spring, these differences are as large as 3 MJ m−2 d−1.
The errors in R are not unexpected and result from
poor agreement in the lower tail of the distribution.
While observed values are physically bounded at zero,
modeled values of R can become negative. In the 100
yr simulations conducted here, negative R values were

not generated at most stations. When this fundamental
simulation error did occur, R was set to zero. Some
alternatives, such as constraining the generated R val-
ues in physically plausible ways, are available (see
Section 3.2). 

ABGEN and LGEN produce means and standard
deviations with nearly identical spatial and temporal
variability (and therefore are not shown). In terms of
these means and standard deviations, the station-
specific ABGEN does not provide any improvement
over the constant-parameter LGEN.

6.2. Correlations between generated variables

While correlations between simulated variables are
not routinely used to evaluate SWGs, preservation of
the correlation structure between the variables is criti-
cal for impacts modeling in agriculture and hydrology,
where multiple input series of daily weather variables
are routinely employed. Since the correlation structure
between the generated variables is fundamentally
dependent on the values of A and B, the station-
specific generator should better replicate the observed
correlations between variables. Lag-0 and lag-1 cross-
correlations confirm that station-specific, monthly
parameterization of A and B produces a better match
between simulated and observed correlations (Figs. 2
& 7). Data simulated with the constant, literature-
based values for A and B resulted in larger differences
between observed and generated correlations (Figs. 2
& 7). (Note that the correlations depicted in Fig. 7 are
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Fig. 3. Distributions (boxplots) of lag-0 correlations (M0).
(a) Correlation between daily Tmax and Tmin: M0(1,2); (b) cor-
relation between Tmax and R: M0(1,3); and (c) correlations
between daily Tmin and R: M0(2,3). Each box shows the distri-
bution of correlations across the 29-station network and
depicts the maximum and minimum values, as well as the
inter-quartile range and median. The dashed line represents 

the literature-based value

Fig. 4. Boxplots of lag-1 correlations (M1). (a) Lag-1 correla-
tion between Tmax and Tmax; (b) lag-1 correlation between
Tmax and Tmin; (c) lag-1 correlation between Tmax and R;
(d) lag-1 correlation between Tmin and Tmax; (e) lag-1 correla-
tion between Tmin and Tmin; (f) lag-1 correlation between Tmin

and R; (g) lag-1 correlation between R and Tmax; (h) lag-1 cor-
relation between R and Tmin; and (i) lag-1 correlation between
R and R. Each box shows the distribution of correlations
across the 29-station network and depicts the maximum and
minimum values, as well as the inter-quartile range and
median. The dashed line represents the literature-based 

value
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Fig. 5. Boxplots of elements of A. (a) A(1,1); (b) A(1,2);
(c) A(1,3); (d) A(2,1); (e) A(2,2); (f) A(2,3); (g) A(3,1); (h) A(3,2);
and (i) A(3,3). Each box shows the distribution of coefficients
across the 29-station network and depicts the maximum and
minimum values, as well as the inter-quartile range and
median. The dashed line represents the literature-

based value

Fig. 6. Boxplots of elements of B. (a) B(1,1); (b) B(1,2); (c) B(1,3);
(d) B(2,1); (e) B(2,2); (f) B(2,3); (g) B(3,1); (h) B(3,2); and
(i) B(3,3). Each box shows the distribution of coefficients across
the 29-station network and depicts the maximum and mini-
mum values, as well as the inter-quartile range and median. 

The dashed line represents the literature-based value

Fig. 7. Contour plots of lag-0 correlations for ABGEN (left)
and LGEN (right) generated data. (a) January M0(1,2)
ABGEN; (b) January M0(1,2) LGEN; (c) January M0(1,3)
ABGEN; (d) January M0(1,3) LGEN; (e) January M0(2,3)
ABGEN; (f) January M0(2,3) LGEN; (g) July M0(1,2) ABGEN;
(h) July M0(1,2) LGEN; (i) July M0(1,3) ABGEN; (j) July
M0(1,3) LGEN; (k) July M0(2,3) ABGEN; and (l) July M0(2,3) 

LGEN. Literature-based values are given in Eq. (4)
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computed using the generated data and
include the annual cycle harmonics;
therefore, some of the variability in
these maps results from differences in
the harmonics.)

For each element of M0, absolute dif-
ferences between observed and gener-
ated values are larger for LGEN than
ABGEN. The maximum absolute differ-
ences between observed and generated
M0(1,2), the correlation between Tmax

and Tmin, are 0.49 for LGEN and 0.27 for
ABGEN. For M0(1,3), the correlation
between Tmax and R, the maximum
absolute difference is 0.68 for LGEN,
compared with 0.23 for ABGEN. Maxi-
mum absolute differences between
observed and generated M0(2,3), the
correlation between Tmin and R, are 0.46
for LGEN and 0.22 for ABGEN. 

The lag-1 cross-correlations computed
with the generated data are also differ-
ent from the observed lag-1 cross-corre-
lations (M1). For ABGEN, the absolute
differences between generated and ob-
served elements of M1 are typically

small (<0.1 for all temperature−temperature correla-
tions and <0.2 for all temperature−radiation correla-
tions). For LGEN, the differences can be quite large.
For example, the maximum absolute difference
between generated and observed M1(2,1) for the
month of May is 0.48 for LGEN, compared with only
0.10 for ABGEN. 

6.3. Diurnal temperature range

Diurnal temperature range (DTR ≡ Tmax − Tmin) also
can be an effective evaluation tool for SWGs. Given
that DTR is a function of both Tmax and Tmin, its accu-
rate simulation requires that the relationships between
these 2 variables be preserved. Using the 100 yr simu-
lations described above, LGEN (with constant A and B)
produces many more days with negative DTR (i.e. a
fundamental simulation error) than ABGEN at most
stations used in this study (Fig. 8). While both SWGs
(LGEN and ABGEN) simulated monthly means and
standard deviations of generated variables well, the
frequency distribution of DTR is not simulated as well
by the literature-based generator. Although monthly
mean DTR is similar in both models, the station-based
generator produces much better agreement between
observed and simulated standard deviation of DTR
(Fig. 9), especially during the winter months. The
cause for these simulation errors in LGEN can be
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Fig. 8. Contour plots of the number of times per year (in a
100 yr simulation) the SWG simulates negative diurnal 

temperature range for (a) ABGEN and (b) LGEN

Fig. 9. Contour plots of the errors in simulating the mean (left) and standard
deviation (right) of diurnal temperature range (DTR) during January.
(a) ABGEN mean DTR minus observed mean DTR and (b) ABGEN standard
deviation of DTR minus observed standard deviation of DTR. (c) LGEN mean
DTR minus observed mean DTR and (d) LGEN standard deviation of DTR 

minus observed standard deviation of DTR



Clim Res 24: 95–102, 2003

traced to M0(1,2), the element of the correlation matrix
that relates the current day’s Tmax and Tmin. Errors in
the LGEN standard deviation of DTR are highly corre-
lated with differences in literature-based and observed
values of M0(1,2) (monthly correlations range from
–0.92 to –0.70, significant at the 99% level). 

The station-specific generator also reproduces the
relationships between temperature and radiation
more accurately. Because DTR is closely linked to
cloud cover and precipitation (Leathers et al. 1998),
and radiation is a reasonable surrogate for cloud
cover, allowing the relationships between tempera-
ture and radiation to vary by location and time of
year helps to improve the simulation of temporal vari-
ability in DTR.

7. DISCUSSION AND CONCLUSIONS

In this study, the effects of SWG parameterizations
have been investigated. Using historical data from 29
stations in the US, we examined the spatial and sea-
sonal differences in the lag-0 and lag-1 cross-correla-
tions between Tmax, Tmin, and R. These correlations
ultimately determine the nature of the A and B matri-
ces used in the SWG, and they were found to have pro-
found spatial and seasonal variations. 

To investigate the impacts of the seasonal and spatial
variability in the elements of these matrices, 100 yr
simulations for 29 stations were undertaken with (1) A
and B assumed constant (values from Richardson 1982)
and (2) A and B computed for each individual station
on a monthly basis. 

The simulations were compared to observed data
using statistical and graphical methods. The results
suggest that monthly means and standard deviations
of each simulated variable agree with observed values
for both simulations; however, the literature-based
generator failed to preserve relationships between
variables. This shortcoming is evident in both the sim-
ulated diurnal temperature range (DTR) and in the cor-
relations between simulated variables. 

Our findings suggest that literature-based values
may be appropriate for applications where monthly
values of the means and standard deviations of gener-
ated variables are of interest. For applications that
require proper simulation of relationships between
variables, station-specific parameterizations are more
appropriate. In addition, because SWGs are now being
used in climate-change studies (e.g. GCM downscal-
ing research; Semenov & Barrow 1997, Wilks 1999),
additional caution is warranted. While SWG parame-

ters will certainly change as climate changes, the mag-
nitude of changes will vary seasonally and spatially. 
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